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Background: Diabetic foot ulcer (DFU) is a serious clinical problem with high amputation and mortality rates, yet there is a lack of 
desirable therapy. While the extracellular matrix (ECM) contributes significantly to wound healing, ECM-related biomarker for DFU is 
still unknown. The study was designed to identify ECM-related biomarker in DFU using bioinformatics and machine learning and 
validate it in STZ-induced mice models.
Methods: GSE80178 and GSE134431 microarray datasets were fetched from the GEO database, and differentially expressed genes 
(DEGs) analysis was performed, respectively. By analyzing DEGs and ECM genes, we identified ECM-related DEGs, and functional 
enrichment analysis was conducted. Subsequently, three machine learning algorithms (LASSO, RF and SVM-RFE) were applied to 
filter ECM-related DEGs to identify key ECM-related biomarkers. Next, we conducted immune infiltration analysis, GSEA, and 
correlation analysis to explore the hub gene underlying mechanism. A lncRNA-miRNA-mRNA and drug regulatory network were 
constructed. Finally, we validated the key ECM-related biomarker in STZ-induced mice models.
Results: One hundred and forty-five common DEGs in adult DFU between the two datasets were identified. Taking the intersection of 
145 common DEGs and 964 ECM genes, we identified 13 ECM-related DEGs. Thirteen ECM-related DEGs were mainly enriched in 
pathways associated with tissue remodeling, inflammation and defense against infectious agents. Ultimately, CTSH was identified as 
the key ECM-related biomarker. CTSH was associated with difference immune cells during the occurrence and development of DFU, 
and it influenced hedgehog, IL-17 and TNF signaling pathway. Additionally, CTSH expression is correlated with many ECM- and 
immune-related genes. A lncRNA-miRNA-mRNA and drug regulatory network were constructed with 10 lncRNAs, 2 miRNAs, 
CTSH and 1 drug. Finally, CTSH was validated as a key biomarker for DFU in animal models.
Conclusion: Our study found that CTSH can be used for both diagnostic and prognostic purposes and might be a potential therapeutic 
target.
Keywords: diabetic wound healing, extracellular matrix, bioinformatics, machine learning, CTSH

Introduction
Diabetic foot ulcer (DFU) is defined as a break of the foot skin in diabetic patients that affects at least the epidermis and 
part of dermis and is commonly accompanied by peripheral neuropathy and/or peripheral artery disease in the lower 
extremity.1 DFU, a severe complication of diabetes, is linked to higher rates of amputation and mortality. DFUs are 
a significant health concern, currently affecting 6.3% of the global population with diabetes, with annual recurrence rates 
of 40%, and a 5-year mortality rate of 49.1%.2,3 The standard care/conventional treatment for patients with DFU includes 
good glycemic control, wound debridement, offloading, infection control and the use of medical dressing. Furthermore, 
several other approaches like intralesional epidermal growth factor therapy4 platelet-rich gel,5 negative pressure wound 
therapy,6 exosome7 and stem cell therapy8 also provide a viable alternative in the management of DFU. However, current 
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treatments cannot achieve satisfactory results. DFU has become an urgent problem to be solved. Thus, it is essential to 
investigate the molecular changes and mechanism of DFU to improve the efficiency of DFU treatment.

Wound healing is a dynamic and complex process that includes four overlapping stages: hemostasis or coagulation, 
inflammation, proliferation, and remodeling. The coordinated action of the extracellular matrix (ECM), numerous cell 
types and soluble mediators drive this process.9 Given the importance of ECM in the process, investigating the ECM- 
related genes and mechanisms that are involved in diabetic wound healing is essential to find potential therapeutic targets. 
ECM is a complicated three-dimensional network structure, which not only provides essential physical scaffolding for 
cells but also provides a proper environment to induce cell adhesion, growth, migration, and differentiation.10 In the 
process of wound repairing, ECM play a significant role. Delayed healing of wounds in diabetes partly results from the 
dysfunction and dysregulation of ECM.11 However, the ECM-related biomarker of DFU and its regulation mechanism in 
DFU remain unknown. Consequently, further research is required to uncover the ECM-related biomarker and its 
regulation mechanism in DFU. Gene expression profiling is a pivotal technology in the field of molecular medicine. 
By comparing gene expression patterns between disease status and normal controls, medical researchers can identify 
differentially expressed genes (DEGs). These DEGs may serve as potential biomarkers for disease diagnosis and 
prognosis. Furthermore, they can provide valuable insights into the molecular mechanisms of various diseases. Some 
researchers extract gene expression data from the Gene Expression Omnibus (GEO) database to explore molecular 
biomarkers associated with diseases. In addition, the combination of gene expression profiling technology and machine 
learning algorithms has made significant progress in the medical field, changing our ability to diagnose and predict 
disease outcomes. This combination provides a novel method for identifying molecular targets.

