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Abstract

Microstructure imaging techniques based on tensor-valued diffusion encoding have gained

popularity within the MRI research community. Unlike conventional diffusion encoding—

applied along a single direction in each shot—tensor-valued encoding employs diffusion

encoding along multiple directions within a single preparation of the signal. The benefit is

that such encoding may probe tissue features that are not accessible by conventional

encoding. For example, diffusional variance decomposition (DIVIDE) takes advantage of

tensor-valued encoding to probe microscopic diffusion anisotropy independent of orientation

coherence. The drawback is that tensor-valued encoding generally requires gradient wave-

forms that are more demanding on hardware; it has therefore been used primarily in MRI

systems with relatively high performance. The purpose of this work was to explore tensor-

valued diffusion encoding on clinical MRI systems with varying performance to test its tech-

nical feasibility within the context of DIVIDE. We performed whole-brain imaging with linear

and spherical b-tensor encoding at field strengths between 1.5 and 7 T, and at maximal gra-

dient amplitudes between 45 and 80 mT/m. Asymmetric gradient waveforms were optimized

numerically to yield b-values up to 2 ms/μm2. Technical feasibility was assessed in terms of

the repeatability, SNR, and quality of DIVIDE parameter maps. Variable system perfor-

mance resulted in echo times between 83 to 115 ms and total acquisition times of 6 to

9 minutes when using 80 signal samples and resolution 2×2×4 mm3. As expected, the

repeatability, signal-to-noise ratio and parameter map quality depended on hardware perfor-

mance. We conclude that tensor-valued encoding is feasible for a wide range of MRI sys-

tems—even at 1.5 T with maximal gradient waveform amplitudes of 33 mT/m—and

baseline experimental design and quality parameters for all included configurations. This

demonstrates that tissue features, beyond those accessible by conventional diffusion

encoding, can be explored on a wide range of MRI systems.
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Introduction

Diffusion magnetic resonance imaging (dMRI) enables non-invasive imaging of tissue micro-

structure. The vast majority of dMRI techniques rely on the conventional Stejskal-Tanner

experiment [1] that employs a pair of pulsed field gradients to yield diffusion encoding along a

single direction for each preparation of the signal, so called ‘linear’ encoding. Methods such as

diffusion tensor imaging (DTI) [2] yield voxel-scale average parameters which are sensitive to

alterations of the tissue microstructure in both healthy development and disease [3]. Diffu-

sional kurtosis imaging (DKI) [4] is an extension to DTI that can probe non-gaussian pro-

cesses and sub-voxel heterogeneity—a feature that has the potential to differentiate, for

example, high and low-grade gliomas [5, 6]. Information on the microstructure can also be

inferred from biophysical models, which may provide more specific information based on

assumptions about the tissue composition [7]. However, techniques that rely on linear diffu-

sion encoding alone all have a fundamental drawback: they convolve the effects of microscopic

diffusion anisotropy, orientation dispersion, and heterogeneous isotropic diffusivity [8–11].

Consequently, markedly different tissue archetypes, such as elongated cell structures that are

randomly oriented and isotropic tissues with varying cell density, may be indistinguishable

regardless of the modelling approach [8, 9].

This limitation can be mitigated by performing diffusion encoding along multiple direc-

tions in a single acquisition. This approach was introduced by Cory et al. [12], who proposed

parallel and orthogonal double diffusion encoding (DDE) as a probe of local pore geometry.

This concept has since been elaborated on by many contributors [13]. Mori and van Zijl [14]

and Wong et al. [15] introduced isotropic diffusion encoding by pulsed field gradients in

order to sensitize the signal to the direction-average diffusivity without the need for multiple

encoding directions, which may be useful in rapid diffusion-weighted imaging [16, 17]. Eriks-

son et al. [18] later demonstrated that a combination of linear and isotropic encoding is sensi-

tive to microscopic anisotropy [19] and that isotropic encoding can be obtained by

continuously varying the gradient waveform, a premise that facilitates waveform optimization

based on arbitrary gradient trajectories [20].

To emphasize that the encoding is no longer described by a vector (a single gradient direc-

tion), we refer to it as tensor-valued diffusion encoding and describe it by a b-tensor. The tensor

can be characterized by its trace (b-value) and its symmetry axis (encoding direction). It can

also be assigned a shape defined from the b-tensor eigenvalues, similar to shape parameters

related to the diffusion tensor [21, 22]. The b-tensor formalism was proposed by Westin et al.

[21] and generalizes to arbitrary gradient trajectories. Variation of the b-tensor shape is central

to probing microscopic anisotropy, as demonstrated for angular DDE that yields linear and

planar tensor encoding (LTE and PTE) [12, 13, 23–28], and for combinations of LTE and

spherical tensor encoding (STE) [9, 19].

Acquisition based on gradient waveforms that yield multiple shapes of the b-tensor can be

analyzed in a variety of ways [19, 21–24, 29–31]. In this work we will use so-called diffusional

variance decomposition (DIVIDE) [19, 21, 32] which is a simple signal representation that

captures the mean diffusivity and diffusional variance (or kurtosis) caused by microscopic

anisotropy and heterogeneous isotropic diffusivity [9, 19].

