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During the COVID-19 (coronavirus disease of 2019) pandemic, researchers have

been seeking low-cost and accessible means of providing protection from its harms,

particularly for at-risk individuals such as those with cardiovascular disease, diabetes and

obesity. One possible way is via safe sun exposure, and/or dietary supplementation with

induced beneficial mediators (e.g., vitamin D). In this narrative review, we provide rationale

and updated evidence on the potential benefits and harms of sun exposure and ultraviolet

(UV) light that may impact COVID-19.We review recent studies that provide new evidence

for any benefits (or otherwise) of UV light, sun exposure, and the induced mediators,

vitamin D and nitric oxide, and their potential to modulate morbidity and mortality

induced by infection with SARS-CoV-2 (severe acute respiratory disease coronavirus-2).

We identified substantial interest in this research area, with many commentaries and

reviews already published; however, most of these have focused on vitamin D, with less

consideration of UV light (or sun exposure) or other mediators such as nitric oxide. Data

collected to-date suggest that ambient levels of both UVA and UVB may be beneficial

for reducing severity or mortality due to COVID-19, with some inconsistent findings.

Currently unresolved are the nature of the associations between blood 25-hydroxyvitamin

D and COVID-19 measures, with more prospective data needed that better consider

lifestyle factors, such as physical activity and personal sun exposure levels. Another

short-coming has been a lack of measurement of sun exposure, and its potential

to influence COVID-19 outcomes. We also discuss possible mechanisms by which

sun exposure, UV light and induced mediators could affect COVID-19 morbidity and

mortality, by focusing on likely effects on viral pathogenesis, immunity and inflammation,

and potential cardiometabolic protective mechanisms. Finally, we explore potential

issues including the impacts of exposure to high dose UV radiation on COVID-19 and

vaccination, and effective and safe doses for vitamin D supplementation.
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INTRODUCTION

The first cases of COVID-19 (coronavirus disease of 2019)
presented in Wuhan, China in December 2019. Since then,
COVID-19 has become a global pandemic, occurring on every
continent except Antarctica with >54 million confirmed cases
and >1.3 million deaths (18th November 2020, https://covid19.
who.int/) worldwide. Few treatments other than supportive
care are (currently) available, although there are likely benefits
for repurposed drugs, such corticosteroids (which have anti-
inflammatory effects) for reducing all-cause mortality in critically
ill COVID-19 patients (1), and multiple promising vaccine
candidates. The progression of COVID-19 is characterized by
three phases. First, angiotensin-converting enzyme 2 (ACE2)+
nasal epithelial cells (pre/asymptomatic phase) are infected with
SARS-CoV-2 (severe acute respiratory disease coronavirus-2).
Then, the infection spreads to ACE2+ type II alveolar epithelial
cells (pneumonitis). Finally, disruption of the epithelial-
endothelial barrier occurs with complement deposition and
hyperinflammation (severe COVID-19) (2). People at-risk of
developing severe COVID-19 and fatal outcomes include patients
with cardiovascular disease, diabetes, hypertension and/or
obesity (3–5). This increased risk may be related to the low-
grade inflammation that characterizes these chronic diseases,
age-related reductions in anti-viral immunity, expression of
ACE2 in vulnerable tissues (e.g., adipose, heart), underlying
tissue fibrosis, impairments in lung function, and non-medical
factors (e.g., poverty, crowding). For more information on other
aspects of SARS-CoV-2 and the COVID-19 pandemic, including
aspects of viral epidemiology and evolution, disease pathogenesis,
prevention and treatment, please refer to comprehensive reviews
(6, 7).

There is emerging evidence that sun exposure and UV
light may have beneficial effects in preventing cardiometabolic
dysfunction (8, 9). While there has been significant commentary
on the potential benefits of the UV-induced mediator vitamin
D (also reviewed below), the direct effects of exposure to UV
light on COVID-19 has received less attention. Historical use
of phototherapy and sun exposure to treat tuberculosis (10)
suggests that there are likely benefits. Here, we provide an
update of newly acquired knowledge (as of 18th November
2020), first describing beneficial associations between lower
latitudes and increased ambient UV levels and COVID-19-
related outcomes, and the capacity for germicidal UVC (254 nm)
radiation to inactivate the SARS-CoV-2 virus. We also consider
the potential harms of excessive sun exposure for both COVID-
19 disease and vaccination efficacy, contrasted with possible
benefits of low level (non-burning) sun exposure for those with

Abbreviations: 1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, 25-
hydroxyvitamin D; ACE2, angiotensin-converting enzyme 2; ARDS, acute
respiratory distress syndrome; COVID-19, coronavirus disease of 2019; GDP,
gross domestic product; IFN, interferon; IL-6, interleukin-6; LDL-, low-density
lipoproteins; LPS, lipopolysaccharide; MIS-C, multi-inflammatory syndrome
in children; mTOR, mammalian target of rapamycin; NOS, nitric oxide
synthase; RAAS, renin-angiotensin-aldosterone system; SARS-CoV-2, severe
acute respiratory disease coronavirus-2; Th, T helper cell; TNF, tumor necrosis
factor; VDR, vitamin D receptor; UV, ultraviolet.

cardiometabolic dysfunction. Finally, we review new knowledge
around the potential for “beneficial mediators” induced by
exposure to UV light on COVID-19, specifically vitamin D and
nitric oxide. We describe possible anti-viral, anti-inflammatory
and cardiometabolic beneficial means through which controlled
exposure to UV light, or interventions that administer these
beneficial mediators could be harnessed to combat COVID-19.
To provide this update, a literature search was conducted on
PubMed (until 18th November 2020) in which the following
keywords were combined: (COVID-19 OR social distancing)
AND (season, latitude, ultraviolet, sun exposure, sunlight, solar,
phototherapy, vitamin D OR nitric oxide). While we focus on
UV light and sun exposure, there may also be effects of other
wavelengths within the solar spectrum, including violet/blue
(400–700 nm), red (600–700 nm), and infrared (700–1,000 nm)
light on COVID-19 (11) as well as preventative and therapeutic
possibilities for other light-based therapies (12).

UV LIGHT, SUN EXPOSURE, AND
COVID-19

Sunlight is composed of a spectrum of light, of which the
UV component can be divided into 3 bandwidths: UVA (315–
400 nm), UVB (280–315 nm), and UVC (100–280 nm) radiation.
All UVC and most UVB (∼90%) does not reach the Earth’s
surface as these wavelengths of light are blocked by oxygen in the
atmosphere. Most of the UV light that does reach the surface of
the Earth (terrestrial UV) is UVA (∼95%), and the rest is UVB.
Harmful effects of excessive exposure to UV light, including
sunburn, skin cancers and eye disease are well-known, and the
reader is directed toward recent comprehensive reviews of the
impacts of UV radiation and sun exposure on human health
and disease, including those that consider infectious disease, viral
infection and vaccination (13, 14). In this section, we review
new findings describing the nature of the associations between
proxies for sun exposure (including: season, latitude, ambient
UV levels) and COVID-19, describe any clinical trials underway
testing the impacts of UV light, and review findings related to
the effects of social distancing measures on sun exposure levels.
For a “higher-level” overview of these new findings, please see
Figure 1.

Season and SARS-CoV-2
Seasonal variations in disease incidence can be caused by
environmental, behavioral, and immunological factors with the
relative importance of these varying by location and disorder
(15). Many infectious diseases show seasonal variations (16) in
incidence andmortality, including those caused by coronaviruses
(17, 18). Seasonality for coronaviruses may be more likely in
temperate climates (which have more distinct seasons and wider
temperature ranges) than tropical climates (19). This seasonality
can be explained by variations in the effective reproductive
number and population level susceptibility (20), which may be
influenced by the length of protective immunity induced by
infection (17). Natural oscillations in temperature (21), humidity
(22, 23), and UV radiation (24) correlate with variations in
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FIGURE 1 | Overview of current evidence for the potential for UV light to modulate COVID-19. (A) Infections with SARS-CoV-2 are predicted to establish seasonality,

although there is limited evidence for this as yet. (B) Positive latitude gradients for COVID-19-related outcomes were observed in April–May 2020, although these

findings were largely unadjusted for country-wide differences in public health measures as well as other important factors. (C) Negative associations between ambient

UVA or UVB levels and COVID-19-related outcomes have been observed with some inconsistent findings, particularly for incidence. (D) Little information has been

published around the associations between sun exposure and COVID-19, although it is likely that social isolation (“stay-at-home”) orders implemented by many

legislatures limited opportunities for sun exposure. (E) Very few clinical trials are currently underway investigating whether deliberate exposure to UV radiation, or

sunlight could affect COVID-19 outcomes. (F) Some emerging evidence suggests inverse correlations between circulating 25-hydroxyvitamin D [25(OH)D] levels with

COVID-19 outcomes, although findings are limited in their scope. There are also many clinical trials that are testing the capacity of supplementation with vitamin D to

reduce the incidence and severity of COVID-19. (G) A number of clinical trials are also underway assessing the potential for inhaled nitric oxide or nitric oxide

intra-nasally generated or released (“induced”) by application of a chemical.

incidence of several infectious diseases. Observational studies
show that seasonal influenza incidence is affected by solar
radiation, humidity and temperature (22–24). During the 1918–
1919 influenza pandemic, estimated UVB doses in US summer
(July) correlated with reduced case fatality and pneumonia
rates (25). However, insufficient time has passed to determine
whether SARS-CoV-2 infections and COVID-19 have seasonal
variation, and whether increased ambient UV levels in summer
are protective (26), although some modeling studies predict
that SARS-CoV-2 infections will fall into seasonal patterns
with wintertime outbreaks (27) in 2020 in the northern
hemisphere (28).

Latitude and COVID-19
Terrestrial UV levels reduce with increasing distance from the
equator (i.e., latitude). A positive gradient between mortality

rates for COVID-19 and latitude was reported in mid-April
2020, with increased deaths observed for (mainly) European
countries at latitudes >35◦N (29). Similar observations were
also made in the USA around this time (30). By April 2 2020,
using country-based data from the World Health Organization,
positive associations between latitude and COVID-19 cases (r =
0.54, p < 0.01) or deaths (r = 0.38, p < 0.01) were reported
(31). Similar findings were observed for data collected from 25
areas in the USA and Europe until April 30 2020 (32), and
for 88 countries on May 17 2020 (33). Caution should be used
when interpreting these findings, as they may be indicative of the
progression of the pandemic fromnorthern to southern countries
across this time period. Furthermore, some of these studies
were limited by the lack of consideration of country-specific
differences in public health measures undertaken to limit viral
spread, such as social distancing strategies and infection testing
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rates, as well as other important factors such as: socioeconomic
status, population density, urban connectivity, age, gender and
comorbidities (34). Indeed, when similar confounders were
included in a multivariable analysis, no significant association for
latitude and COVID-19 case rates was observed in a worldwide
study of 144 geopolitical areas in March 2020 (35).

Ambient UV Levels, and COVID-19
Incidence and Deaths
“Beneficial” inverse associations have been observed between
higher ambient UV levels and lower COVID-19 incidence in
most, but not all studies. Incident UV light levels correlated
inversely with the peak rate of rise in SARS-CoV-2 infections,
with temperature and humidity having smaller effects, using
data collected from 128 countries and 98 states/provinces until
April 2020 (28). Similarly, in a study of 359 regions from
China, Italy, USA, Spain, Canada, and Australia, average solar
irradiance (W/m2) andUV Index (erythemally weighted for UVB
exposure) inversely correlated with COVID-19 cases per 100,000
individuals on March 23rd 2020 (36). Using data from 173
countries, across 3,235 regions, surface UV intensity levels were
estimated to reduce the daily growth rate in COVID-19 cases with
this effect estimation likely weakened by location-specific social
distancing strategies (37). A higher UV Index also associated
with lower rates of new cases in a state-based study in the USA,
independent of gross domestic product (GDP), obesity rates
and age-related factors in January–March 2020 (38). Significant
associations between higher UV Index and lower COVID-19
prevalence were observed in Japanese prefectures (39), and 33
cities in the USA (40). Some negative associations were also
reported for reduced infection rates and increased ambient UV
levels measured in 5 Brazilian cities (March–July 2020) (41)
and selected counties of north-east and central-mid-west (census
regions 1 and 2) of the USA (April–July 2020) (42).