The objective of this study was to explore potential biomarkers and mechanisms of ECM-related genes involved in 
the development and progression of DFU. A single-gene CTSH was identified based on three machine learning methods 
(least absolute shrinkage selection operator (LASSO), random forest (RF) and support vector machine recursive feature 
elimination (SVM-RFE)). Then, CTSH was analyzed by multidimensional bioinformatics. At first, we sought to 
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investigate the immune cells differences, and the pathways of DFU were identified using gene set enrichment analysis 
(GSEA). Additionally, we assessed the correlation between CTSH expression and ECM-related genes as well as immune- 
related genes. Subsequently, a lncRNA-miRNA-mRNA and drug regulatory network were revealed. Finally, CTSH has 
not been investigated in the field of wound healing, and the expression of CTSH was first validated in animal models. In 
conclusion, this research hoped to reveal ECM-related biomarker for early identification of DFU and can serve as a new 
treatment strategy for DFU. These findings may provide new insights into the role of ECM in the development and 
progression of DFU. They highlight the potential of CTSH as a diagnostic and prognostic biomarker, thus laying the 
groundwork for further research.

Materials and Methods
Raw Data Collection
Two microarray data were acquired from the GEO database (www.ncbi.nlm.nih.gov/geo/) by the following criteria: a) 
datasets included should be from patients with diabetic foot ulcer; b) samples were wound tissue biopsies. The mRNA 
expression profiles were obtained from GSE80178 (GPL16686 Affymetrix Human Gene 2.0 ST Array, 6 adult DFU and 
3 adult non-Diabetic Foot Skin samples) and GSE134431 (GPL18573 Illumina NextSeq 500, 6 adult unhealed DFU and 
7 adult healed DFU samples).

ECM-Related DEGs Identification
GEO2R tool on the GEO website (www.ncbi.nlm.nih.gov/geo/) was performed to screen DEGs for the two datasets. 
Samples from GSE80178 with |log2(fold change, FC)|>1.0 and an adj. P value <0.05 were defined as the thresholds of 
DEGs, while samples from GSE134431 with |log2(fold change, FC)|>1.0 and a P value <0.05 were defined as the 
thresholds of DEGs. Additionally, the difference analysis results were presented by volcano plots and VennDiagram 
using an online platform (https://hiplot.com.cn/cloud-tool/drawing-tool/list). A total of 964 extracellular matrix and 
remodeling genes were downloaded.12 The ECM genes and common genes were visualized by VennDiagram using an 
online platform (https://hiplot.com.cn/cloud-tool/drawing-tool/list).

Functional Enrichment Analysis
Metascape was utilized to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis.13 Visual results were obtained after inputting ECM-related DEGs and selecting H. sapiens species.

Hub Genes Identification via Machine Learning Methods
Hub genes were analyzed using three machine learning methods (LASSO, RF and SVM-RFE). The LASSO algorithm is 
a regressive analytical arithmetic which makes use of regularisation to improve the accuracy of prediction. First, we 
implemented LASSO regressive arithmetic through the R package “glmnet” to identify the co-existing genes that are 
significantly correlated with the development and progression of DFU. RF algorithm was carried out using the R package 
“random Forest”. The most important variables were identified through RF analysis based on the decision tree algorithm. 
Following that, the SVM algorithm is a monitored machine learning technology widely used in classification and 
regression. Using the RFE algorithm, the optimum genes were selected from metadata cohorts in order to avoid 
overfitting. Subsequently, “e1071” package of R software was used to construct SVM modeling. Through sequential 
backward feature elimination, SVM-RFE determines optimal hub genes by selecting feature variables. Finally, the 
intersection of these results was taken as the hub gene of the occurrence and development of DFU.

Assessment of the Immune Landscape
Immune cell infiltration analysis was conducted using the “CIBERSORT” R package to evaluate the expression levels of 
22 immune cells for each sample of GSE80178 and GSE134431. Next, our team analyzed the correlation between the 
expression of hub gene CTSH and those immune cells. ‘Vioplot’, ‘ggplot2’ and ‘ggExtra’ packages of R were used to 
visualize the results.
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Single-Gene GSEA of Hub Gene CTSH
To reveal the pathways involved in the single-gene CTSH, dataset GSE147890 (GPL571 Affymetrix Human Genome 
U133A 2.0 Array, 12 diabetic skin and 12 non-diabetic skin samples) was collected from GEO database. We grouped the 
samples based on a single hub gene expression level in the dataset. Subsequently, the “clusterProfiler” R was used to 
perform GSEA. The first 5 up- and down-regulated pathways were visualized. Furthermore, the top 10 most significant 
adj.P value pathways were also visualized.