The gradient waveforms necessary to yield, for example, planar or spherical b-tensors, are

generally more demanding on the gradient hardware compared to encoding along a single

direction. As such, these techniques have primarily been used with high-performance gradient

systems that facilitate sufficient data quality and acceptable acquisition times. For example, an

early clinical study where microscopic anisotropy was investigated based on a combination of

linear and spherical encoding was performed at a 3 T scanner with 80 mT/m gradients—

Tensor-valued diffusion encoding for diffusional variance decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0214238 March 28, 2019 2 / 20

Linda Knutsson, head of MRI research (including

research data storage), at the Dept. of Medical

Radiation Physics, Lund University (Address: Dept.

of Medical Radiation Physics, Barngatan 6, Lund

22185, Sweden; Telephone: +4646178547; Email:

linda.knutsson@med.lu.se).

Funding: This work was supported by: MN:

Swedish Research Council. Grant no. 2016-03443,

https://www.vr.se/; MN: Swedish Foundation for

Strategic Research. Grant no. AM13-0090, https://

strategiska.se/en/; and MN: Random Walk Imaging

AB. Grant no MN15, www.rwi.se. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: MN declares research

support from, and ownership interests in, Colloidal

Resource and it subsidiary Random Walk Imaging

AB. FSz is a former employee of Random Walk

Imaging AB. Remaining authors declare no conflict

of interest.

https://doi.org/10.1371/journal.pone.0214238
mailto:linda.knutsson@med.lu.se
https://www.vr.se/
https://strategiska.se/en/
https://strategiska.se/en/
http://www.rwi.se


currently considered a high-performance system. Even so, it required an echo time of 160 ms

to achieve a b-value of 2.8 ms/μm2 which limited the spatial resolution and coverage [32]. This

warrants development of efficient gradient waveform design [20], parsimonious signal sam-

pling protocols, and investigations of the technical feasibility in MRI systems with different

performance.

In this study we aim to survey the technical feasibility of tensor-valued diffusion encoding

for DIVIDE analysis, specifically linear and spherical b-tensors, adapted for a whole-brain

acquisitions over a wide range of MRI systems. We consider four configurations with field

strengths between 1.5 and 7 T, and maximum gradient amplitudes between 45 and 80 mT/m.

The most challenging configurations were expected to be those where the SNR was low due to

strong T2 relaxation, i.e. configurations where a low maximal gradient amplitudes led to long

echo times or with ultra-high field strengths that led to shorter transversal relaxation times

[33–35].

Methods

We investigated the technical feasibility of tensor-valued diffusion encoding on three MRI

scanners with field strengths between 1.5 and 7 T, and maximal gradient amplitudes between

45 and 80 mT/m. The three scanners were used in four configurations (A-D) as described in

Table 1. Notably, configurations B and C use the same MR scanner, but configuration B used

the protocol and waveforms optimized for configuration A. Furthermore, we emphasize that

configuration D employed experimental hardware in a clinical setting.

All configurations were investigated using the clinically relevant requirements of whole-brain

coverage (120 mm contiguous coverage in feet-head direction) and acquisition times below 10

minutes. Technical feasibility was quantified in terms of the SNR across the brain parenchyma,

Table 1. Configuration of hardware, imaging protocols and gradient waveforms. Configurations A-C used

20-channel receive head/neck coil arrays. Configuration D used a 32-channel transmit/receive head coil array. The

maximal gradient waveform amplitude and slew rate allowed by the hardware (Gmax and Smax) and the maximum that

was used for STE and LTE are stated along with imaging and waveform timing parameters.

Unit A B C D

Scanner I II II III

B0 T 1.5 3 3 7

Gmax mT/m 45 80 80 60

Smax T/m/s 200 200 200 100

Imaging parameters
TE ms 115 115 83 88

TR ms 5000 5000 4100 6500

Ttot min 6:40 6:40 5:28 8:40

Waveform parameters
GSTE, GLTE mT/m 33, 33 33, 33 66, 67 55, 60

SSTE, SLTE T/m/s 25, 13 25, 18 64, 59 58, 40

STE δ1, δ2, δP ms 49, 42, 7 49, 42, 8 32, 26, 8 36, 27, 7

LTE δ1, δ2, δP ms 42, 42, 7 42, 42, 8 26, 26, 8 27, 27, 16

Scanner I: Siemens Magnetom Aera; II: Siemens Magnetom Prisma; III: Philips Achieva 7T. B0 main magnetic field

strength; Gmax maximum gradient amplitude; Smax maximum gradient slew rate; TE echo time; TR repetition time;

Ttot total acquisition time excluding preparation stages; GSTE, GLTE and SSTE, SLTE are the maximal amplitudes and

slew rates used in the STE and LTE waveforms; δ1 and δ2 duration of waveform before and after refocusing pulse; δP

is the time between the end of the first and beginning of the second waveform.

https://doi.org/10.1371/journal.pone.0214238.t001
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and the repeatability of the diffusion-weighted signal attenuation and the estimated DIVIDE

parameters. Furthermore, qualitative features such as image artifacts, were noted.