However, no significant associations were observed between 7
or 14 day-lagged measurements of the UV Index and COVID-
19 incidence, following adjustment for other environmental
factors as well as GDP and global health security index for
data collected across 206 countries/regions (January–April 2020)
(43). Similarly, in a study of people living in 224 Chinese
cities, no significant associations between ambient UV levels and
COVID-19 incidence rate (January–March 2020) were observed
(44). There was also no significant association between solar
radiation and COVID-19 incidence across 31 regions in Iran
(February–March 2020) (45). Finally, levels of solar radiation or
sunshine hours positively associated with COVID-19 infections
or incidence in India (until the 27th April 2020) (46) and Spain
(March–April 2020) (47), respectively.

Some “beneficial” inverse associations of higher ambient UV
levels and lower COVID-19 mortality have been detected in most
studies done to-date. We observed a dose-dependent correlation
between average ambient UVA levels (from satellite-derived data,
measured in January-April 2020) and COVID-19 deaths, in a
trio of studies carried out in the USA, United Kingdom and
Italy, then pooled to show a reduced mortality risk ratio of 0.68
(95% CI 0.53–0.89) per 100 kJ/m2 increase in mean daily UV

(48) (preprint). These data were corrected for the vitamin D-
weighted solar spectrum (excluding the vitamin D-forming UVB
component). A zero-inflated negative binomial model was used
which corrects firstly for the likelihood of encountering and being
infected with SARS-CoV-2 (considering population density,
transport patterns and prevalence of COVID-19 within that
population) and then for factors known to confound outcomes
of COVID-19 (including age, ethnicity, socio-economic status,
pollution). These data suggest that there are benefits from UV
light independently of vitamin D formation in reducing COVID-
19 mortality. Benefits for the UVB component of sunlight have
also been reported, in which a negative association between the
UV Index and COVID-19 deaths were observed in data from 152
countries using modeling that considered other potential effects
of local weather (e.g., temperature, humidity) across January–
May 2020 (49). Beneficial inverse associations between COVID-
19 severity or death and local ambient UV levels or annual
mean sunlight hours were also observed in Spain (50) and
France (51), respectively, although this French study has been
critiqued for the statistical approach undertaken (52). However,
GDP and body mass index, but not mean UV Index (measured
across November 2019–April 2020) were significant predictors
of COVID-19 deaths (per million) in a multivariate regression
analysis across the world (53).

There is uncertainty of the nature of the associations between
ambient UV levels and the basic reproduction number (R0)
of SARS-CoV-2. Significant inverse correlations between UV
Index and SARS-CoV-2 R0 values were observed in Pakistan
(April–June 2020) (54). However, no significant association was
detected between ambient UV levels and SARS-CoV-2 R0 values
in 134 locations in China, USA, and UK (after adjusting for
other weather conditions) (55). This observation is supported
by findings of another study of people living in 224 Chinese
cities, in which no significant associations between ambient UV
levels and SARS-CoV-2 R0 (January–March 2020) were observed
(44). These data may suggest that the transmissibility of SARS-
CoV-2 may be less sensitive to UV light than its effects on
COVID-19 severity.

An important caveat for many studies described above
was that adjustments for possible confounders were not often
done. Important confounders to consider that may help resolve
these inconsistencies in future studies include consideration
of population demographics (e.g., age, gender, GDP, etc.) as
well as local environmental and weather factors, particularly
temperature and humidity (28, 47, 56, 57). Indeed, a systematic
review of 17 studies identified that places with warm and wet
climates may reduce spread of SARS-CoV-2 (58). However,
these observations are not without controversy, with some
studies reporting non-linear influences of temperature and
humidity on COVID-19 incidence (59, 60). In one study, lower
temperatures but not ambient mean daily UV levels predicted
the spread of SARS-CoV-2 in Brazil across Feb–March 2020
(61). The combined effect of environmental conditions is another
important consideration, with reports of additional benefits of
increased temperatures and UV levels associating with reduced
COVID-19 incidence, in a study of 559 grid cells (0.25◦)
with COVID-19 cases across China (January-February 2020)
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(62). Other studies report more complex interactions between
temperature and ambient UV levels when assessed using data
collected from 128 countries and 98 states/provinces (November
2019–April 2020) (28).

Sun Exposure and COVID-19
Few studies have investigated the impacts of personalized
sun exposure (via questionnaire or dosimeter) on COVID-19
incidence or mortality. Asyary and Verswati (63) present some
findings from Jakarta (Indonesia) around the impacts of sun
exposure on incidence, mortality and recovery from COVID-
19, with a significant correlation between recovery and sun
exposure reported; however, it is uncertain as to what defined
“sunlight exposure” in this study, with these data acquired from
the Meterological, Climatological, and Geophysical Agency of
Indonesia (63).

Clinical Trials Testing the Efficacy of UV
Light or Sun Exposure on COVID-19
There appear to be few clinical trials underway with the
intentions of specifically testing the effects of UV light or sun
exposure on COVID-19-related outcomes (ClinicalTrials.gov,
searched 18th November 2020 using keywords: ultraviolet/sun
exposure/phototherapy (+) COVID-19). One trial identified
through this search is assessing the effects of germicidal UVC
(254 nm) as a means of decontaminating operating room
environments of SARS-CoV-2 (NCT04443803). A second single-
armed trial is assessing the capacity of “respiratory application”
of UVA to intubated COVID-19 patients to affect bacterial and
viral burden (NCT04572399).

Do Social Distancing Measures Affect Sun
Exposure?
In the absence of a vaccine, non-pharmacological interventions
such as social distancing measures are being relied on to
control spread of COVID-19. These include stay-at-home
orders and lockdowns. The strength of these orders and
their implementation by governments has varied significantly
around world. In a preprint mathematical modeling study, done
across 162 countries, every “unit increase” in lockdown severity
associated with a 77% decline in COVID-19 growth rates (64).
The impacts of lockdown measures on sun exposure levels are
largely undescribed, although depending on their severity are
likely to be significant. Findings of Moozhipurath and Kraft
(2020) suggested that even the “least severe” lockdown orders
(i.e., recommendation not to leave home) could mitigate any
“protective effects” of the UV Index with COVID-19 growth rates
declining by 17% for each unit increase in the UV Index. Of
relevance here were substantial reductions in physical activity
levels (by ∼2 h/week) observed in children and teenagers with
obesity living in Verona (Italy) during the lockdown period
of March–April 2020 (65). These findings are also suggestive
of reductions in sun exposure, as much physical activity for
this age group takes place outside. A further concern is that
these reductions in physical activity may have adverse effects on
overweight and obesity, and potentially increase the risk for a
severe COVID-19 event (66). In contrast are findings of increased

use of cycling networks in Korea during the social distancing
period (March 2020), compared to the same time in 2019,
suggestive of more time spent doing physical activity outdoors
(67). These differing findings are likely mediated by the nature
and strength of lockdowns instituted by specific governments.

Other potential impacts of lockdowns on personalized
exposure to UV light could be mediated by changes in air
pollution levels, with increases in solar radiance observed in
some Indian cities in which particulate matter levels reduced by
>50% during lockdowns of March–April 2020 (68). Insolation
(the amount of solar radiation reaching the earth’s surface)
increased by 8% in Delhi (North India) in late March 2020
(during national lockdown) compared to previous years, which
was determined by measuring the amount of UV radiation
received by solar panels (69). Similarly, in Kannar (South India),
solar radiation levels (measured using a pyranometer) during
lockdown increased by 7% (68). Anecdotal evidence from media
reports suggests that Indian citizens were recommended to seek
sun exposure during social isolation in April, 2020 (70). Related
to this may be significant correlations observed between Google
Trends relative search volumes using the words “sunbathing” or
“vitamin D” with confirmed COVID-19 cases during the March-
April lockdown period (r≤0.668, p < 0.001) (71). The combined
effects of reduced air pollution and any recommendations to
increase personal sun exposure on COVID-19 events are yet to
be determined.

COULD UV LIGHT HAVE HARMFUL OR
BENEFICIAL EFFECTS ON COVID-19?

UV Light as a Disinfectant
UV light may have direct effects on the viability of SARS-CoV-
2 virus in airborne droplets and fomites, thus reducing both
infection rates, and also the size of inoculum in those becoming
infected, with correspondingly reduced disease severity (72,
73). Germicidal UVC (254 nm) has photoinactivation effects
on coronaviruses (74). It is been proposed as a means
of inactivating SARS-CoV-2 in food (75), medical air (76),
medical equipment [e.g., phototherapy units (77)], hospital
waste and wastewater (78), personal protective equipment [e.g.,
N95 respirators (79, 80)] and mobile phones (81). UVC may
effectively decontaminate N95 respirators, but over time could
impact their integrity and wear-ability (82). Potential phototoxic
effects of germicidal UVC is an important consideration,
especially if utilized by inexperienced users in the home (83), with
accidental skin damage reported in health care settings following
decontamination of N95 respirators (84).

UVC deactivates SARS-CoV-2 directly. Broad spectrum UVC
(200–280 nm) substantially reduced SARS-CoV-2 titers on glass
surfaces or N95 respirators by >4-log (85). UV radiation
(∼280 nm, 37.5 mJ/cm2) rapidly inactivated >99% of SARS-
CoV-2 virions within 10 s when delivered from a light-emitting
diode (86). There may also be viral-inactivating effects of direct
sunlight, as simulated solar light, representative of the summer
solstice at 40◦N (1.6 W/m2), inactivated 90% of SARS-CoV-2
virus in artificial saliva after 6–8min of exposure, when dried
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onto a steel surface, or when aerosolized (87, 88). Similarly,
modeling studies suggest that relatively short durations of
exposure to sunlight will inactivate 90% of SARS-CoV-2 virions
in as little as 11min in high UV environments such as Bogota
(Columbia; 4.6 ◦N) (89). However, viral inactivation may not be
possible in low UV environments, including at levels experienced
in many European cities around the winter solstice (89). These
findings have been largely reproduced in other modeling studies
(90, 91). While germicidal UVC is likely more effective, there
is evidence that other wavelengths of light have germicidal
properties, including, far-UVC (222 nm), UVB, UVA, visible
(400–700 nm) and infrared (92). It is likely that higher doses
of these wavelengths will be required for a similar efficacy as
germicidal UVC (254 nm), which was more effective than UVA
(365 nm) at inactivating SARS-CoV-2 (93).