Correlation Analysis of CTSH Expression Level with ECM-Related Genes and 
Immune-Related Genes
Given the importance of ECM and immunization for DFU, Spearman’s approach was applied to evaluate the association 
between CTSH expression level and ECM-related genes as well as immune-related genes. The “ggplot2” and “ggExtra” 
packages of R were applied to visualize the results.

Construction of lncRNA-miRNA-mRNA and Drug Regulatory Network
Comparative Toxicogenomics Database (CTD, https://ctdbase.org/) was used to search molecular compounds or 
drugs related to the hub gene. To further explore the upstream regulatory molecules of CTSH expression, miRNAs 
and lncRNAs were predicted. Target miRNAs of CTSH were predicted based on the miRDB (https://mirdb.org/), 
StarBase (https://starbase.sysu.edu.cn/) and miRWalk (http://mirwalk.umm.uni-heidelberg.de/) databases, and the 
intersection of the three databases was identified as target miRNAs. The StarBase and miRNet (https://www. 
mirnet.ca) databases were used to forecast upstream lncRNAs of target miRNAs, and the intersection of the two 
databases was identified as target lncRNAs. Then, a significant lncRNA-miRNA-mRNA and drug regulatory 
network were builded and visualized using the Cytoscape software (version 3.9.1).

Animal Models Construction
C57/B6 mice (male, 6–8 weeks old) were procured. All C57BL/6 mice were raised under controlled environmental 
conditions (22–23°C, light/dark cycle of 12/12h, humidity of 55% ± 5%) with free access to food and water. C57/B6 
mice were anaesthetized through intraperitoneal injection with 50 mg/kg sodium pentobarbital, subsequently, 
a 6 mm skin full-thickness wounds were created on their upper back after shaving. The wound tissues were 
collected at 1,3,5,7,9 and 11 days post-injury. To further test the accuracy, we searched for mice skin wounds on 
days 0 to 10 during the skin wound healing process in the GSE23006 dataset for external validation. For diabetic 
model, mice were induced through intraperitoneal injection with 50 mg/kg streptozotocin (STZ) for 5 consecutive 
days, and the level of fasting blood glucose ≥300 mg/dL after 1 week was considered to have diabetes. We obtained 
approval for all animal experiments from the animal ethics committee of the First Affiliated Hospital of Chongqing 
Medical University, Chongqing, China (Ethics Approval Number: IACUC-CQMU-2023-0444). All animal experi-
ment conformed to the national standard of Laboratory animal-Guideline for ethical review of animal welfare (GB/T 
35892–2018).

Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Validation
SteadyPure Universal RNA Extraction Kit II (Accurate Biotechnology (Hunan) Co., Ltd., China) was used to extract total 
RNA from skin wound tissues. Evo M-MLV Mix Kit with gDNA Clean for qPCR (Accurate Biotechnology (Hunan) Co., 
Ltd., China) was used to synthesize complementary DNA. SYBR Green Premix Pro Taq HS qPCR Kit (Accurate 
Biotechnology (Hunan) Co., Ltd., China) was used for RT-qPCR analysis. The 2−ΔΔCT method was applied to analyse the 
relative expression levels of CTSH. The primer sequences were as follows: F:TTGTGAAAAACTCTTGGGGCTC, R: 
TGAGGAATGGGATAGGAGGCA, and GADPH served as the internal reference gene.
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Western Blot Validation
The extraction of total protein from skin wound tissue was determined by bicinchoninic acid method. An equal number 
of proteins (skin wound tissue 30 µg) were subjected to sodium dodecyl sulfate-poly acrylamide gel electrophoresis gels 
and later transferred to polyvinylidene fluoride membranes. The membranes were blocked for an hour using 5% non-fat 
milk at room temperature, and later sequentially incubated with primary antibodies (CTSH, 1:3000, 10,315-1-AP, 
Proteintech, China; β-actin, 1:10000, M1210-2, Huabio, China) at 4 °C overnight and corresponding secondary 
antibodies at room temperature for 1 h. Finally, the protein bands were visualized, and the gray values of the protein 
bands were quantified using ImageJ software.

Statistical Analysis
All gene expression data and statistical analyses were processed using R version 4.3.1. The data processing and analysis 
were performed using online platform, online databases, ImageJ software and the GraphPad Prism software (Version 
9.0). Differences in the CTSH expression were validated in animal models, and all data were present as mean ± SEM. 
The two groups were compared using a two-sample independent t-test if the data accorded with a normal distribution. 
Between-group comparisons were performed with Wilcoxon tests when the data did not accord with a normal distribu-
tion. A p-value below 0.05 was deemed to be statistically significant.

Results
The Flowchart of the Analysis Process
Figure 1 shows a flow diagram of the analysis process. The differentially expressed hub gene CTSH was identified based 
on machine learning algorithms. Then, CTSH was analyzed by multidimensional bioinformatics including immune cell 
infiltration analysis, GSEA analysis, correlation analysis, and lncRNA-miRNA-mRNA and drug regulatory network in 
our study. Finally, differences in CTSH expression were validated with wound tissues by RT-qPCR and Western blot in 
normal mice and diabetes mice.