Protocol design and data acquisition

The protocols were designed using the following three steps: (i) set the minimal and maximal

b-values and number of b-values, (ii) determine the minimal echo and repetition times (TE

and TR) for each configuration, (iii) distribute the available signal samples across b-values,

encoding directions and b-tensor shapes. Details for each step are given in the Supporting

Information. Protocols and waveforms were separately optimized for each configuration and

are summarized in Table 1. The following imaging parameters were kept constant for all con-

figurations: acquisition matrix 112×112 in 30 contiguous slices, partial-Fourier 0.75, in-plane

acceleration factor 2 (A-C: GRAPPA, D: SENSE), bandwidth 1800 Hz/pixel, and fat suppres-

sion was engaged (A-C: ‘strong’, D: ‘strong’ with slice gradient reversal). Notably, the default

spatial resolution was 2×2×4 mm3; the effect of anisotropic voxels is commented on in the dis-

cussion. The strength of the diffusion encoding was b = 0.1, 0.7, 1.4 and 2 ms/μm2 for both

LTE and STE. For these b-values, the number of directions for LTE was 6, 6, 12, and 16, respec-

tively. The STE was not rotated since it is assumed to be rotation invariant, but was repeated 6,

6, 12, and 16 times, respectively. This resulted in a total of 80 signal samples per voxel. The

sampling order was volume-interleaved to distribute energy consumption and heating more

evenly over time [36] and to reduce the potential bias caused by system drift [37]. The total

acquisition time (Ttot) was calculated as the number of samples multiplied by TR to remove

dependency on preparation phases that may be different across configurations.

All experiments were performed using an in-house developed prototype pulse sequence

based on the diffusion-weighted spin-echo sequence with echo-planar imaging readout pro-

vided by Philips Healthcare (Best, the Netherlands) and Siemens Healthcare (Erlangen, Ger-

many). Asymmetric gradient waveforms for STE were optimized for each configuration to

minimize TE using the software described by Sjölund et al. [20], available at https://github.

com/jsjol/NOW. The optimization of gradient waveforms used the max norm, heat dissipation

factor 0.6, and a slew rate limit of 100 T/m/s, to comply with both duty cycle and peripheral

nerve stimulation limits [38, 39]. The actual slew rate was determined by the temporal resolu-

tion of the waveform optimization as well as the amplitude and timing of the waveform.

Although this imposed relatively low slew rates compared to the limit used in optimization, it

is expected to have marginal effect on encoding efficiency. As noted in Table 1, the STE gradi-

ent amplitude was not maximized because such waveforms could exceed the duty cycle of the

scanner. Instead, several amplitudes were tested empirically, and the most efficient waveform

that was robustly executed was selected. The waveform optimization included concomitant

field effect compensation, and all waveforms had Maxwell indices below 200 (mT/m)2ms

which ensures negligible signal error [40]. The LTE used symmetric bipolar trapezoid wave-

forms to approximately match the gradient amplitude and diffusion time of the STE experi-

ment [41]. An example of a spin-echo sequence with both types of waveforms is shown in Fig

1. Comprehensive definitions of waveforms, timing settings, signal sampling schemes and

model fit settings are available at https://github.com/filip-szczepankiewicz/Szczepankiewicz_

PONE_2019.

All data were acquired twice within the same session for each configuration, in a single

healthy volunteer (male, age 27 y) with previous experience as an MRI volunteer. There was

no compensation for volunteering. All experiments were approved by the Regional Ethical

Review Board (Lund, Sweden, EPN 2014–735 for systems I and II, EPN 2012–428 for system

III), and informed consent was obtained prior to participation. Diffusion-weighted data were
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corrected for motion and eddy currents in Elastix [42] using an extrapolation-based reference

volume [43]. To retain the impact of signal noise on the images, no smoothing was applied at

any stage of the processing.

To investigate the interplay between SNR and spatial resolution, we created two alternative

configurations. Based on configuration A, we mitigated the low SNR by reducing the spatial

resolution. A low-resolution configuration (A�) was achieved by setting the matrix size to

88×88 resulting in 2.5×2.5×4 mm3 voxels and the bandwidth was reduced to 1180 Hz/pixel to

preserve the readout time and total acquisition time. Based on configuration C, we sacrificed

SNR in favor of an increased spatial resolution. A high-resolution configuration (C�) was

achieved by reducing the slice thickness to 2 mm. To preserve coverage, the number of slices

was doubled and the repetition time was set to 8900 ms. This yielded a spatial resolution of

2×2×2 mm3 and an acquisition time of 12 minutes.