Is UV Dose an Important Consideration?
The health harms of excessive sun exposure—especially that
causing sunburn, skin cancers and eye disease—are well-
described (14, 94). Too much sun exposure has also been linked
to reactivation of persisting viruses (95), an example being
herpes simplex virus-1, which resides in latency in trigeminal
nerves, and reactivates to form cold sores (herpes labialis) on
the lip and facial area. Exposure to high doses of UV (4 ×

minimal erythemal doses/exposure) induced cold sores in adults
with a history of sun-induced cold sores (n = 20) (96). The
mechanisms behind this UV-induced viral reactivation are not
completely understood, but could be linked to suppression of
the ability of nerve ganglion-resident CD8+ T memory cells to
maintain viral latency (97, 98), and damage to nerve endings in
skin (95). After exposure to acute, burning doses of UV light,
there can be systemic induction of pro-inflammatory mediators,
which may be controlled by the induction of anti-inflammatory
pathways (13). This process is likely to be dependent on the
underlying health status of each affected individual. For example,
for many people with psoriasis, treatment with phototherapies
that include exposure to (often non-burning doses of) UV
light is likely to be beneficial, reducing skin plaque severity
by modulating innate and adaptive immune pathways and
suppressing skin inflammation. However, at both low and high
doses, UV radiation may injure skin and provoke psoriasis
in a subset of patients (13). There have also been calls to
limit the use of phototherapy units in dermatological clinics
during the pandemic because of concerns related to possible
transmission risk and the potential immunosuppressive effects
of these therapies (99). Interestingly, biologics, other immune-
modifying agents used to treat psoriasis by targeting specific pro-
inflammatory proteins such as tumor necrosis factor (TNF), may
increase risk for COVID-19. In individuals with psoriatic arthritis
living in Italy (n = 1,193), use of biologics increased risk for
COVID-19 infection (OR 3.4 95%CI 2.2–5.7) and hospitalization
(OR 3.6 95% CI 1.5–8.6), but not death (OR 0.4 95% CI 0.0–6.6)
(100). Phototherapies can also diminish systemic inflammatory
cytokine expression, with narrowbandUVB radiation (∼311 nm)
reducing blood levels of c-reactive protein in people with
psoriasis (101). Combined with the potential for UV light to
compromise viral-specific T cell responses, high doses of UV

light could increase susceptibility for COVID-19, although it is
likely that the timing betweenwhenUV and viral exposures occur
will be an important determinant. In the observational study of
Cherrie et al. (48) (described above), the greater reductions from
COVID-19 deaths were linked to increases in UV exposure from
lower baseline levels. This effect tailed off as environmental UV
light increased, suggesting that there may be an upper limit to the
levels of UV light associated with reduced COVID-19 mortality.

Skin Color and COVID-19
Black-American and Latino communities in the United States
(102) and Black-British and Asian communities in England (103)
have been disproportionately affected by COVID-19. While this
partly reflects pre-existing health and social disparities (102),
the ∼2-fold over-representation of black, Asian and minority
ethnic (BAME) healthcare workers over their white co-workers
(104) suggest that skin color itself may play a part. Skin
is the barrier between the external environment and human
biological homeostasis and skin color is the evolutionarily
driven adaptation to the varied incident environmental UV
light encountered as Homo sapiens dispersed around the world
(105). The Eurocentric bias of dermatology (106) has resulted
in the focus of UV-skin research focusing largely on problems
due to over-exposure of lightly-pigmented skin. The contrasting
systemic health problems related to underexposure of more
heavily-pigmented skin have received less attention (8). We have
demonstrated reduced falls in blood pressure with UV exposure
in African Americans than white Americans (107) and vitamin D
synthesis may be reduced following UVB exposure of individuals
with more pigmented skin (108). The reduced penetration of UV
light through more pigmented skin (109, 110) suggests that any
UV-mediated reductions in COVID-19mortality would be less in
darker-skinned individuals than their geographically co-located
compatriots with paler skin color.

Could Sun Exposure Compromise Effective
Vaccination?
The possibility that sun exposure may diminish the efficacy
of vaccination has been considered; however, there are limited
studies which have addressed this issue, particularly in humans
(94, 111, 112). UV-induced immunosuppression could diminish
memory-based immune responses to potentially compromise
the efficacy of vaccines (111, 113), with exposure dose an
important consideration. For example, non-burning doses of
solar-simulated light (3 × week; 1.3 × standard erythemal
dose during “restoration phase” for 4 weeks, then 1 × week
for 8 weeks) did not modify levels of anti-hepatitis B surface
antigen-specific antibodies (measured at 12 weeks) when the
vaccination was delivered at baseline and after 4 weeks (114).
Hart and Norval (112) recently reviewed the capacity of vaccines
delivered throughUV-exposed skin to induce immune responses,
concluding that UV-induced reductions in vaccine efficacy might
be possible but that more research is needed to determine the
longevity of the effects of UV exposure, and the best skin sites
for vaccination.
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Benefits in Those With Cardiometabolic
Dysfunction?
Throughout the COVID-19 pandemic, there have been calls
for lifestyle interventions which include improvements to diet,
increased physical activity and sleep, and controlled sun exposure
to help limit cardiometabolic dysfunction to reduce risk for
severe events (115). Below we describe factors and mechanisms
that may increase risk for severe COVID-19 in those with
cardiometabolic comorbidities and describe potential means
through which exposure to UV light could be beneficial for
those at-risk.

COVID-19 and Cardiometabolic Comorbidities
Increased severity and risk of death have been reported across
multiple chronic diseases characterized by cardiometabolic
dysfunction, including cardiovascular disease, diabetes,
hypertension and obesity (3–5). These findings are reminiscent
of the associations between influenza (or other respiratory tract)
infections and increased risk of heart attack (116). For example,
findings from a systematic review and meta-analyses suggested
that there is increased risk for hospitalization (OR 2.1 95% CI
1.7–2.6, 19 studies) and death (OR 1.5 95%CI 1.2–1.8, 35 studies)
due to COVID-19 for individuals with obesity (4). Similarly,
increased risk for hypertension (OR 2.4 95% CI 1.5–3.8) and
cardiovascular disease (OR 3.4 95% CI 1.9–6.2) were observed
in meta-analyses of 7 studies (117). Other related risk factors
include: gender (male) (118, 119), age (older) (120) and ethnicity
(121). However, women with polycystic ovarian syndrome
may be a sub-population at-risk of COVID-19, due to their
increased risk for cardiometabolic comorbidities (122). Younger
adults with obesity may also be at increased risk compared
to those people of a similar age not living with obesity (123).
Lockdown events may have more severe impacts on those living
with metabolic dysfunction and obesity, with COVID-19 likely
exacerbating pre-existing inequity, racial inequality and the
stigma of obesity (124).

A range of likely intersecting mechanisms have been
hypothesized that might explain the associations between
cardiometabolic diseases and COVID-19 severity risk. The
low-grade inflammation which characterizes many of these
conditions may exacerbate the cytokine storm, which occurs
in the second week of infection with SARS-CoV-2 (125, 126).
Excessive oxidative stress and impaired immunity (particularly
innate cell activity, such as natural killer cells) and pro-
inflammatory pathways (including macrophages, T cells, B cells)
may increase susceptibility for severe COVID-19 (126, 127). The
ACE2 receptor for SARS-CoV-2 is highly expressed by adipose
tissue, and other relevant tissues [e.g., heart pericytes, pancreatic
beta-cells (128)], with adipose tissue a potential reservoir for viral
infection (125, 126). Entry of the virus may be promoted through
pre-existing endothelial dysfunction (129). Of interest, is also
the observation that SARS-CoV-2 was detected in the hearts of
61% of autopsied COVID-19 patients (n = 39) (130). Increased
blood levels of markers of cardiometabolic dysfunction, such
as creatinine kinase, aspartate aminotransferase and cardiac
troponin 1 have been detected in people who died from COVID-
19, compared to those who recovered (131). These observations

may be linked to complications of cardiovascular disease induced
by COVID-19, such as cardiomyocyte necrosis, hypertension
and coronary plaque instability (131) Other hypothesized
mechanisms that could increase risk of COVID-19 severity in
people with cardiometabolic disease include: diminished lung
function; pre-existing lung damage (including lipofibrosis in
lungs (132); impaired pancreatic beta-cell function (131); poor
responsiveness/capacity for mechanical ventilation; impaired
fibrinolysis capacity and pulmonary perfusion; dysregulated
endocrine function; and, gut dysbiosis (133, 134). Non-medical
factors that associate with increased risk include poverty and
over-crowded housing conditions that likely reduce the capacity
of individuals to undertake social isolation recommendations,
and promote viral spread (125).

Potential Means by Which UV Light Improves

Cardiometabolic Function
We have previously demonstrated that there are cardiovascular
and metabolic benefits of UV exposure, which are linked to
the photo-mobilization of nitric oxide from skin stores to the
circulation (135, 136). All-causemortality reduced with increased
UV exposure (137) and this reduction is particularly related to
reduced cardiovascular deaths (138). Environmental UV levels
inversely correlated with myocardial infarctions (139) and blood
pressure, with this effect being stronger in white than black
Americans (107). COVID-19 deaths are notably more prevalent
in black andminority ethnic populations, whichmay be related to
the blunting of UV benefits in darker-skinned individuals (107).
The same UV-driven mechanism may drive seasonal variation in
development of diabetes and metabolic syndrome, and similar
protective effects in people with sun-seeking behaviors (140).
Our preclinical studies indicate that regular exposure to low
doses (2–3min, non-burning) of UV light inhibits metabolic
dysfunction in mice fed a high fat diet, with beneficial effects
on liver lipid levels, glucose tolerance, insulin sensitivity and
adiposity (135, 141, 142). Glycemic control may be important to
avoid long-term hospital stays, intensive care unit requirement
and death from COVID-19 (143).

Some of the metabolic benefits of low dose UV light were
mediated via the photo-mobilization of nitric oxide from skin
(135, 141, 142); however, there is likely a role for other mediators
including molecules affecting neuro-endocrine pathways (144),
and those that mediate anti-inflammatory effects of UV radiation
(142). It is likely that UV light has cardiometabolic benefits
in both males and females, with body weight, fat mass and
adiposity limited in both male and female mice exposed to
low-dose UV light (135, 141, 142, 145). Similarly, long-term
treatment to narrowband UVB (n = 3,229) reduced the risk
of cardiovascular and cerebrovascular events in both men and
women with vitiligo (compared to those with few or no sessions:
HR 0.64, 95% CI 0.52–0.78 for all events; n = 9,687) from
Korea, although associations were more significant in females
than males (146). There may also be benefits for sun exposure
on blood cholesterol levels, with LDL-cholesterol levels reduced
in individuals receiving advice to increase their sun exposure in
2 of 4 identified intervention studies (101), and findings from
association studies suggest that sun exposure was associated
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with increases in HDL (high-density lipoproteins)-cholesterol
levels (9). An important consideration here is the potential for
outdoor activity to be a confounder in these studies. We have
also observed synergistic interactions in the combined effects
of physical activity and UV light to improve metabolic health,
with reduced liver steatosis and beneficial effects on metabolic
and immune pathways observed in brown adipose tissue of mice
allowed access to running wheels following exposure to low
dose UV light (147). Some commentators also suggest outdoor
activity may be a means of improving vitamin D status through
the combined effects of physical activity and skin production of
vitamin D in response to exposure to UV light (148).

Weathering the Cytokine Storm? Beneficial

Mediators Produced by Exposure to UV Light
One of the concerning features of COVID-19 is the cytokine
storm, which can occur in the second week of the illness.
Other related events may be rare inflammatory conditions,
such as a Kawasaki-like disease described in older children
(i.e., multi-inflammatory syndrome in children; MIS-C), which
is characterized by abdominal pain, cardiac dysfunction and
shock (149). It is possible that the cascade of anti-inflammatory
mediators produced in response to exposure to UV light (13),
including nitric oxide (as above) and vitamin D, may act in
concert to potentially prevent the COVID-19 cytokine storm and
induced inflammation. Indeed, exposure to UV light (and such
induced mediators) may reduce circulating pro-inflammatory
cytokines linked to COVID-19 cytokine storm events, including
interleukin-6 (IL-6) and c-reactive protein (101, 127, 142, 150).
Importantly, elevated IL-6 (>70 pg/ml) levels as well as other
cytokines (after multivariate adjustment for sex, age, ethnicity,
comorbidities) were associated with reduced survival (HR 2.47,
p < 0.0001) of patients hospitalized for COVID-19 in New
York (USA) (151). As we describe in further detail below, the
UV-induced mediators, vitamin D and nitric oxide, may have
direct anti-viral effects (143, 152, 153), promote the function of
mitochondria to limit reactive oxygen species formation, and
regulate the renin-angiotensin-aldosterone system (RAAS), to
potentially limit the pathogenesis of SARS-CoV-2 (154). Indeed,
the increased risk of severe COVID-19 in older people, might
be linked to a diminished capacity to produce these mediators
with age (155). Below, we review new findings and more specific
mechanisms through which UV-induced vitamin D and nitric
oxide may be beneficial for reducing risk of severe COVID-
19 events.