Figure 1 The flowchart of the analysis process.
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Identification of ECM-Related DEGs
In total, 3810 DEGs were identified in the GSE80178 dataset (Figure 2A), while 877 were identified in the GSE134431 
dataset (Figure 2B). One hundred and forty-five common DEGs were identified between the two datasets, of which 49 
were upregulated genes and 96 were downregulated genes (Figure 2C and D).

To explore the role of ECM in the occurrence and development of DFU, we overlapped 145 common DEGs with 964 ECM- 
related genes, and 13 overlapping genes were obtained, namely ECM-related DEGs, as shown in the Venn diagram (Figure 2E).

Functional Enrichment Analysis
We investigated the potential biological changes in the occurrence and development of DFU by analyzing 13 ECM-related DEGs 
for functional annotation and enrichment. GO analysis results demonstrated that the ECM-related DEGs were mainly enriched in 
the collagen-containing extracellular matrix, lysosomal lumen, tertiary granule lumen, immune response-regulating signaling 
pathway, response to wounding, immune effector process and tube morphogenesis (Figure 3A-B). In terms of KEGG pathway, 
the significant enrichment pathways were lysosome and phagosome (Figure 3C). Interestingly, the ECM-related genes were 
mainly involved in pathways related to tissue remodeling, inflammation, and defense against infectious agents.

Identification of Hub Genes Based on Machine Learning Algorithms
To further select the most promising diagnostic and prognostic genes related to the occurrence and development of DFU, we 
applied three different methods (LASSO, SVM-RFE and RF) based on the above 13 ECM-related genes, yielding 2, 6, 3 genes, 
respectively (Figure 4A-E). Then, the gene CTSH was selected by overlapping above three algorithms for further analysis in this 
study (Figure 4F). These results suggested that CTSH may play a pivotal role in the occurrence and development of DFU.

Association Between CTSH and Immune Cell Landscape
Considering that immune cell takes part in wound healing, CIBERSORT was used to analyze immune cell abundances in 
different groups. Compared with the healed DFU samples, the T cells follicular helper (Tfh) were decreased in the 
unhealed DFU samples (Figure 5B). Unfortunately, the immune landscape was no statistically significant difference 
between DFU and non-diabetic foot skin (Figure 5A). Furthermore, the relationship between the expression of CTSH and 

Figure 2 Identifying ECM-related DEGs. (A) Volcano plot of DEGs between DFU and non-diabetic foot skin in GSE80178. (B) Volcano plot of DEGs between unhealed DFU 
and healed DFU in GSE134431. (C) Venn diagram of up-regulated DEGs in GSE80178 and GSE134431. (D) Venn diagram of down-regulated DEGs in GSE80178 and 
GSE134431. (E) The Venn diagram of 13 ECM-related DEGs was obtained by 145 common DEGs and 964 ECM-related genes. 
Abbreviations: ECM, extracellular matrix; DEGs, differentially expressed genes; DFU, Diabetic Foot Ulcer.
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immune cell contents was investigated. Correlation analysis showed a positive correlation between CTSH expression and 
infiltration levels of mast cells resting and NK cells activated in foot ulcer patients with and without diabetes (Figure 5C). 
Instead, CTSH was significantly negatively correlated with dendritic cells activated, NK cells resting and monocytes 
(Figure 5C). There was a significant positive correlation between CTSH and neutrophils in DFU patients with and 
without healed ulcers (Figure 5D). In contrast, Tfh correlated negatively with CTSH (Figure 5D).

Figure 3 Functional enrichment analysis of 13 ECM-related DEGs. (A) Heatmap of GO enriched terms, colored by p value. (B) Network of GO enriched terms, colored by 
Cluster ID. (C) Heatmap of KEGG pathways, colored by p value. Produced using Metascape (http://metascape.org/gp/index.html#/main/step1) with parameters set as follows. 
Notes: minimum overlap = 3, P value cutoff = 0.01 and minimum enrichment = 1. 
Abbreviations: ECM, extracellular matrix; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 4 Identification of hub genes via machine learning. (A) Hub genes screening in the Lasso model. LASSO algorithm was used to screen out 2 mRNAs. (B and C) Hub 
genes screening in the SVM-RFE model. SVM-RFE algorithm was used to screen out 6 mRNAs. (D and E) Hub genes screening in the RF model. RF algorithm was used to 
screen out 3 mRNAs. (F) Venn diagram was used to screen for overlapping genes identified by the three algorithms. 
Abbreviations: LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support Vector Machine-Recursive Feature Elimination; RF, Random Forest.
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The GSEA Analysis of CTSH
Subsequently, the single-gene GSEA analysis was performed via KEGG pathways in GSE147890. The single-gene (CTSH) 
GSEA analysis results revealed that drug metabolism−cytochrome P450, glycosylphosphatidylinositol (GPI)−anchor bio-
synthes, hedgehog signaling pathway, melanogenesis and metabolism of xenobiotics by cytochrome P450 were the top 5 
upregulated pathways (Figure 6A). Bladder cancer, DNA replication, IL−17 signaling pathway, proteasome and rheumatoid 