DIVIDE parameter estimation

DIVIDE employs a joint analysis of data acquired with b-tensors (B) with multiple b-values (b
= Trace(B)) and shapes (bΔ) [22]. Assuming that the observed diffusion process can be approx-

imated by a distribution of diffusion tensors (multi-Gaussian) [4, 44], the fitting parameters

can be interpreted in terms of the signal at b = 0 (S0), mean diffusivity (MD) and the aniso-

tropic and isotropic diffusional variance (VA and VI) [19, 32]. Although several approaches for

estimation of these parameters exist [21, 24, 29, 45], we estimate the parameters by fitting the

Laplace transform of the gamma distribution [46, 47] to the powder-averaged LTE and STE

signal (�S) simultaneously [19, 32], according to

�S b; bDð Þ ¼ S0 1þ b �
VI þ b2

D
� VA

MD

� �� MD2

VIþb
2
D
�VA
: Eq 1

For LTE, the powder average is the arithmetic average across directions for each b-value (see

Supporting Information), whereas STE is natively rotation invariant and requires no such

averaging. Note that Eq 1 is only valid for axisymmetric b-tensors, and that bΔ is 1 and 0 for

LTE and STE, respectively [48]. The average and variance of the gamma distribution produced

by the fit are estimates of the average and variance of the true distribution of diffusion coeffi-

cients. If the gamma and true distributions have different functional forms, the estimates may

be biased. The fitting was initialized at random values, accounted for heteroscedasticity

(weighted by the square root of the number of signal samples that make up each average), and

was constrained to yield real—but not necessarily positive—values for VI or VA. Negative

Fig 1. Schematic spin-echo sequence with echo planar imaging readout and diffusion-encoding gradient

waveforms that yield linear (red line) and spherical b-tensor encoding (black lines). Note that the STE waveform is

asymmetric around the refocusing pulse [20] and that it must therefore be designed to compensate for errors caused by

concomitant fields [40]. The LTE waveform is bipolar to match the effective diffusion times for STE and LTE [41].

Note that crusher gradients (dotted lines) are not engaged when the diffusion encoding acts as a crusher.

https://doi.org/10.1371/journal.pone.0214238.g001
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variances are not physical but can be caused by noise and were allowed to avoid a positive bias

for values close to zero. The diffusional variance was reported in terms of a normalized metric

similar to the mean kurtosis from DKI [4], defined according to [19, 49]

MKx ¼ 3 �
Vx

MD2
; Eq 2

where ‘x’ denotes the isotropic (I) or anisotropic (A) diffusional variance. The normalized sig-

nal at b = 2 ms/μm2 averaged over directions or repetitions (�S=S0) was also considered in the

analysis of repeatability, and denoted A(L) and A(S) when using LTE and STE, respectively.

Finally, we calculated the microscopic fractional anisotropy (μFA), according to

mFA ¼
ffiffiffi
3

2

r

� 1þ
MD2 þ VI

5

2
VA

� �� 1=2

; Eq 3

which can be interpreted as the FA that would be observed if all structures in the sample were

aligned in parallel [9, 21]. Thus, μFA captures the microscopic diffusional anisotropy even in

samples that are isotropic on the voxel scale [24, 32, 50]. We use the definition by Westin et al.

[21] (including the contribution from VI) rather than the one by Lasič et al. [19]. The post-pro-

cessing and analysis software [51] was written in Matlab (The MathWorks, Natick, MA, USA)

and is available at https://github.com/markus-nilsson/md-dmri.

Analysis of repeatability

For each configuration, data from two identical acquisitions were compared to investigate

repeatability. Spatial correspondence across acquisitions was achieved by not repositioning the

subject between acquisitions. To gauge the signal and DIVIDE parameter repeatability, we cal-

culated the differences between the first and second acquisition (ΔX = X1 –X2) [52], such that

ΔX is a distribution of voxel-wise differences. The repeatability was visualized in maps of ΔX as

well as Bland-Altman plots. The repeatability was summarized by the mean and standard devi-

ation of ΔX to capture the overall parameter bias and precision. To avoid inflated variability

due to a misaligned brain periphery and partial-volume effects with CSF, only voxels

where μFA> 0.7 and MD< 1.5 μm2/ms were considered.

Analysis of SNR

At low SNR, the MR signal is positively biased due to the rectified noise floor, with detrimental

effects on parameter accuracy [53–55]. Since STE was repeated several times for each b-value,

we could estimate the SNR at each b-value by computing the ratio between the mean of the

STE signal and its standard deviation. By assuming that signal is approximately Rice distrib-

uted, we can use a threshold of SNR< 3 to mark regions where signal bias is likely to influence

signal accuracy [56]. Doing so may identify regions of the brain that require action to improve

SNR. To avoid overestimation of the SNR, it was calculated based on image data that had not

been motion corrected. As a summary parameter of data quality, we report the fraction of the

brain parenchyma where SNR was above 3 and 6 at the highest b-value (b = 2 ms/μm2),

denoted Q3 and Q6. Only voxels where MD < 1.5 μm2/ms were included in the analysis to

avoid regions dominated by cerebrospinal fluid.