VITAMIN D AND COVID-19

Skin exposure to UVB radiation is necessary for vitamin
D synthesis from the precursor 7-dehydrocholesterol. Further
chemical conversions in the liver and kidney (and within cells
across the body) result in the formation of 25-hydroxyvitamin
D [25(OH)D; used to define vitamin D status in blood],
and 1,25-dihydroxvitamin D [1,25(OH)2D]. Classically, the
active hormone, 1,25(OH)2D, acts at a cellular level via its
interactions with the vitamin D receptor (VDR), then forming
a heterodimer with the retinoid X receptor binding to vitamin

D response elements across the genome (mainly promoter
regions) for genomic (or nuclear) regulation [reviewed by
(156)]. There are also non-genomic signaling pathways through
which 1,25(OH)2D regulates gene expression [reviewed by
(157)]. Much commentary has been published already on
the potential for vitamin D supplementation to modulate
COVID-19 severity, with at least 70 reviews, commentary
and perspectives available on PubMed [as of 18th November
2020; e.g., (158–160)]. Some researchers suggest vitamin D
supplementation is likely to be of benefit for COVID-19, and that
evidence acquired to-date fulfills Hill’s criteria for causality in a
biological system (161).Vitamin D has a wide range of purported
antiviral, immunomodulatory and cardiometabolic effects, which
may help combat COVID-19. These include: induction of
antimicrobials (cathelicidin, ß-defensins, hepcidin); regulation
of lung surfactant levels; endothelial cell function; autophagy
(target intracellular pathogens); regulation of innate cytokines
(e.g., IL-1ß); inhibition of pro-inflammatory cytokine production
(e.g., IL-6, TNF); and, regulation of overactive T cell responses
(158, 161). Below we provide more details of possible protective
mechanisms of action of vitamin D, review new findings around
the associations between blood 25(OH)D and COVID-19, and
discuss issues around vitamin D supplementation and clinical
trials in this space. Readers are also directed toward a review (162)
of the many commentaries already published in the vitamin D
and COVID-19 space, which also provides comprehensive details
of earlier studies published until the 16th June 2020, as well as
another comprehensive review of studies published until 27th
September 2020 (161).

Postulated Mechanisms of Action
Is Viral Entry Limited by 1,25(OH)2D?
Anti-viral effects of the active metabolite, 1,25(OH)2D, have
been reported and linked to antimicrobial peptide production by
bronchial epithelial cells (163, 164). These effects were observed
at relatively high doses of 1,25(OH)2D (100 nM), compared to
circulating levels (in pM range). It may not be possible to achieve
these levels with dietary vitamin D supplementation, and perhaps
necessary to consider the possible benefits for non-calcemic
analogs of 1,25(OH)2D (such as calcipotriol). Newer findings
suggest that titers of SARS-CoV-2 grown in nasal epithelial
cells were significantly reduced by subsequent treatment with
relatively high doses of 1,25(OH)2D (i.e., 10µM) (165). Arboleda
Alzate et al. (166) observed that a more physiologically relevant
dose of 1,25(OH)2D (0.1 nM) limited entry of dengue virus into
macrophages, by downregulating the mannose receptor (166).
Interestingly, calcitriol [1,25(OH)2D] at “higher” doses (from
20 nM) increased ACE2 expression in lipopolysaccharide (LPS)-
treated microvascular endothelial cells (167). Further work is
needed to determine the in vitro and in vivo anti-viral effects of
1,25(OH)2D treatment of SARS-CoV-2 infections across a range
of doses.

Immune and Other Pathways That Could Be

Regulated by Vitamin D to Reduce COVID-19 Severity
Other researchers have recently reviewed various others means
through which vitamin D could limit the impacts of SARS-CoV-2
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infection. These include its capacity to regulate autophagy
and apoptosis, reduce cytokine hyperproduction and limit
lung injury induced by viral infections (168–170). For people
infected with human immunodeficiency virus, vitamin D
may act as an adjuvant during retroviral therapy with some
VDR alleles increasing susceptibility for infection with the
human immunodeficiency virus (168). Others hypothesize that
vitamin D could combine effectively with interferon (IFN)
to control SARS-CoV-2 infection, with vitamin D modulating
the expression of IFN-stimulated genes during infection with
hepatitis C virus or rhinovirus (171). Vitamin D may limit the
proliferation and reduce innate inflammatory responses (e.g.,
by reducing matrix metalloproteinase expression) by bronchial
epithelial cells (153), with potential benefits for epithelial barrier
integrity (170). Vitamin D may promote the activity of T
regulatory cells and reduce the potential for dendritic cells to
activate and expand effector/pro-inflammatory T helper (Th) cell
subsets including Th1 and Th17 cells (153). Other postulated
mechanisms of action include the capacity of vitamin D to
regulate lung and gut microbiota, and inhibitory effects on
fibrosis and aging (e.g., via Klotho-pathways) (170). Berthelot
et al. hypothesized that there may be benefits for 1,25(OH)2D for
some manifestations of SARS-CoV-2 infection, including MIS-
C and thrombic coagulopathy via downregulation of the STING
(stimulator of interferon genes) pathway and production of IFNß
(172). At this stage, these are plausible pathways through which
vitamin D could be beneficial but are yet-to-be demonstrated
for COVID-19.

Regulatory Mechanisms by Which Vitamin D May

Have Cardiometabolic Benefits
Various pre-clinical experiments have been undertaken to
determine mechanisms through which vitamin D may exert
benefits for cardiometabolic health. We have previously reviewed
mechanisms through which vitamin D may be beneficial for
metabolic health (140, 173). Here, we review some of the
pathways through which dietary vitamin D or treatment with
1,25(OH)2D/related metabolites could modulate cardiovascular
health, with the reader directed toward more comprehensive
reviews for more information (174, 175).

Dietary Vitamin D
Dietary vitamin D may improve cardiovascular health by
directly affecting cells of the heart, inhibiting inflammation,
preventing fat accumulation and regulating cholesterol pathways.
Cardiomyocyte proliferation was increased in hearts of vitamin
D-deficient rats, which expressed higher levels of c-Myc protein
(176), a known driver of cardiomyocyte proliferation (177).
In micro-swine with coronary restenosis (abnormal narrowing
of the arteries), dietary vitamin D3 reduced expression of
circulating pro-inflammatory cytokines (TNF, IFNγ) (178). A
vitamin D-deficient hypercholesterolemic diet increased NF-κB
(Nuclear Factor kappa-light-chain-enhancer of activated B cells)
activation in epicardial adipose tissue and promoted formation of
atherosclerotic plaques in pigs (179). Increased numbers of M2-
type macrophages with endoplasmic reticulum stress, and more
fat accumulation were detected in the aortic roots of vitamin

D-deficient mice (180). Finally, dietary vitamin D may suppress
circulating triglyceride and LDL-cholesterol levels by regulating
enzymatic pathways that modified cholesterol synthesis, through
activation of the regulatory Insig-2/sterol regulatory element-
binding protein 2 pathway (181).

Active 1,25(OH)2D
The active vitamin D metabolite/hormone, 1,25(OH)2D,
may benefit heart health through modulating autophagy,
the mammalian target of rapamycin (mTOR) and ß-catenin
pathways, apoptosis and endothelial repair. Autophagy in
myocardium was normalized by 1,25(OH)2D treatment, with
increased phosphorylation of AMP-activated protein kinase
and reduced phosphorylation of mTOR (182). This reduction
in mTOR phosphorylation by 1,25(OH)2D was also linked
with enhanced cardiac autophagy and the inhibition of the
ß-catenin/T cell factor/lymphoid enhancer factor/glycogen
synthase kinase 3ß/mTOR pathway (183). Both mTOR and ß-
catenin are central mediators of cardiac pathophysiology, while
glycogen synthase kinase 3ß is a negative regulator of cardiac
hypertrophy. 1,25(OH)2D may also improve cardiomyocyte
energy metabolism by increasing expression of the SIRT1
enzyme (a NAD+-dependent protein deacetylase) and inhibiting
expression of PARP (a DNA-damage sensor) (184). Reduced
signs of apoptosis (lower Fas, FasL levels) were observed
in the hearts of rats treated with 1,25(OH)2D, as well as
markers of diabetic cardiomyopathy such as circulating lactate
dehydrogenase and creatine kinase (185). 1,25(OH)2D may also
promote endothelial repair with increased protein of the smooth
muscle isoform of the myosin light chain detected in the aortas
of rats injected with 1,25(OH)2D (186).

Other Vitamin DMetabolites
Paricalcitol (a hypocalcemic analog of 1,25(OH)2D) may have
similar beneficial effects as 1,25(OH)2D to decrease markers
of fibrosis (187), inflammation (188) and oxidative stress in
the heart. These effects included reductions in the enzyme
activity of NADPH oxidase and superoxide dismutase (189), and
cardiac cholesterol levels (190), and increased serum and cardiac
adiponectin levels (190). Reduced atherosclerotic lesions were
observed in apolipoprotein E−/− mice administered 25(OH)D3

(intragastrically) without causing hypercalcemia, while also
increasing regulatory T cells and reducing mature dendritic
cells in lesions (191). Neutralization of these regulatory T
cells with an anti-CD25 monoclonal antibody increased signs
of atherosclerosis (191), highlighting the anti-artherosclerotic
potential of these cells.

Vitamin D and the Renin-Angiotensin-Aldosterone System

(RAAS) Pathway
One important pathway regulated by vitamin D is the RAAS.
This has potential importance for COVID-19 with the ACE2
viral entry receptor likely playing important regulatory roles
during overactivation of RAAS (192). Furthermore, the capacity
for calcitriol [1,25(OH)2D] to increase ACE2 expression by
microvascular endothelial cells (167) may have implications for
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the SARS-CoV-2 infectivity and regulation of RAAS by COVID-
19. As above, 1,25(OH)2D enhanced the expression of ACE2
in LPS-treated lung endothelial cells in vitro (from 20 nM) and
lungs of LPS-treated rats (167), and in rat brains and microgial
cells [1µM 1,25(OH)2D] (193). Conversely alfacalcidiol [an
analog of 1,25(OH)2D] treatment reduced ACE2 mRNA levels
in kidneys of rats with kidney injury (194). Renin is the enzyme
which initiates the RAAS cascade. Dysregulation of the RAAS
pathway is associated with hypertension and many negative
effects upon cardiac and metabolic function, including fibrosis,
inflammation, heart failure, aging and diabetic injury (195).
Important components of the pathway include angiotensinogen
(cleaved by renin to form angiotensin I), the renin receptor and
ACE (angiotensin converting enzyme, which cleaves angiotensin
I into angiotensin II). Increased expression of some of these
components, including renin, the renin receptor, ACE and the
angiotensin II type 1 receptor was observed in pancreatic islets
of vitamin D-deficient mice (196). Serum renin activity was
enhanced in vitaminD-deficient adult LDL-receptor−/− mice fed
a high fat diet, with these observations reversed by vitamin D
supplementation (180). Although hypothesized (197), is unclear
as-yet whether these modulating effects of dietary vitamin D
on RAAS will be of benefit for reducing the negative impacts
of COVID-19.