Figure 5 Landscape of immune cell infiltration. (A) Violin graph shows the difference of infiltrated immune cells between DFU and non-diabetic foot skin in GSE80178 
(x-axis: each immune cell). The normal group is shown in blue and DFU group is shown in red. (B) Violin graph shows the difference of infiltrated immune cells between 
unhealed DFU and healed DFU in GSE134431 (x-axis: each immune cell). The healer DFU group is shown in blue and nonhealer DFU group is shown in red. (C) Relationship 
between the expression of CTSH and immune infiltrating cells in foot ulcer patients with and without diabetes. (D) Relationship between the expression of CTSH and 
immune infiltrating cells in DFU patients with and without healed ulcers. 
Note: P < 0.05 was highlighted. 
Abbreviation: DFU, Diabetic Foot Ulcer.

https://doi.org/10.2147/JIR.S467507                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 5878

Wu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


arthritis were the top 5 downregulated pathways (Figure 6B). In terms of the most significant adj.P value pathways, the results 
showed that several pathways were markedly enriched, including TNF signaling pathway and IL-17 signaling pathway 
(Figure 6C).

Correlation Analysis of CTSH Expression Level with ECM-Related Genes and 
Immune-Related Genes
The correlation between the CTSH gene and ECM-related genes was analyzed. The correlation analysis showed that 
CTSH expression correlated with 362 ECM-related genes in GSE80178, while CTSH expression correlated with 309 
ECM-related genes in GSE134431 (p < 0.05). CTSH expression both correlated with 102 ECM-related genes in the two 
datasets, including genes related to wound healing such as MMPs, TLRs, ADAMTSs, TGFBs, proteoglycan (DCN, 
VCAN and BGN), collagen (COL21A1, COL3A1, COL5A2 and COL6A3) (Table 1).

Given the importance of immunization for DFU, we studied the relationship between CTSH expression and immune- 
related genes. In total, 1793 immune-related genes were fetched from the Immunology Database and Analysis Portal 
(http://www.immport.org/).14 The correlation analysis showed that CTSH expression both correlated with 93 immune- 

Figure 6 Single-gene GSEA for CTSH. (A) Top 5 upregulated KEGG pathways ranked by the enrichment score from single-gene GSEA. Red line represents the pathway of 
drug metabolism-cytochrome P450; Yellow line represents the pathway of glycosylphosphatidylinositol (GPI)-anchor biosynthes; Green line represents the pathway of 
hedgehog signaling pathway; Blue line represents the pathway of melanogenesis; Purple line represents the pathway of metabolism of xenobiotics by cytochrome P450. (B) 
Top 5 downregulated KEGG pathways ranked by the enrichment score from single-gene GSEA. Red line represents the pathway of bladder cancer; Yellow line represents the 
pathway of DNA replication; Green line represents the pathway of IL-17 signaling pathway; Blue line represents the pathway of proteasome; Purple line represents the 
pathway of rheumatoid arthritis. (C) Top 10 KEGG pathways ranked by adj.P value from single-gene GSEA. 
Abbreviations: GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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related genes in the two datasets (p < 0.05). Of the 93 genes, IL7, IL33, TLR1, TLR3 and TLR4 were highly correlated 
with CTSH (Figure 7A-J).

LncRNA-miRNA-mRNA and Drug Regulatory Network
Only one compound of relevance based on the CTSH gene was screened in the CTD. Benzo(a)pyrene may result in 
increased methylation of CTSH promoter, thereby regulating the expression level of CTSH (Table 2).

The miRNAs corresponding to the CTSH gene were predicted, and a total of two miRNAs (miR-124-3p and miR- 
506-3p) were revealed based on the miRDB, miRWalk and StarBase databases (Figure 8A). Then, the miRNet and 
StarBase databases predicted 10 lncRNAs (NEAT1, TMEM147-AS1, MALAT1, XIST, MAPKAPK5-AS1, FGD5-AS1, 
LINC01089, SNHG14, LINC00963 and SNHG16) targeting the two miRNAs (Figure 8B-C).

The lncRNA-miRNA-mRNA interaction network and drug network are shown in Figure 8D. The result showed that 
a total of 1 drug, CTSH, 2 miRNAs and 10 lncRNAs were included in the current network.