Simulation of parameter accuracy and precision

Simulations were used to investigate the impact of signal noise on the bias, variability and neg-

ative values of DIVIDE parameters. To this end, we used toy models of tissue described by two
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diffusion tensors (D), such that S(B)/S0 = f exp(−B:D1)+(1−f)exp(−B:D2). Note that this con-

struct is only intended to mimic the signal and noise characteristics in brain and makes no

claims about the actual brain microstructure. The first tissue model mimics white matter (high

MKA and low MKI), by using diffusion tensors with eigenvalues λD1 = [2.1 0 0] μm2/ms, λD2 =

[1.4 1.4 1.4] μm2/ms and f = 0.8. The second model mimics isotropic tissue with high MKI by

using λD1 = [0.4 0.4 0.4] μm2/ms, λD2 = [1.4 1.4 1.4] μm2/ms and f = 0.5. Such values were

uncommon in the healthy brain but may appear in tumor tissue [9]. Furthermore, we investi-

gated if the positive MKI values observed in vivo reflect the true presence of heterogeneous iso-

tropic diffusivity or if this feature can be attributed to noise. The third tissue model therefore

includes anisotropic and isotropic diffusion tensors with equal average diffusivity where λD1 =

[2.1 0 0] μm2/ms, λD2 = [0.7 0.7 0.7] μm2/ms and f = 0.5. Since the true MKI in this case is zero,

this example visualizes the magnitude of the MKI bias caused by noise as a function of SNR.

Noise sampled from a Rice distribution was added to yield SNR between 10 and 100 in S0.

Each simulation used the same signal sampling scheme and fitting procedure as for the in vivo

case. Simulations were repeated 104 times using independent realizations of noise for each

SNR value. The mean and standard deviation of model parameters across realizations was cal-

culated to quantify their accuracy and precision.

Results

Tensor-valued diffusion encoding was successfully performed using all four configurations.

Fig 2 shows the calculated DIVIDE parameter maps. There is an appreciable difference in

image quality depending on hardware performance. As expected, higher field strengths and

stronger gradients generally render lower echo times and higher image quality. The influence

of noise was most prominent for configuration A. This is likely due to the long echo time

(TE = 115 ms) incurred by the relatively low gradient amplitude. By contrast, SNR was rela-

tively high for configuration D, but its parameter maps exhibited contrast that differed from

other configurations. For example, MKI was negative in large regions throughout the paren-

chyma, and MKA was higher than at other systems, most prominently in coherent white mat-

ter pathways. Image artifacts were also noticeable, such as geometric distortions, likely

associated to issues commonly observed for dMRI at ultra-high fields [57].

Fig 3 shows maps of the SNR at the highest b-value (b = 2 ms/μm2) in three axial slices for

all configurations. Configuration A exhibited SNR< 3 close to the lateral ventricles and in the

inferior parts of the brain. Configurations B-D exhibited SNR> 3 in more than 96% of the

brain parenchyma. A complete list of the quality parameters is reported in Table 2.

Fig 4 shows the parameters estimated from simulations of noisy signal. The results show an

association between SNR and parameter accuracy as well as precision. Overall, signal noise is a

plausible cause for the parameter variations seen in the parameter maps in vivo, including

occurrences of negative diffusional variance, especially at low SNR and for true values close to

zero. The precision in MKI was consistently lower than for MKA, regardless of their true val-

ues, in accordance with in vivo results (Table 2). Moreover, the simulations suggested that

regions where SNR is low may render a positive parameter bias, especially in MKI. None of the

tested cases showed that noise can induce a negative bias in MKI. Simulations of tissue where

the true MKI = 0 indicated that noise is unlikely to account for the positive MKI values found

throughout the brain. This indicates that the true isotropic diffusional variance is detectable

and positive in brain parenchyma.

Resulting parameter and SNR maps at lower and higher resolutions on configurations A�

and C�, are shown in Fig 5. As expected, the larger voxels used at configuration A� improved

the SNR. For the lower resolution (2.5×2.5×4 mm3 voxels), we found Q3 = 99%, Q6 = 61%,
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compared to Q3 = 85%, Q6 = 16% with the baseline resolution (2×2×4 mm3 voxels). For con-

figuration C�, the smaller voxels (2×2×2 mm3) reduced the overall SNR, but it remained rela-

tively high at Q3 = 94% and Q6 = 45%. These results show that protocols with image

resolutions tailored to the system performance are also technically feasible.

Fig 2. DIVIDE parameter maps in transversal and coronal slices for configurations A-D. The image quality

generally improves with higher field strength and gradient amplitude. Most notably there is a discernably higher level

of noise for configuration A. Configuration D generally exhibited higher MKA, a pronounced geometrical distortion at

the anterior part of the brain, and more pronounced ghosting artifacts, as compared with the other configurations.