Vitamin D Status and COVID-19
Studies reporting associations between vitamin D status
[blood levels of 25(OH)D] and infection with SARS-CoV-
2, or morbidity/mortality due to COVID-19 include those
that: (i) used previously published data on mean “national”
vitamin D status for some European countries (Table 1A); (ii)
measured 25(OH)D levels upon hospitalization (for COVID-
19) or after PCR test for SARS-CoV-2 (Table 1B); or, (iii)
measured 25(OH)D prior to diagnosis of SARS-CoV-2 infection
(Table 1C).

Significant (or some evidence for) inverse correlations
between mean blood levels of 25(OH)D for 12–20 European
nations, and COVID-19 cases or mortality in early April 2020
were observed (198–201) (Table 1A). For COVID-19 mortality
rates, these inverse correlations were no longer significant by
mid-May 2020 (198, 201). Possible limitations of these studies
include that there was no standardization in 25(OH)D levels
extracted from historical reports, nor adjustments made for
differences in 25(OH)D assays. Furthermore, no adjustments
were made for country-specific differences in COVID-19 testing
rates, social distancing strategies, population demographics,
comorbidities and/or other factors. Similar findings were also
observed for data acquired from 27 states and union territories
of India with inverse correlations observed in mid-August SARS-
CoV-2 infection and mortality and mean 25(OH)D levels from
previously published data (232).

In Table 1B, we report findings from 21 studies in which
25(OH)D levels were measured in individuals hospitalized for
COVID-19 or after confirmed positive test for SARS-CoV-2 (via
PCR) (Table 1B). Eleven of these studies reported significantly
lower 25(OH)D levels for those with COVID-19 or who were
positive for SARS-CoV-2 infection compared to control groups

(204, 205, 207–209, 211, 212, 214, 218, 219, 223). Many of these
studies were limited by their small sample size, a lack of clarity
on what assay was used to measure 25(OH)D, and that 25(OH)D
levels were not measured before infection was diagnosed. This is
an important consideration as acute illnesses, including COVID-
19, may affect blood 25(OH)D levels (228). This concept is
supported by findings of 10 studies in which vitamin D deficiency
or lower 25(OH)D levels in blood were associated with more
severe outcomes in people already diagnosed with COVID-
19 (202, 204, 205, 208, 209, 214, 216, 218, 221, 222) (see
Table 1B). Other limitations for some studies include a lack
of adjustment for differences in gender, age and comorbidities,
and that COVID-19 diagnoses did not necessarily include a
positive PCR result for SARS-CoV-2. Not all studies were small in
sample size, with 2 reporting findings for at least 500 individuals
with COVID-19 (218, 219). One of these was a preprint study
(218). Merzon et al. (219) reported that low 25(OH)D levels
associated with increased risk for infection (OR 1.5, 95% CI
1.1–1.9; p < 0.001) after controlling for age, sex, socioeconomic
status and comorbidities; however, there were some “unexpected”
observations of negative associations between COVID-19+ and
some comorbidities (e.g., cardiovascular disease) (219).

In Table 1C is a summary of 6 studies, in which 25(OH)D
levels were measured prior to confirmed SARS-CoV-2 infection
or COVID-19 diagnosis. Several of these included data from
the UK Biobank, with consistent findings for no significant
association between COVID-19 infection or mortality and blood
25(OH)D, with adjustments made for sex, age, ethnicity, and/or
body mass index, comorbidities and income (225–227, 231).
However, it is important to note that baseline 25(OH)D levels
were made ≥10 years before COVID-19 diagnosis, with the
assumption that vitamin D status remains stable over-time
[reviewed by (162)]. These studies have been also been critiqued
for “over-adjustment” (228). In one notable very large study
(n = 218,372), a significant negative relationship was observed
between lower rates of SARS-CoV-2 positivity and higher
blood 25(OH)D levels (OR 0.984 for every 1 ng/ml increase in
25(OH)D, 95% CI 0.983–0.986, p < 0.001) following adjustment
for latitude, ethnicity, gender and age (229).

Overall, many of the published studies cited above have
significant limitations, and more clarity is needed on what
are the nature of the associations of SARS-CoV-2 infection
and COVID-19 outcomes with blood levels of 25(OH)D
that better consider confounding, and prospectively measure
25(OH)D using standardized assays. Some new cohort studies are
underway, whichmay address these issues, such as COVIDENCE
UK, which aims to examine the influence of diet and lifestyle on
transmission and severity of COVID-19 in 12,000 people (≥16
years of age) (233). Findings from a systematic review and meta-
analysis suggest that vitamin D deficiency significantly associated
with an increased mortality risk (OR 1.8, 95% CI 1.1–2.6, p
= 0.045, including data from 5 studies reviewed above) (234).
However, potential sources of misinformation may be arising in
this field of research with issues raised (235) about the accuracy
of data in some preprint studies, and an Expression of Concern
raised by journal editors (217) around the validity of data and
its interpretation in another study (216). Another source of
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TABLE 1 | Studies reporting the associations between blood 25(OH)D level or vitamin D status and COVID-19 outcomes.

References Time frame N (countries) Main findings Possible limitations

A. ASSOCIATION OF MEAN 25(oh)d LEVELSA AND covid-19 MORTALITY OR CASES (PER MILLION PEOPLE) ACROSS SOME eUROPEAN COUNTRIES

Ali (198) 8th April 2020

or 20th May

2020

n = 20 - Some evidence for inverse correlation of 25(OH)D with

mortality (r = −0.44, p = 0.05) or cases (r = −0.44, p = 0.05)

(8th April 2020)

- Significant inverse correlation of 25(OH)D with cases (r =

−0.48, p = 0.03) but not mortality (r = −0.36, p = 0.12) (20th

May 2020)

- Historical 25(OH)D levels not standardized

across countries nor any adjustments made

for differences in 25(OH)D assays

Ilie et al. (199) 8th April 2020 n = 20 - Some evidence for inverse correlation of 25(OH)D with mortality (r = −0.44, p =

0.05) or cases (r = −0.44, p = 0.05)

- No adjustments made for differences in

testing rates, social distancing strategies,

population demographics, or comorbidities

Laird et al.

(200)

(dates not

stated,

published 7th

May 2020)

n = 12 - Significant inverse correlation of 25(OH)D with mortality (r-value not stated, p

= 0.046)

Singh et al.

(201)

8th April 2020

and 12th May

2020

n = 20 - Some evidence for inverse correlation of 25(OH)D with mortality (r = −0.44, p =

0.05) or cases (r = −0.44, p = 0.05) (8th April 2020)

- Significant inverse correlation of 25(OH)D with cases (r = −0.55, p = 0.01) but

not mortality (r = −0.39, p = 0.09) (12th May 2020)

# References

Location

Time frame Population Main findings Possible limitations

B. BLOOD 25(OH)D (LIKELY) MEASURED UPON HOSPITALIZATION OR AFTER PCR TEST FOR SARS-CoV-2.

1 Abrishami

et al. (202)

Tehran, Iran

28th February−19th

April 2020

- n = 73 hospitalized with COVID-19 and

PCR+ for SARS-CoV-2:

- n = 12 who died

- n = 61 who were discharged

- Higher 25(OH)D levels associated with

less lung involvement (ß = −0.11 (SE =

0.034), p = 0.003 in adjusted model

- Vitamin D deficiency [25(OH)D <

25 ng/mL] associated with increased

risk for mortality (HR 4.2, 95% CI

1.1–16.2) after adjusting for age,

sex, comorbidities

- Small sample size

- Some uncertainty as to when blood for

25(OH)D was obtained (within 3 days of

chest CT?)

2 Arvinte et al.

(203)

Thornton,

Colorado,

USA

May 2020 - n = 21 hospitalized and critically ill with

COVID-19

- n = 11 survivors

- n = 10 non-survivors

- No difference in 25(OH)D levels

reported between survivors [21.3

(11.3)] and non-survivors (22.8 (7.7)

ng/mL [mean (SD)]

- Small sample size

- Uncertainty as to when blood for 25(OH)Dwas

obtained

- Lack of clarity on 25(OH)D assay

- No mention of whether diagnosis with

COVID-19 included a SARS-CoV-2+

PCR result

3 Baktash et al.

(204) Slough,

UK

1st March−30th April

2020

- n = 105 ≥65-year-olds, including:

- n = 70 COVID-19+

- n = 35 COVID-19–

- 25(OH)D lower in COVID-19+ (mean =

27, IQR 20–47 nmol/L), compared to

COVID-19– (mean = 52, IQR

31.5–71.5 nmol/L) (p = 0.0008)

- Increased ventilation and high

dependency unit admission rates, and

peak D-dimer blood levels for

COVID-19+ with 25(OH)D ≤30 nmol/L

- Small sample size

- 25(OH)D not measured before illness

- Lack of clarity on 25(OH)D assay

- Diagnosis of SARS-CoV-2 infection based on

positive viral RT-PCR swab or evidence for

COVID-19 on a chest radiograph or CT

(Continued)
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TABLE 1 | Continued

# References

Location

Time frame Population Main findings Possible limitations

4 Carpagnano

et al. (205)

Bari, Italy

11th March−30th April

2020

n = 42 adults with acute respiratory

failure due to COVID-19

- Those with 25(OH)D < 10 ng/mL had

increased mortality risk (50%)

compared to those with 25(OH)D ≥

10 ng/mL (5%) (p = 0.019)

- Small sample size

- 25(OH)D not measured before illness

5 Cereda et al.

(206) Pavia,

Italy

March–April 2020 n = 129 patients hospitalized with

COVID-19 (confirmed PCR+ for

SARS-CoV-2)

- Positive association between blood

25(OH)D and mortality risk (OR = 1.7

95% CI = 1.1–2.7, p = 0.016) after

adjusting for age, sex, blood CRP

levels, heart disease, and

severe pneumonia

- 25(OH)D measured up to

48 h post-hospitalization

6 D’Avolio et al.,

(207) Canton

of Tessin,

Switzerland

1st March−14th April

2020

- n = 107 adults, including:

- n = 27 SARS-CoV-2+

- n = 80 SARS-CoV-2–

- SARS-CoV-2+ people had significantly

(p = 0.004) lower 25(OH)D (median =

11.1, IQR 8.2–21.0 ng/mL) than

SARS-CoV-2- people (median = 24.6,

IQR 8.9–30.5 ng/mL)

- Small sample size

- 25(OH)D measured within 7 weeks of the PCR

test

- Not adjusted for gender or prevalence

of co-morbidities

7 De Smet et al.

(208) West

Flanders,

Belgium

1st March−7th April

2020

- n = 186 patients hospitalized with

COVID-19 pneumonia

- n = 2,717 controls (matched to

season, of similar age, stratified for sex)

- 25(OH)D lower in those with

SARS-CoV-2 (median 18.6 ng/mL, IQR

12.6–25.3) compared to controls

(median 21.5 ng/mL, IQR 13.9–30.8, p

= 0.002)

- Progression of COVID-19 severity (CT

stage) significantly associated with

increased vitamin D deficiency in males

(p = 0.001) not females

- PREPRINT

- 25(OH)D measured after presentation to

hospital

- Not adjusted for prevalence of

co-morbidities, although no differences in

prevalence of chronic lung disease, coronary

artery disease and diabetes in people with

COVID-19 after stratification for vitamin D

deficiency [25(OH)D < 20 ng/mL]

8 Faul et al.

(209)

Blanchardstown,

Ireland

March 2020 n = 33 male Caucasian adults admitted

for SARS-CoV-2 pneumonia

- 25(OH)D significantly lower (p = 0.03)

in those who progressed to acute

respiratory distress syndrome (n = 12;

27 ± 12 nmol/L, mean ± SD) than

those who did not (n = 21; 41 ±

19 nmol/L)