Validation of CTSH by RT-qPCR and Western Blot in Animal Models
The expression of CTSH was initially investigated spanning all stages of the healing process of wounds in wild-type 
mice. RT-qPCR results showed dynamic changes in CTSH expression levels, and the level reached the highest point 
on day 5 after wound (Figure 9A). Then, to verify this result, microarray data (GSE23006) was discovered which 
analyzed gene expression from day 0 to day 10 during skin wound healing process in mice skin wounds (Figure 9B). Our 
results and external dataset GSE23006 have the similar patterns of CTSH expression during skin wound repair process, 
indicating that expression of CTSH in a dynamic manner may improve skin wound healing. Subsequently, STZ (50 mg/ 
kg) was injected intraperitoneally to induce diabetic mice model. Mice with the fasting glucose level >16.7mmol/L over 
one weeks after the first injection of STZ was considered to have diabetes. Next, wound model was made. The expression 
of CTSH in skin wound tissues of wild-type or diabetic mice on day 5 was analyzed by RT-qPCR and Western blot. Our 
results showed that CTSH expression was decreased significantly in diabetic mice (Figure 9C-D).

Table 1 The Correlation Analysis Between CTSH and ECM-Related Genes Expression

Dataset ECM-Related  
Genes

Correlation P value Dataset ECM-Related  
Genes

Correlation P value

GSE80178 MMP2 0.742 0.022 GSE134431 MMP2 0.711 0.006

MMP7 0.867 0.003 MMP7 0.777 0.002

MMP16 0.861 0.003 MMP16 0.677 0.011
MMP24 −0.814 0.008 MMP24 −0.554 0.049

TIMP2 0.827 0.006 TIMP2 0.656 0.015

ADAMTS3 0.680 0.044 ADAMTS3 0.915 <0.001
ADAMTSL4 −0.731 0.025 ADAMTSL4 −0.603 0.029

DCN 0.835 0.005 DCN 0.841 <0.001
BGN 0.879 0.002 BGN 0.701 0.008

VCAN 0.875 0.002 VCAN 0.676 0.011

COL21A1 0.749 0.020 COL21A1 0.692 0.009
COL3A1 0.799 0.010 COL3A1 0.554 0.049

COL5A2 0.850 0.004 COL5A2 0.592 0.033

COL6A3 0.792 0.011 COL6A3 0.584 0.036
DPP4 0.676 0.046 DPP4 0.796 0.001

TGFB2 0.853 0.003 TGFB2 0.569 0.043

TGFBI 0.942 <0.001 TGFBI 0.759 0.003

Abbreviation: ECM, extracellular matrix.
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Figure 7 Co-expression analysis of CTSH and immune-related genes in GSE80178 dataset. (A) IL-7; (B) IL-33; (C) TLR1; (D) TLR3; (E) TLR4. Co-expression analysis of 
CTSH and immune-related genes in GSE134431 dataset. (F) IL-7; (G) IL-33; (H) TLR1; (I) TLR3; (J) TLR4.
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Discussion
DFUs are associated with high rates of mortality as well as high costs.15 Therefore, new treatment strategies targeting 
specific molecules are urgently needed to enhance the efficiency of DFU treatment. Dysregulation of ECM structure, 
formation and deposition is one of the major reasons for impaired wound healing in diabetes.8,16 In the present study, 
bioinformatics approach and three machine learning algorithms were used to identify 13 ECM-related DEGs and CTSH 
as potentially diagnostic and prognostic biomarker for DFU. Additionally, we investigated the molecular mechanisms of 
DFU. New biomarker and potential molecular mechanism may provide new insights into the role of ECM involved in the 
development and progression of DFU. Considering the significant impact that DFU has on healthcare systems, early 
diagnosis and prognostic evaluation of DFU can offer reassurance to healthcare professionals. The study serves as 
a valuable strategy for healthcare professionals in the future.

CTSH, a lysosomal cysteine protease, plays a crucial role in the development and progression of various disease 
states. Several studies have suggested that CTSH may promote carcinogenesis. CTSH levels have been found to be 
elevated, such as in breast carcinoma,17 prostate cancer18 and glioma.19 By contrast, melanoma20 and head and neck 

Table 2 Interactions Between Compounds and Gene Related to DFU in the CTD Database

Chemical Name Gene Symbol Interaction

Benzo(a)pyrene CTSH Benzo(a)pyrene results in increased methylation of CTSH promoter

Abbreviations: DFU, Diabetic Foot Ulcer; CTD, Comparative Toxicogenomics Database.