Furthermore, large regions of negative MKI were observed only for configuration D.

https://doi.org/10.1371/journal.pone.0214238.g002
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Fig 6 shows the repeatability analysis for configurations A-D. The parameter maps for the

first and second acquisition are qualitatively similar; the differences are shown in transversal

slices and visualized in Bland-Altman plots. The highest repeatability was observed for config-

uration C for all included parameters. MKI consistently exhibited the lowest precision, in

Fig 3. SNR maps at b = 2 ms/μm2 in three transversal slices for configurations A-D and SNR distributions in the brain parenchyma

at b = 0.1 and 2 ms/μm2 (histograms). White outlines show the outer perimeter within which SNR> 3, and the red outlines show

regions where SNR< 3. At high b-values, images from all systems exhibited low SNR in the ventricles due to the high diffusivity of CSF.

Configuration A shows low SNR in the central and inferior parts of the brain. Configuration C exhibited the highest SNR across all b-

values, but also a posterior rim of low SNR caused by poor fat suppression (red arrows). Configuration D generally exhibited high SNR in

the peripheral regions; in the lower parts of the brain, it exhibited a heterogeneous SNR. It also exhibited an irregular perimeter in the

inferior part of the brain, which was likely caused by local field heterogeneity in proximity to the ear canal and poor RF homogeneity, both

commonly associated to dMRI at ultra-high field strengths [58].

https://doi.org/10.1371/journal.pone.0214238.g003

Table 2. Quality and repeatability parameters for configurations A-D. Q3 and Q6 are the fraction of tissue where SNR is above 3 and 6 at b = 2 ms/μm2. The voxel-wise

parameter difference between acquisition 1 and 2 (ΔX) is reported as the average ± one standard deviation. The lowest and highest SNR was observed for configurations A

and C, respectively, and parameter precision follows the same pattern. Neither the signal attenuation nor DIVIDE parameters had a relevant bias compared to their stan-

dard deviation. Furthermore, MKI consistently exhibits a larger standard deviation compared to MKA.

Unit A B C D

Q3 % 85 97 99 96

Q6 % 16 59 85 76

ΔA(L) % 0.1 ± 2.3 –0.1 ± 1.6 0.1 ± 0.9 –0.2 ± 1.9

ΔA(S) % 0.0 ± 1.9 –0.0 ± 1.4 0.0 ± 0.9 –0.2 ± 1.3

ΔMD μm2/ms 0.00 ± 0.16 0.00 ± 0.10 0.00 ± 0.07 0.00 ± 0.12

ΔMKI 0.00 ± 0.64 0.02 ± 0.44 –0.02 ± 0.29 0.00 ± 0.39

ΔMKA 0.01 ± 0.37 0.00 ± 0.25 0.01 ± 0.16 –0.03 ± 0.25

ΔμFA 0.00 ± 0.07 0.00 ± 0.05 0.00 ± 0.03 0.00 ± 0.05

https://doi.org/10.1371/journal.pone.0214238.t002

Tensor-valued diffusion encoding for diffusional variance decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0214238 March 28, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0214238.g003
https://doi.org/10.1371/journal.pone.0214238.t002
https://doi.org/10.1371/journal.pone.0214238


agreement with the simulations (Fig 4). Notably, the precision of MD and μFA are both visibly

dependent on their absolute values, which warrants a careful interpretation of the global stan-

dard deviation. The mean and standard deviation of voxel-wise differences are reported in

Table 2.

Discussion

We have demonstrated that tensor-valued diffusion encoding with high b-values is technically

feasible across a wide range of different MRI scanners and configurations, and we have shown

the range of results that can be expected in terms of DIVIDE parameter maps. These results

can serve as a baseline in the design of future experiments. In addition to presenting imaging

protocols with high efficiency, this work also demonstrates that scanners with lower gradient

strengths—not commonly associated with ‘advanced diffusion imaging’—have sufficient per-

formance and stability for tensor-valued diffusion encoding by asymmetric gradient wave-

forms at reasonable SNR and resolution. Even at 1.5 T and a maximum gradient waveform

amplitude of 33 mT/m (configuration A), a minor reduction in spatial resolution was enough

to facilitate relatively high SNR. Likewise, the high performance of configuration C could be

harnessed to access a higher resolution, albeit at a prolonged scan time related to an increase

in number of slices (Fig 5).

We acknowledge that the present implementation at configuration D (7 T) displays a prom-

inent inconsistency, namely repeatable regions where MKI is negative, which are not physical

and cannot be explained by low SNR (Fig 4). The current results cannot be contrasted to litera-

ture since, to the best of our knowledge, b-tensor encoding at 7 T has not been investigated on

a group level in vivo. We speculate that this may be caused by, subject motion or poor eddy-

current compensation. It may also be related to field-dependent relaxation times in different

tissue compartments [59–62] which may cause large values of MKA and an underestimation of

MKI, predicated on a longer decay time in the most anisotropic compartment. Although fur-

ther investigations are warranted to understand the source and impact of this bias, data