- Small sample size

- 25(OH)D measured upon presentation to

hospital

- Not adjusted for prevalence of co-morbidities

although none had diabetes or

cardiovascular disease

9 Hars et al.

(210) Geneva,

Switzerland

March–April 2020 n = 160 older inpatients with COVID-19

including n = 95 women, and n = 65 men

- Vitamin D deficiency [25(OH)D < 50

nmol/L] associated with reduced risk of

survival in men (HR 2.5 95% CI

1.0–6.0, p = 0.044), but not women in

a model that adjusted for age,

comorbidities, blood CRP and frailty

- 25(OH)D measured during acute disease

- Not all individuals diagnosed with COVID-19

via SARS-CoV-2+ PCR result

10 Hernandez

et al. (211)

Spain

- 10th −31st March

2020 for COVID-19

cases

- January–March “past

year” for

community controls

- n = 216 patients hospitalized with

COVID-19

- n = 197 community controls

- Blood 25(OH)D lower in COVID-19

patients (11.9 95% CI 9.6–14.3) ng/mL)

than controls (21.2 95% CI 19.7–22.7)

ng/mL) after adjusting for age,

smoking, comorbidities, BMI and other

(p < 0.0001)

- No significant association of vitamin D

deficiency [25(OH)D < 20 ng/mL] and

COVID-19 severity (OR 1.1 95% CI

0.3–4.8) in adjusted model

- 25(OH)D measured on hospital admission

- Some individuals with COVID-19 (n = 19)

supplemented with vitamin D, although

excluded from analyses

(Continued)
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TABLE 1 | Continued

# References

Location

Time frame Population Main findings Possible limitations

11 Im et al. (212)

South Korea

February–June 2020 - n = 50 hospitalized with COVID-19

- n = 150 controls matched for age

and sex

- 25(OH)D significantly lower (p < 0.001)

in those hospitalized with COVID-19

(15.7 ± 7.9 ng/dL, mean ± SD) than

controls (25.0 ± 13.2 ng/dL)

- Small sample size

- 25(OH)Dmeasured after admission to hospital

- Uncertainty about 25(OH)D assay

- Not adjusted/matched for co-morbidities

12 Lau et al (213)

New Orleans,

USA

27th March−21st April

2020

n = 20 patients with COVID-19 - 25(OH)D not significantly different (p =

0.12) comparing levels from those

admitted to ICU (n = 13, 19.2 ±

10.8 ng/mL, mean ± SD) to those not

(n = 7, 29.8 ± 13.3 ng/dL) (p = 0.012)

- PREPRINT

- Small sample size

- 25(OH)Dmeasured after admission to hospital

- Not adjusted for age, sex, or co-morbidities

- Definition of how COVID-19 was diagnosed

not described

13 Luo et al.

(214) Wuhan,

China

- 27th February−21st

March 2020 for

COVID-19 patients

- Same period,

2018–2019 for

control group

- n = 335 patients hospitalized for

COVID-19

- n = 560 age- and sex-matched

controls group

- ln-transformed 25(OH)D levels

significantly less for COVID-19 patients

(3.32 ± 0.04 nmol/L, mean ± SD) than

controls (3.46 ± 0.02, p = 0.014) in

model adjusted for age, sex,

comorbidities, BMI and other

- Vitamin D deficiency [25(OH)D < 30

nmol/L] associated with increased

COVID-19 severity (OR 2.7 95% CI

1.2–6.0, p = 0.014) in adjusted model

- 25(OH)D measured on admission

14 Macaya et al.

(215) Madrid,

Spain

5th−31st March 2020 n = 80 patients presenting to hospital

emergency with COVID-19

- Vitamin D deficiency [25(OH)D <

20 ng/mL] did not significantly associate

with increased risk of developing severe

COVID-19 (OR 3.2 95% CI 0.9–11.4, p

= 0.07) in model adjusted for age,

gender, obesity, and comorbidities

- 25(OH)D measured on admission or in the

past 3 months

- Some patients (n = 44) supplemented with

vitamin D

15 Maghbooli

et al. (216)

Tehran, Iran

Until 1st May 2020 n = 235 patients with COVID-19 - Vitamin D sufficiency [25(OH)D >

30 ng/ml] associated with reduced

relative risk (RR) of severity (RR 1.6,

95% CI 1.0–2.4, p = 0.02),

unconsciousness (RR 1.1, 95% CI

1.0–1.1, p = 0.03), blood hypoxia (RR

1.3, 95% CI 1.1–1.6, p = 0.004),

c-reactive protein levels (RR 1.7, 95%

CI 1.1–2.6, p = 0.01) and lymphocyte

percentage<20% (RR 1.4, 95% CI

1.0–1.8, p = 0.03)

- 25(OH)Dmeasured after admission to hospital

- Not adjusted for age, sex, or co-morbidities

- Only 31% of individuals diagnosed with

COVID-19 included those with a PCR+ result

for SARS-CoV-2 RNA

- An expression of concern from the PLoS

ONE editors has been published for this

paper, highlighting these and other possible

issues (217)

16 Mendy et al.

(218)

Cincinnati,

USA

13th March−31st May

2020

n = 689 patients diagnosed with

COVID-19

- Vitamin D deficiency (not defined)

significantly associated with

hospitalization (OR 1.8, 95% CI

1.1–2.9, p = 0.03) or severity (OR 2.0,

95% CI 1.1–3.6, p = 0.03) or ICU

admission (OR 2.6, 95% CI 1.3–5.1, p

= 0.03) after adjusting for age, gender,

race/ethnicity, smoking

- PREPRINT

- Uncertainty about when blood for 25(OH)D

was obtained

- Uncertainty about 25(OH)D assay

(Continued)
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TABLE 1 | Continued

# References

Location

Time frame Population Main findings Possible limitations

17 Merzon et al.

(219) Tel-Aviv,

Israel

1st February−30th

April 2020

n = 7,807 members of Leumit Health

Services with a previous blood test for

25(OH)D

- 25(OH)D significantly lower for

COVID-19+ (n = 782, mean =

19.0 ng/ml, 95% CI 18.4–19.6) than

COVID-19- (n = 7,025, mean =

20.6 ng/ml, 95% CI 20.3–20.8)

- low 25(OH)D levels significantly

associated with increased risk for

infection (OR 1.5, 95% CI 1.1–2.0, p <

0.001) but not hospitalization (OR 2.0,

95% CI 1.0–4.8, p = 0.06) after

adjusting for age, sex,

SES, comorbidities

- Uncertainty about when blood for 25(OH)D

was obtained

- Uncertainty about 25(OH)D assay

- Some unexpected observations of negative

associations between COVID-19+ for some

comorbidities (e.g., cardiovascular disease)

18 Panagiotou

et al (220)

Newcastle

upon Tyne,

UK

(not stated) (published

online 3rd July 2020)

n = 134 patients hospitalized with

COVID-19

- No significant difference (p = 0.3)

between 25(OH)D levels for those in an

intensive therapy unit (n = 42, 33.5 ±

16.8 nmol/L, mean ± SD) than those

not (n = 92, 48.1 ± 38.2 nmol/L)

- 25(OH)D levels not associated with

mortality (OR 0.97, 95% CI 0.42–2.23)

- Uncertainty when blood for 25(OH)D was

obtained prior to COVID-19 testing (measured

at “baseline”)

- Uncertainty about 25(OH)D assay

- Some patients (55.8%) supplemented with

cholecalciferol (vitamin D3)

- Definition of how COVID-19 was diagnosed

not described

19 Pizzini et al.

(221) Austria

Recruited from 29th

April 2020

n = 109 adults PCR+ for SARS-CoV-2 - Blood 25(OH)D levels not significantly

(p = 0.12) different between people

with mild (n = 22, 64 ± 31 nmol/L,

mean ± SD), moderate (n = 34, 54 ±

19 nmol/L), or severe (n = 53, 50 ± 24

nmol/L) COVID-19 when measured 8

weeks after disease onset, although a

difference was observed when mild and

moderate cases were combined (n =

56, 58 ± 25 nmol/L, p < 0.05)

compared to severe only

- 25(OH)D measured 8 weeks after disease

onset

- Uncertainty about 25(OH)D assay

- Some patients (n = 10) supplemented with

vitamin D

- Not adjusted for age, sex, or co-morbidities

20 Radujkovic

et al. (222)

Heidelberg,

Germany

18th March−18th June

2020

n = 185 COVID-19 patients (n = 92

outpatients, n = 93 hospitalized patients)

- Vitamin D deficiency [25(OH)D <

12 ng/mL] at first presentation

associated with increased risk for

invasive mechanical ventilation or death

(hazard ration (HR) 6.1, 95% CI

2.8–13.4, p < 0.001) or death only (HR

14.7 95% CI 4.2–52.2, p < 0.001) after

adjusting for age, gender

and comorbidities

- 25(OH)D measured on first presentation

- Some inpatients (n = 12) supplemented with

vitamin D

21 Yilmaz and

Sen (223)

Diyarbakir,

Turkey

March–May 2020 - n = 40 children (3 month−18 years)

hospitalized with COVID-19 confirmed

by SARS-CoV-2+ PCR

- n = 45 healthy “matched” controls

- Blood 25(OH)D levels significantly less

in children with COVID-19 (13.1,

4.2–69.3; mean, range) compared to

controls (34.8, 3.8-77.4; p < 0.001)

- Uncertainty on when blood for 25(OH)D was

obtained

- Not adjusted for age, sex, or co-morbidities

(Continued)
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TABLE 1 | Continued

References

Study

Location/Cohort

Time frame Population Main findings Possible limitations

C. BLOOD 25(OH)D MEASURED BEFORE INFECTION

Chodick et al.

(224) Israel

From 1st Jan

2020

- n = 14,520,

including:

- n = 1,317

SARS-CoV-2+

- n = 13,203 SARS-

CoV-2–

- 25(OH)D levels in those with (23.6 ± 8.6 ng/mL, mean ± SD)

SARS-CoV-2 infection, similar to those without (24.1

± 9.1 ng/mL)

- Lack of clarity on 25(OH)D assay

Hastie et al.

(225, 226) UK

Biobank (n =

502,624)

16th

March−14th

April 2020

n = 449 adults with

confirmed COVID-19

and 25(OH)D test

(2006–2010) of

348,598 eligible

participants

- 25(OH)D not significantly associated with confirmed COVID-19

(OR 1.00, 95% CI 0.998–1.01, p = 0.208) after adjustment for

ethnicity, age, sex, month of assessment, income, BMI,

comorbidities

- 25(OH)D measured some time before

COVID-19 pandemic

Hastie et al.

(227)

UK Biobank

(n = 502,624)

5th

March−25th

April 2020

n = 656 adults with

confirmed COVID-19

and 25(OH)D test

(2006–2010) with n =

203 deaths of 341,484

eligible participants

- Severe infection and mortality (HR 0.98, 95% CI 0.91–1.06, p

= 0.696) not significantly associated with 25(OH)D after

adjustment ethnicity, age, sex, month of assessment, income,

BMI, comorbidities

- Possible “over-adjustment” as BMI and

ethnicity both may affect 25(OH)D

[commentary from (228)]

Kaufman et al

(229) USA

9th

March−19th

June 2020

From n = 218,372

tested for SARS-CoV-2

- Significant negative relationship between lower rates of

SARS-CoV-2 positivity and higher blood 25(OH)D levels (OR

0.984 for every 1 ng/ml increase in 25(OH)D, 95% CI

0.983–0.986, p < 0.001) following adjustment for latitude,

ethnicity, gender and age (with 25(OH)D levels

seasonally adjusted)

- No consideration of co-morbidities

Meltzer et al.,

(230)

Chicago, USA

3rd

March−10th

April 2020

n = 489 patients tested

for COVID-19 who had

their 25(OH)D levels

tested in the last year

(prior to testing positive

for SARS-CoV-2)

- Testing positive for COVID-19 (n = 71) was significantly

associated with increased risk (RR 1.8 95% CI 1.1–2.1, p =

0.02) for being vitamin D deficient [25(OH)D < 20 ng/ml] in

multivariable analysis

- Uncertainty about 25(OH)D assay

Raisi-

Estabragh

et al., (231)

UK Biobank

(n = 497,996)

16th

March−18th

May 2020

n = 1,326 with positive

COVID-19 test and n =

3,184 with negative

COVID-19 test all with

blood 25(OH)D test

(2006–2010)

- No significant association (OR 1.00 95% CI 1.00–1.00, p =

0.72) between seasonally adjusted 25(OH)D levels and

COVID-19 positivity in a model that also considered sex, age,

and BAME ethnicity

- 25(OH)D measured some time before COVID-

19 pandemic

- Observed significant associations for BAME

ethnicity OR 1.8, 95% CI 1.4–2.2, p = 9.27

× 10−7)

Identified in PubMed as of 18th November 2020.
aMean 25(OH)D levels reported for each country, ranging in year of measurement.