Figure 8 Construction of a lncRNA-miRNA-mRNA and drug regulatory network. (A) Venn diagram presenting the intersection of predicted miRNAs based on the miRDB, 
miRWalk and StarBase databases. (B) Venn diagram presenting the intersection of predicted lncRNAs of hsa-miR-124-3p based on the miRNet and StarBase databases. (C) Venn 
diagram presenting the intersection of predicted lncRNAs of hsa-miR-506-3p based on the miRNet and StarBase databases. (D) The lncRNA-miRNA-mRNA and drug regulatory 
network. Red diamond represents a hub gene, yellow nodes represent miRNAs, blue inverted triangles represent lncRNAs and green round rectangle represents a drug.

https://doi.org/10.2147/JIR.S467507                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 5882

Wu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


carcinoma21 have lower CTSH levers than normal tissue. Compared to other cathepsins, CTSH has fewer studied, and the 
results are controversial in cancer. After brain injury or infection, CTSH may regulate microglia cell-mediated inflam-
matory response and even cell death.22 CTSH is an important regulator of β-cell function during progression of Type 1 
Diabetes, in which overexpression prevents β-cells apoptosis and downregulation promotes β-cells apoptosis.23,24 

Filaggrin is a vital portion of the skin barrier to the outside environment. The skin of CTSH-deficient mice showed 
reduced filaggrin processing. Furthermore, the mice exhibited a mild proinflammatory phenotype and impaired skin 
barrier function.24 CTSH raises more and more attention and interest due to its various roles in pathophysiologic 
processes. However, CTSH has not been investigated in the field of wound healing. Our results demonstrated that 
CTSH was lowly expressed in the occurrence and development of DFU, and we hypothesized that the high expression of 
CTSH had a protective factor in DFU. In animal wound models, our results showed that CTSH expression was decreased 
in diabetic mice compared with normal mice. The RT-qPCR and Western blot verification results of CTSH were 
consistent with our bioinformatics results.

Wound healing is a complex process involving many cells. Among these cells, immune cells are recruited to the 
wound site to clean pathogens and debris.25 Downregulation of FOXM1 contributes to decreased immune cell infiltration 
and results in delayed wound healing.26 Mast cells, an immune cell, take part in all stages of wound healing and 
contribute to the pathogenesis of unhealed DFU.27 Considering that immune cells participant in wound healing, we 
analyzed immune cell abundance differences. Compared with healed DFU patients, we found that Tfh was lowly 
expressed in unhealed DFU patients. Tfh is a subset of CD4+T cells and has been found to be involved in a range of 
diseases.28,29 Tfh cells are responsible for regulating the activation and differentiation of B cells to produce protective 
humoral immunity.30 Research suggests that wound healing can be manipulated by directly delivering mature, naive 

Figure 9 Validation of CTSH by RT-qPCR and Western blot in animal models. (A) The expression of CTSH in wild-type mouse skin wound tissues was analyzed at the time 
appointed by RT-qPCR (n=3). (B) The relative expression values of CTSH mRNA during skin wound healing process (1d, 3d, 5d, 7d and 10d) were extracted from 
microarray dataset (GSE23006). n=3 at every different time point. (C and D) The expression of CTSH in skin wound tissues of wild-type or diabetic mice on day 5 was 
analyzed by RT-qPCR (n=5) and Western blot (n=4). All results are expressed as means ± SEMs. 
Notes: *P < 0.05, **P < 0.01.
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B cells. These cells help regulate the balance of mature immune cells in the wound microenvironment, thereby speeding 
up the healing process.31 Regrettably, the immune landscape was no statistically difference between DFU and non- 
diabetic foot skin. These results demonstrated that immune cells may be taking part in DFU prognosis but not in the 
occurrence of DFU.

To further investigate the pathogenesis in occurrence and progression of DFU, we performed GSEA. The GSEA 
analysis suggested that CTSH was enriched in hedgehog, IL-17 and TNF signaling pathway. A previous study found that 
inhibition of casein kinase 2α accelerates skin wound healing in type 1 diabetes mice. This effect is achieved by 
promoting endothelial cell proliferation through activating hedgehog signaling pathway.32 Research suggests SEMA3C/ 
NRP2/Hedgehog signaling is involved in FOXM1-mediated wound healing in DFU.33 IL-17 is an important inflamma-
tory signaling pathway, and excessive chronic inflammatory is one of the main characteristics of diabetic wounds.34,35 

A study has shown that Huangbai liniment, a traditional Chinese medicine, and berberine, a major component of 
huangbai liniment, inhibit IL-17 signaling pathway and contribute to improve wound healing in diabetes mellitus. This 
research emphasizes targeting IL-17 signaling pathway as a strategy for diabetic wounds.34 Additionally, several studies 
have demonstrated the importance role of TNF in inflammatory diseases. As per available information, local oxygen 
therapy has been shown to promote wound healing in diabetic foot ulcers mainly through the TNF signaling pathway and 
the apoptosis pathway.36