Fig 4. Simulation of DIVIDE parameter accuracy and precision in three model tissues. Markers show the mean

parameter value, and the whiskers show one standard deviation across 104 independent realizations of noise. The

dashed horizontal lines show the parameter values that are estimated for a noise-free signal; deviation from the line

indicates parameter bias caused by noise. As expected, precision and accuracy both improve with increasing SNR. The

estimation of MD and μFA appear to be the most accurate and precise, although the μFA shows a deterioration of

accuracy and precision when its true value is low (panel II) [19]. Both MKA and MKI suffer a positive bias when SNR

in the b = 0 image is approximately 20 or less. Interestingly, MKA is always more precise and accurate than MKI,

indicating that it is generally less sensitive to noise. The simulations show that signal noise can cause negative values

for both MKI and MKA, which is especially likely when the true values are close to zero. Finally, in the case where MKI

= 0 (panel III), signal noise did not cause a strong positive bias in MKI for SNR levels that match configuration C

(where the majority of voxels have SNR> 20 at b = 0.1 ms/μm2, Fig 3). This suggests that signal noise alone is not

likely to explain the positive MKI that is observed throughout the brain parenchyma.

https://doi.org/10.1371/journal.pone.0214238.g004
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suggests that tensor-valued diffusion encoding is feasible also at ultra-high fields if the bias can

be neglected or addressed.

Simulations based on realistic signal characteristics and SNR levels established a relation

between SNR and the accuracy and precision of DIVIDE parameters. As shown in the parame-

ter maps and simulations, low SNR introduces a positive parameter bias, most prominently

seen for MKI. This is especially relevant in the central parts of the brain where the SNR tends

to be lower compared to peripheral tissue. The simulations also showed that noise had a

markedly smaller impact on MKA compared with MKI, a feature that can be appreciated also

in the parameter maps.

The technical feasibility, especially in a clinical setting, hinges mainly on the use of parsimo-

nious sampling protocols and efficient gradient waveforms. In this study we achieved efficient

tensor-valued encoding by using optimized asymmetric gradient waveforms [20]. The benefit

of using the currently proposed waveforms and protocols can be appreciated by comparing

them to our initial implementation [32], where a 10-minute protocol at a 3T scanner with 80

mT/m gradients covered only 5 slices at a resolution of 3×3×3 mm3. For reference, using the

previous waveform design [18] at configurations A, C, and D would render echo times of

Fig 5. DIVIDE parameters and SNR maps for configurations A� and C�. The parameter maps from configuration

A� are markedly less noisy than at the original resolution shown in Fig 2. For configuration C�, the resolution was

increased, while maintaining high SNR in the superior and peripheral parts of the brain, although inferior and central

parts showed regions where SNR was below 3 and may therefore suffer from non-negligible signal bias.

https://doi.org/10.1371/journal.pone.0214238.g005
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approximately 230, 140 and 170 ms, respectively. This translates to a loss in SNR of 60%, 50%

and 70%, assuming white matter relaxation times presented by Cox and Gowland [33].

Although asymmetric designs excel in efficiency, they are susceptible to errors caused by con-

comitant fields [63, 64]. Such errors can be difficult to detect by the naked eye, especially in

vivo, but lead to quantification errors for several popular asymmetric gradient designs. To

avoid this, we used so called Maxwell-compensated waveforms [40].

We emphasize that this study surveys technical feasibility, whereas investigation of the clini-
cal feasibility, pertaining to specific applications, was outside the scope of this work. Prelimi-

nary work suggests that tensor-valued diffusion encoding may add novel information to

investigations of schizophrenia [21], brain tumors [9], multiple sclerosis [28, 65], cortical mal-

formations [66], prostate tumors [67], microstructure imaging of the healthy brain [32, 68],

and kidneys [69]. The present protocol design was intended for investigations of healthy brain

tissue, and therefore accounts for the approximate diffusivity and anisotropy of brain tissue, as

described in the Supporting Information. Naturally, investigations of tissues with vastly differ-

ent characteristics may require a different protocol. For example, a protocol designed for

tumors where MD� 1.8 μm2/ms and FA� 0.1 [9] would generally entail a lower maximal b-

value (bmax < 1.3 ms/μm2) and fewer diffusion-encoding directions (nmin = 3 at bmax)—a

markedly different premise for optimization compared to normal brain tissue (Supporting

Information). A comprehensive protocol design should also consider the relaxation character-

istics of the tissue. For example, transversal relaxation rates and SNR may depend on the tissue

iron content [70, 71], which is associated with ageing. Specific applications can also benefit

substantially from adapting the image quality and scan time to the expected level of variance in

the studied population [72]. Tensor-valued diffusion encoding can be accelerated by simulta-

neous multi-slice imaging [73] and interleaving techniques [36] that reduce acquisition times

and improve duty cycle constraints, as well as improvement in terms of reducing eddy-current

effects [74, 75].

In this study we used DIVIDE to investigate repeatability of parameters related to tissue

microstructure which have a straightforward interpretation if effects of diffusion time and

intra-compartment kurtosis are both negligible. Although studies of the brain performed at

relatively long diffusion times indicate that such effects are subtle [76–78], we emphasize that

the multi-Gaussian framework may be incomplete [79], as demonstrated by specialized diffu-

sion encoding schemes that have detected time-dependent diffusion coefficients in biological

tissues [80–85]. Future studies will aim to design waveforms to probe the interplay between

diffusion-time dependence, compartment kurtosis and exchange [41, 79, 86, 87].