Significance defined as p < 0.05, 25(OHD = 25-hydroxyvitamin D.

CI, confidence interval; CRP, c-reactive protein; HR, hazard ratio; OR, odds ratio; RR, relative risk.

BAME, black, Asian and minority ethnic; 25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; HR, hazard ratio; OR, odds ratio; RR, relative risk.
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Gorman and Weller UV Light and COVID-19

concern is an early systemic review andmeta-analyses of 7 articles
(that were published between 9th April and 20th May 2020),
which reported that 25(OH)D levels were significantly lower for
those with “poor” (n = 634) than “good” (n = 669) COVID-19
prognosis (236). Meta-analyses reported in this study are likely
flawed with the inclusion of: studies previously in preprint, now
seemingly withdrawn [e.g., Alipio et al., 2020, (236)]; data from
a letter, which does not cite any original findings (237); and, the
inclusion of retrospective studies with small sample sizes that did
not adjust for gender, age, comorbidities and other important
factors [e.g., (209, 213) of Table 1B].

Could Vitamin D Supplementation Be a
Successful Strategy?
Some early findings suggest patients with COVID-19 (n =

105) may be less likely to be supplemented with vitamin D
(age-adjusted OR = 0.56, 95% CI 0.32–0.99) than unaffected
(n = 1,381) individuals, although infected people were also
more likely to have obesity and chronic obstructive pulmonary
disease in this study of individuals with Parkinson’s Disease
from Lombardy (Italy) (238). There may be benefits for vitamin
D supplementation in reducing the risk of acute respiratory
tract infections, as observed in a meta-analysis of high-quality
randomized clinical trials (25 trials; n = 11,131, adjusted OR
0.88, 95% CI 0.81–0.96) (239). Similar findings were observed
in a more recent preprint study, in which meta-analyses of
40 randomized clinical trials (n = 30,956), with vitamin D
supplementation reducing risk of acute respiratory tract infection
(OR 0.89, 95% CI 0.81–0.98), although some publication bias
was detected (240). Sub-group analyses in this study point
toward better outcomes for those supplemented with daily doses
in the range of 400–1,000 IU/day (OR 0.70, 95% CI 0.55–
0.89) for 12 months duration (240). No effect was observed
on some outcomes such as percentage diagnosed with upper
or lower respiratory tract infection, use of anti-microbials,
hospitalization and emergency department attendance (240).
Vitamin D supplementation may also exert cardiovascular and
anti-inflammatory benefits, with meta-analyses pointing toward
reduced blood total cholesterol, LDL-cholesterol and triglyceride
levels (241) or pro-inflammatory cytokine concentrations (e.g.,
TNF) compared to placebo, although effect sizes were small
(241), especially for those not initially vitamin D-deficient (242).
Other meta-analyses suggest that vitamin D supplementation
may have beneficial effects on adiposity in certain populations,
with sub-group analyses of 20 randomized clinical trials (n =

3,153 participants) suggesting reduced bodymass index andwaist
circumference in women living in Asian countries supplemented
for ≥ 6 months (243). Multi-omic analyses of published datasets
have identified vitamin D (among a suite of other candidates)
as a potential prophylactic agent for COVID-19 (244). However,
being treated with vitamin D, did not significantly change the
incidence of COVID-19 in a study of >2,000 people treated for
non-inflammatory rheumatic conditions (Mar-May 2020) (245).

Vitamin D Dose Considerations
One ongoing issue in vitamin D supplementation studies
concerns what are effective and safe dosing for optimal health.

Significant debate has been published across multiple journals,
including the IrishMedical Journal (246–248) andNutrients (160,
249, 250) on what are safe doses of vitamin D that could provide
protection from COVID-19. Some suggest that very high bolus
doses are likely to be safe in ventilated, critically ill patients, based
on reports that doses of 250,000–500,000 IU vitamin D were
associated with reduced length of stay in hospital, and increased
blood oxygen levels [reviewed by (251, 252)]. Others are more
circumspect around dosing, calling for multi-center randomized
controlled trials to help define safe and effective doses for
COVID-19 (253). There may be ill effects of “high” daily doses
of vitamin D on markers of cardiovascular health. For example,
increased need for mechanical circulatory support implants was
observed in adults with heart failure (n = 400) supplemented
with 4,000 IU vitamin D/day for 3 years (HR 2.0, 95% CI 1.0–
3.7) (254). These implants are a last option to prevent death
in people with end-stage heart failure and their increased use
was linked to vitamin D-induced hypercalcemia (254). Indeed,
long-term (≥12 months) treatment with “high” dose vitamin
D (≥2,800 IU/day) may increase risk of hypercalcemia (255).
Further controversy lies in the frequency of dosing (e.g., daily vs.
bolus monthly), although for acute respiratory infections, meta-
analyses point toward increased efficacy of daily dosing with 400–
1,000 IU vitamin D (240). Clinical trials that compare the efficacy
of vitamin D supplementation to limit COVID-19 severity and
measure safety outcomes across range of daily doses are needed.

Factors Modulating the Potential
Protective Effects of Vitamin D and
COVID-19
Gender is an important consideration, with increased risk of
severe COVID-19 linked to being male (155). The reasons for
this observation are not fully understood, but could include sex-
linked differences in immunity, meta-inflammation responses,
expression of ACE2 and risk of developing acute respiratory
distress syndrome (ARDS) (155, 256–258). There may be gender
differences in the capacity of vitamin D to regulate immune
responses, including increased capacity to induce T regulatory
cells and immunosuppressive cytokines such as interleukin-
10 in females [reviewed in (259)]. These responses may be
mediated via sex hormones such as estrogen and progesterone.
Indeed, vitamin D may cooperate with progesterone to regulate
immunity (potentially by upregulating the VDR) to control pro-
inflammatory cytokine expression (260). Of importance here
were recent findings that men (but not women) with vitamin
D deficiency [25(OH)D < 50 nmol/L] were at increased “risk”
of dying due to COVID-19 (210), with similar findings in a
second study (208). Age may be another important factor to
consider as a significant interaction between age and vitamin
D deficiency was observed for associations with COVID-19
severity in one study (215). Other important considerations
include genetic influences, with significant associations between
polymorphisms in the vitamin D-binding protein and the
prevalence and mortality due to COVID-19 reported (261). How
ethnicity affects our capacity to make vitamin D after exposure
to sun exposure (or UVB radiation) is a further important
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factor, which has been discussed (121, 262). Some researchers
hypothesize there may be important links between genetic
deficiencies in glutathione synthesis (via less G6PD enzyme
activity) and vitamin D deficiency in African American people,
compared to others, and protection from oxidative stress induced
by COVID-19 (263). Further data are needed on the influence
that skin color and type (e.g., Fitzpatrick) have on COVID-19-
related outcomes.

Clinical Trials Testing the Efficacy of
Vitamin D Supplementation
Early findings from small clinical trials and experimental studies
are suggestive of some benefit for vitamin D supplementation for
lessening COVID-19 severity. When the effects of standard care
with and without oral calcifediol [25(OH)D; 0.532mg on day of
admission, 0.266mg on days 3 and 7 then weekly] were compared
in 76 people admitted to a Spanish hospital for COVID-19,
reduced risk for admission to intensive care was observed for
those treated with calcifediol (OR 0.03, 95% CI 0.003–0.25, after
adjusting for prevalence of hypertension and type-2 diabetes)
(264). From two “quasi-experimental” French studies, regular
supplementation with “bolus” vitamin D [e.g., 80,000 IU vitamin
D every 2–3 months (265)] prior to disease onset, reduced the
risk of death from COVID-19 in both hospitalized patients [n
= 77: HR 0.07 95% CI 0.01–0.61 (266)], and people living in a
nursing home [n = 66: HR 0.11 95% CI 0.03–0.48 (265)] with
models adjusted for age, gender and other factors. A limitation
of these studies was that not all SARS-CoV-2 infections were
confirmed by PCR. The effects of daily dosing with 60,000
IU cholecalciferol (vitamin D3) daily for at least 7 days were
compared to placebo for 40 asymptomatic or mildly symptomatic
adults who were SARS-CoV-2+ (by PCR), vitamin D-deficient
and did not require later ventilation nor had a “significant”
comorbidity (267). More individuals treated with cholecalciferol
(n= 16) were negative (62%) for SARS-CoV-2 RNA by PCR than
for those receiving placebo (n = 24) (21%, p < 0.018) at the 14
day time-point (267).

Other trials are underway testing the capacity of vitamin
D supplementation (alone) to reduce the severity of COVID-
19, with at least 25 registered on ClinicalTrials.gov as of
the 18th November 2020. These are mainly studies recruiting
adults, testing the effects of oral vitamin D [or 25(OH)D]
supplementation on a range of outcomes, including: SARS-
CoV-2 infection rates (including asymptomatic), COVID-19
hospitalization rates and length of stay, admission to intensive
care units, requirement for oxygen/ventilation support, symptom
severity, cardiovascular events (e.g., heart attack, stroke), sepsis,
inflammatory markers, 25(OH)D levels and anti-SARS-CoV-2
antibody titres in blood, and adverse events. Supplementation
doses and regimens also vary, ranging from “lower” daily doses
of 1,000 IU vitamin D/day (e.g., NCT04476680) to bolus vitamin
D administration (e.g., 20,000 IU/day for 3 days and then
6,000 IU day for 12 months; NCT04482673). Other related
approaches include supplementation via combined nutritional
support, including one very large clinical trial planning to recruit
80,000 individuals in Norway to test the preventative effects

of cod liver oil (via 5mL doses containing 10 µg vitamin
D3) (NCT04609423).

NITRIC OXIDE AND COVID-19

Nitric oxide levels are locally and systemically regulated by
multiple pathways. Nitric oxide is produced via the activity of
nitric oxide synthases [NOS; e.g., induced (iNOS); endothelial
(e)NOS], which convert oxygen and L-arginine into nitric oxide
and L-citrulline. There are also dietary sources of inorganic
nitric oxide precursors, nitrite (NO−

2 ) and nitrate (NO−
3 ), which

occurring naturally in green leafy vegetables, beetroot and
seaweed (268). Nitrate is reduced to nitrite through the activity
of tongue microflora and enters the circulation via saliva and for
further reduction to nitric oxide in various tissues, including the
lung (269). Impaired production of local nitric oxide, through
endothelial dysfunction, and reduced expression of eNOS, and
decreased bioavailability of nitric oxide occurs in older men and
people with comorbidities such as obesity and hypertension, and
is hypothesized to increase mortality due to COVID-19 (270).
Genetic differences in the expression of eNOS may underpin
ethnic differences in susceptibility for severe COVID-19 (271).
However, nitric oxide can have more direct anti-viral effects,
including inhibition of the replication of a number of viruses
at an early stage and activating innate immune pathways for
more generalized anti-viral functions (152). Exposure to UV
radiation is also another means of increasing the bioavailability
of nitric oxide through photo-release from stores in the skin
(272). Nitric oxide “bioactivity” is then mobilized to the systemic
circulation (as nitrite) to potentially promote vasodilation and
reductions in blood pressure (136). Below we describe in more
detail potential mechanisms of action of nitric oxide that could
reduce severity of COVID-19, including anti-viral effects, as
well as anti-inflammatory and cardiometabolic benefits. We then
discuss other ways of improving nitric oxide bioavailability that
are being considered for prevention or treatment of COVID-
19, including provision of inhaled nitric oxide or via dietary
supplementation (with nitrate/nitrite) and other methods.