Due to the importance of the role of ECM and immunization in DFU, we explored the relationship between CTSH 
expression and ECM-related genes as well as immune-related genes. The results showed that CTSH correlated with many 
ECM-related genes and immune-related genes, such as MMP2, MMP7, MMP16, MMP24, TIMP2, COL21A1, COL3A1, 
COL5A2, COL6A3, TLR1, TLR3, TLR4, IL-7 and IL-33. Matrix metalloproteinases (MMPs) play important parts in the 
wound healing process by degrading ECM proteins.37 Satisfactory wound healing requires strict spatial and temporal 
expression of MMPs; however, tissue inhibitor of metalloproteinases (TIMPs) specifically regulate the proteolytic 
activity of MMPs.38 The balance between MMPs and TIMPs, when disrupted, results in delayed wound healing.39 

Collagen, a major component of ECM, can be broadly divided into fibrillar and nonfibrillar families and is vital for tissue 
formation and cell alignment during the wound healing.40 Abnormal collagen metabolism hinders the progress of healing 
in diabetic wounds.11 Toll-like receptors play a crucial part not only in early host defense against pathogen invasion but 
also in tissue repair, regeneration, and non-infectious inflammation.41 Previous research has shown that TLR4 modulates 
wound healing through the expression of TGF-β and CCL5.41 It is reported that skin wound healing is delayed in TLR3- 
deficient mice.42 Conversely, polyriboinosinic-polyribocytidylic acid, a TLR3 agonist, promotes wound healing.43 

Previous studies have shown that the overexpression of IL-7 in Mesenchymal Stem Cells can strengthen the healing 
potential and help wound healing in diabetic animals through inducing angiogenic genes,44 highlighting its role in wound 
closure. Recent studies have found that IL-33 promotes skin wound healing, whereas its inhibition delays wound 
healing.45

In this study, the CTSH gene was found to be lowly expressed in the occurrence and progression of DFU. 
Subsequently, a lncRNA-miRNA-mRNA and drug regulatory network were constructed including 1 drug, CTSH, 2 
miRNAs and 10 lncRNAs. The role of miRNAs in wound healing is attracting more attention in recent years. Our finding 
demonstrated that miR-124-3p and miR-506-3p may be involved in the targeted modulation of CTSH. DFU and 
peripheral arterial disease (PAD) have some congenerous risk factors. PAD could increase the risk of infection and non- 
healing ulcers, thereby aggravating the progression of DFU.46,47 Previous study has shown that miR-124-3p was a key 
regulator of angiogenesis in PAD and a potential diagnostic, therapeutic and prognostic target for PAD.47 Dermal 
fibroblasts are a promising candidate therapy for wound healing due to their ability of generating ECM, secreting growth 
factors and promoting wound contraction.48 The miR-506-3p and its downstream target TGF-β1 regulate the cell 
migration, viability and synthesis of ECM in human dermal fibroblasts after burns.48 However, miR-124-3p and miR- 
506-3p both have not been explored in the field of diabetic wound healing. Our findings may provide effective treatment 
strategies for DFU. By competing with miRNAs, competing endogenous RNAs (ceRNAs) regulate gene expression.49 

Furthermore, online databases predicted 10 lncRNAs (NEAT1, TMEM147-AS1, MALAT1, XIST, MAPKAPK5-AS1, 
FGD5-AS1, LINC01089, SNHG14, LINC00963 and SNHG16) targeting the two miRNAs. Research suggests that 
MALAT1-miR-124 promotes skin wound healing through activating the Wnt/β-catenin pathway.50 Experimental 
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evidence supports ceRNA networks affecting complex cellular processes.50,51 Research on wound healing in the 
emerging field of ceRNA networks may provide direction for further scientific exploration.

Inevitably, there are some limitations in this study. First, a relatively small samples of DFU datasets may affect the 
analytical results. Second, in finite time, we were unable to collect enough human foot skin samples, especially non- 
diabetic foot skin. The results of bioinformatics analysis need to be validated in more clinical samples. Third, the further 
urgent action is to validate the function and molecular mechanism of the hub gene CTSH so as to gain an insight into 
diabetic wound healing. To investigate the potential effects of CTSH on diabetic wound healing, we will use recombina-
tion mouse CTSH (rmCTSH) protein in STZ-induced mice wound models in the future. Additionally, future research will 
focus on the cellular localization of CTSH, and its impact on, as well as regulatory mechanism within, the physiological 
functions of localized cells. By addressing these limitations, a more comprehensive understanding of DFU will be 
provided. CTSH would have a potential clinical value in the diagnosis and prognosis of DFU and may be a potential 
therapeutic target.

Conclusion
In conclusion, CTSH was identified as an ECM-related diagnostic and prognostic biomarkers for DFU using bioinfor-
matics methods and machine learning and may be a potential therapeutic target. Multidimensional bioinformatics 
analysis and animal experiment validation may provide a basis for future study. However, future research is warranted 
to validate the results from data analysis in more clinical samples and clarify the detailed function and molecular 
regulatory mechanism of CTSH in vitro.
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