We acknowledge several limitations of the present study. First, we used asymmetric voxels

(2×2×4 mm3) as an effective means to increase the SNR and coverage of the protocols. Asym-

metric voxels are known to introduce confounding effects in measures of voxel-scale diffusion

anisotropy, for example in DTI, due to the interaction between voxel and structure geometry

[88]. A similar limitation is not true for DIVIDE since it renders parameters that are indepen-

dent of the orientation dispersion of the underlying tissue [19]. However, other issues pertain-

ing to asymmetric voxels remain, such as increased partial-volume effects in the through-plane

Fig 6. Parameter maps from repeated acquisitions and analysis of repeatability for configurations A-D. The voxel-wise difference

(Diff.) between the first and second acquisition (Acq. 1 and 2) is color coded in red-green. The normalized powder-averaged signal at

b = 2 ms/μm2 (A(L) and A(S)) is given in percent, and the MD is given in units of μm2/ms. The difference maps show the largest

differences in tissue interfaces where small misregistration between the first and second acquisition causes large parameter discrepancy.

Bland-Altman plots show the distributions of voxel-wise differences in tissue where μFA< 0.7 and MD< 1.5 μm2/ms. Solid and dashed

lines show the average and two standard deviations of the distributions. All configurations showed negligible bias in repeatability of

signal and DIVIDE parameters, and a configuration-dependent parameter precision. Note that the estimated precision pertains to the

per-voxel parameter uncertainty; analyzing the average over multiple voxels is expected to markedly improve the precision.

https://doi.org/10.1371/journal.pone.0214238.g006
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direction. This is especially relevant if the data is also intended to support tractography, where

isotropic spatial resolution is preferable [89, 90]. Second, this study aimed to represent a wide

range of MRI scanners, but several relevant hardware features were omitted in this study. For

example, we did not account for the effects of coil design, RF and gradient systems, field het-

erogeneity, shimming, image acquisition, or reconstruction technique [34, 57, 58, 91]. Further-

more, the settings for the waveform optimization are not likely to be optimal because

optimality depends on experimental settings, hardware configuration, and duty cycle, all of

which may be site specific. Nevertheless, the waveforms suggested herein may serve as a start-

ing point for future optimization. Finally, we emphasize that although the included MRI sys-

tems span a wide range of capabilities, current results are based on a single healthy volunteer, a

single analysis method, post-processing pipeline, and a limited set of scanners, and may there-

fore lack generalizability. However, two critical aspects of technical feasibility and robustness

[92], namely repeatability and sufficiently high SNR, could be established. The test-retest data

in Fig 6 show that the tensor-valued encoding yields repeatable results for all configurations,

except for the normalized signal for configuration D. The generalizability can also be strength-

ened by a separate analysis that we performed on a cohort of ten subjects, previously acquired

with hardware specifications similar to configuration B and used in a proof-of-concept imple-

mentation [20]. Although that study had limited coverage (44 mm feet-head) and longer echo

time (TE = 130 ms), the experiments yielded homogeneous data quality on the group level,

where Q3 = 95 ± 2% and Q6 = 21 ± 4%; consistent with the current quality estimated at config-

uration B when considering the longer TE.

Conclusions

Tensor-valued diffusion encoding can probe microstructural features beyond those available

with conventional methods, but it requires non-conventional diffusion-encoding waveforms.

The preferred platform for in vivo experiments based on such experiments has been 3 T scan-

ners with high-performance gradients. In this study, we demonstrated that tensor-valued

encoding that supports DIVIDE analysis is technically feasible over a wide range of MRI scan-

ners, with main magnetic fields between 1.5 and 7 T, and gradient waveform amplitudes as

low as 33 mT/m. We have also reported baseline repeatability values for whole-brain DIVIDE

protocols with acquisition times between 5 and 9 minutes. The implementation was facilitated

by efficient asymmetric gradient waveforms and parsimonious signal sampling protocols. By

enabling tensor-valued diffusion encoding and DIVIDE at a wide range of scanners at clini-

cally acceptable acquisition times, we expect that such methods may be more broadly used to

facilitate new and exciting venues for dMRI research.

Supporting information

S1 Fig. Minimal number of directions (nmin) required to yield a rotation invariant powder-

averaged signal for linear and planar tensor encoding (LTE and PTE). nmin can be read

from the figure for combinations of the tissue fractional anisotropy (FA) and attenuation fac-

tor (b�MD), where the numbers in the circles show nmin for a color-coded interval. As

expected, higher anisotropy and attenuation both demand a larger number of diffusion-encod-

ing directions. Spherical tensor encoding always requires nmin = 1, since it is inherently invari-

ant to rotation. Note that we consider the signal to be rotation invariant when CV < 1%. The

PTE plot is included for completeness, even if it was not used in the data acquisition of this

study.
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