Postulated Mechanisms of Action
Anti-viral Effects
Nitric oxide has general anti-viral actions as well as specific
inhibitory effects on coronaviruses. In vitro replication of
SARS-CoV-2 was inhibited by treatment of Vero-E6 cells with
200–400µM of the nitric oxide donor SNAP (S-nitroso-N-
acetylpenicillamine) (273). This effect might be related to the
capacity of nitric oxide to promote S-nitrosylation of cysteine
groups (274), a process which inhibits the action of viral
proteases (275). Indeed, the protease activity of the SARS-CoV-
2 3CL cysteine protease was inhibited by ≥100µM SNAP (273).
Nitric oxide also inhibits replication of SARS-CoV-1 (276) and
does this by two S-nitrosylation-dependent pathways. Firstly, S-
nitrosylation of the SARS-CoV-1 spike protein prevents the post-
translational palmitoylation needed for it to fuse with its receptor
(i.e., ACE2) (277). Secondly, early viral replication is blocked by
actions on the SARS-CoV-1 cysteine proteases. The spike protein
of SARS-CoV-1 is highly homologous to that of SARS-CoV-2
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(278, 279), suggesting that nitric oxide will similarly limit binding
to ACE2 by SARS-CoV-2. Serine proteases including TMPRSS2
need to prime the spike protein of SARS-CoV-2 to allow cell
entry (280), a process particularly sensitive to nitrosylation. The
nitric oxide donor, furoxan, is hypothesized to act as a protease
inhibitor of SARS-CoV-2 (281).

Anti-inflammatory Effects
SARS-CoV-2 is responsible for a wide range of extra-pulmonary
manifestations. These may reflect direct viral tissue damage,
and include widespread endothelial cell damage, thrombo-
inflammation and immune dysregulation (282). Nitric oxide has
multiple functions and at low levels such as those produced
by the constitutive nitric oxide synthases, it is important
for healthy endothelial function (283) and is anti-thrombotic
(284). One important immune cell regulated by nitric oxide
are macrophages, which are “repolarized” from type-1 (M1)
toward a type-2 phenotype (M2), effectively neutralizing pro-
inflammatory mediator and reactive species production by these
cells [reviewed by (285)]. Nitric oxide mobilized from the skin
to the systemic circulation following exposure to UV radiation
shows the same bioactivity as these constitutive levels of nitric
oxide release and would be expected to have analogous anti-
inflammatory actions (136). The human transcriptome shows
strong seasonality, with almost one third of all genes involved,
with broad up-regulation of anti-inflammatory genes observed in
summer in healthy volunteers, a process which may be regulated
by sunlight exposure (286).

Mechanisms of Cardiometabolic Protection by Nitric

Oxide
While physiologically relevant levels of nitric oxide have
protective effects, nitric oxide in excess is damaging (287). For
example, high concentrations of nitric oxide cause nitrosative
stress and mitochondrial injury, while too little can impair
mitochondrial biogenesis and function (288). Below we review
mechanisms (identified in pre-clinical studies) by which “direct”
dietary sources of nitric oxide (i.e., inorganic nitrate and nitrite,
or, deficiency) maymodulate cardiovascular health. For review of
the effects of nitric oxide on metabolic outcomes, please see other
reviews (140, 173, 289).

Dietary Nitrate
Dietary nitrate may have anti-inflammatory, -fibrotic and -
oxidative benefits to improve heart health. Long-term deficiency
in nitrate (or nitrite) through dietary restriction caused
hypertension, endothelial dysfunction, metabolic syndrome and
gut dysbiosis (reduced bacterial diversity, more Actinobacteria)
(290). These effects were all reversed by nitrate supplementation.
Dietary supplementation with sodium nitrate reduced blood
pressure in rats fed a high carbohydrate, high fat diet and was
accompanied by reduced inflammation and fibrosis in the left
ventricle, with modified cardiac expression of related mRNAs
(i.e., reduced Ctgf, Mcp1α, and Mmp2; increased Pparα) (291).
Sodium nitrate also inhibited the formation of superoxides in
heart tissue and mesenteric arteries of rats with age-related
hypertension (292).

Dietary Nitrite
Similar to dietary nitrate, nitrite may also have protective effects
via pathways that reduce fibrosis and oxidative stress and impair
remodeling of cardiovascular tissues. Dietary nitrite reduced
the extent of fibrosis and both vascular (187, 293) and cardiac
(294, 295) remodeling. The hypotensive and cardiobeneficial
effects of dietary nitrite associated with activation of the
SIRT3-AMPK pathway in skeletal muscle (187). SIRT3 is a
mitochondrial regulator of reactive oxygen species. Nitrite
suppressed respiration and reactive oxygen species production
in mitochondria and improved their efficiency as an ongoing
source of ATP during ischemic attack (289). Dietary nitrite may
limit ventricle hypertrophy by suppressing phosphorylated-Akt
(a mediator of cardiomyocyte death) levels in the hearts of
mice (294).

Dietary Nitrite/Nitrate and the

Renin-Angiotensin-Aldosterone System (RAAS) Pathway
Like vitamin D, dietary nitrite and nitrate may regulate the RAAS
pathway to promote heart health. Inorganic nitrite prevented
cardiac remodeling and modulated elements of the RAAS,
including; plasma levels of angiotensin II, and cardiac mRNA
levels of the angiotensin II type 1 receptor (295). Similarly,
sodium nitrate “normalized” angiotensin II signaling in arteries
of rats with age-related hypertension (292).

Clinical Trials Assessing Nitric Oxide
Inhaled Nitric Oxide
Inhaled nitric oxide has been proposed for treatment of COVID-
19 in several commentaries and reviews (296–299) for its potent
selective pulmonary vasodilation and bronchodilation effects,
safety profile, and extensive use in treating respiratory disease.
Inhaled nitric oxide was previously tested in a very small trial of
people with SARS (n = 14, China), and significantly reduced the
“spread of lung infiltrates” measured via chest radiography (300).
Systematic reviews suggest no consistent benefits for inhaled
nitric oxide in reducing mortality due to ARDS, although it may
improve blood oxygenation and limit pulmonary hypertension
[reviewed by (285, 301)]. Even so, inhaled nitric oxide is already
recommended and used by some clinicians for treatment of
children infected with SARS-CoV-2 (302, 303), and is likely
already being combined with other therapies, such as treatment
of patients in the “supine and prone” position (i.e., on the tummy)
(302, 304), which its self may promote nitric oxide levels in dorsal
lung tissue (305).

Possible benefits of inhaled nitric oxide therapy have
been reported in case studies of people with COVID-19,
including “home therapy” (296, 306), and via portable systems
developed for potential use in out-patient settings [reviewed
by (285)]. In small clinical studies, inhaled nitric oxide
(at doses of 10–25 ppm) did not significantly modify the
PaO2/FiO2 ratio (a measure of oxygenation) in ventilated
patients with COVID-19, who had refractory hypoxemia
(307–309). At a slightly higher dose, inhaled nitric oxide
(starting at 30 ppm) improved oxygenation of 21 of 39 non-
intubated individuals with COVID-19 (310). A number of
clinical trials are underway (n = 20, ClinicalTrials.gov, 18th
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November 2020 using keywords: nitric oxide (+) COVID-
19), examining potential benefits of inhaled nitric oxide in
both mechanically-ventilated (311) and spontaneously-breathing
(312) patients at “higher” (140–180 ppm) (312) or “lower”
doses (e.g., 20 ppm, NCT04388683). A range of outcomes are
being tested, including: oxygenation (311); disease progression
requiring intubation (312); hospitalization rate and length of
stay; mortality; respiratory failure; recovery; blood inflammatory
markers; SARS-CoV-2 burden; bacterial load in sputum; adverse
events (e.g., kidney failure); lung spirometry; and, quality of
life. Other clinical trials underway include those administering
a “nitric oxide releasing solution/drug” intranasally (e.g.,
NCT04443868, NCT04337918), or testing inhalation of a “nitric
oxide generating solution” (RESP301) (e.g., NCT04460183) to
prevent or treat COVID-19. One trial is testing the capacity
of nitric oxide (30mg)-generating lozenges taken twice daily
on blood pressure and dizziness in participants with a recent
COVID-19 diagnosis (NCT04601077).

Dietary Supplementation and Other Approaches
Despite possible benefits for cardiovascular health, nitrite has
complex dose-dependent effects on vasodilation and systemic
blood pressure and toxicity issues, which may prevent it
from being administered chronically in humans (313, 314).
Indeed, no active clinical trials were identified in which
dietary nitrite or nitrate on COVID-19 outcomes are being
assessed (searching ClinicalTrials.gov, 18th November 2020,
using keywords: nitrite (OR) nitrate (+) COVID-19). Other
concerns include observations that nitrate can attenuate vascular
responses to nitrite, reducing the capacity of nitrite to lower
blood pressure (as observed in Wistar rats), by inhibiting
xanthine oxidoreductase, the enzyme that catalyzes the formation
of nitric oxide from nitrite (and nitrate) (315). In addition,
many of the studies detailed above were performed in male
experimental animals, and as the cardioprotective effects of
estrogen (and other endogenous mediators) may occur through
nitric oxide-specific pathways (316, 317), it will be important in
the future to consider how translatable the preclinical findings
(from mainly male animals) are for both men and women.
Other means of increasing bioavailability of nitric oxide for
treatment of people with COVID-19 are being considered,
including the application of nitric oxide donors (e.g., SNAP,
RRx-001), novel technologies such as nanoparticles that release
nitric oxide (285, 318), and via the diet (e.g., promoting beetroot
intake) (319).

FUTURE DIRECTIONS AND CONCLUDING
COMMENTS

It is clear that there is considerable interest in the potential
for UV light, and induced mediators such as vitamin D and
nitric oxide to modulate the incidence and severity of COVID-
19. Data collected to-date suggest that ambient levels of both
UVA and UVB may be beneficial for reducing incidence
or severity of COVID-19, although more studies are needed
that better consider possible environmental and population-
based confounding. Currently unresolved are the nature of the
associations between blood 25(OH)D and COVID-19, with more
prospective data needed that better consider lifestyle factors,
such as physical activity and personal sun exposure levels, and
other confounders (e.g., comorbidities). There has been little
data collected to-date that considers personal sun exposure and
COVID-19-related outcomes. This is an important consideration
as ambient UV levels do not always strongly correlate with an
individual’s sun exposure [e.g., when determined via dosimeter; r
= 0.2 (320)]. Clinical trials testing the efficacy of new vaccines,
and/or vitamin D supplementation, could provide additional
opportunities to collect information on personal sun exposure
levels, and its association with COVID-19 outcomes, as well as
interactions of sun exposure with the impacts of vaccination and
vitamin D supplementation. Measuring sun exposure may be
important for the development of informed and evidence-based
advice, particularly for people at-risk of severe COVID-19 events.
New trials will likely consider the combined effects of vitamin
D supplementation or inhaled nitric oxide with other successful
treatments [e.g., corticosteroids such as dexamethasone (321)].
We highlight that UV light, and induced mediators, may exert
anti-SARS-CoV-2 effects, with protective effects hypothesized
for respiratory and cardiometabolic health during COVID-19;
however, more evidence is needed.
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