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ABSTRACT

Protein synthesis translates information from mes-
senger RNAs into functional proteomes. Because of
the finite nature of the resources required by the
translational machinery, both the overall protein
synthesis activity of a cell and activity on individual
mRNAs are controlled by the allocation of limiting
resources. Upon introduction of heterologous se-
quences into an organism—for example for the
purposes of bioprocessing or synthetic biology—
limiting resources may also become overstretched,
thus negatively affecting both endogenous and
heterologous gene expression. In this study, we
present a mean-field model of translation in
Saccharomyces cerevisiae for the investigation of
two particular translational resources, namely ribo-
somes and aminoacylated tRNAs. We firstly use
comparisons of experiments with heterologous se-
quences and simulations of the same conditions to
calibrate our model, and then analyse the behaviour
of the translational system in yeast upon introduc-
tion of different types of heterologous sequences.
Our main findings are that: competition for ribo-
somes, rather than tRNAs, limits global translation
in this organism; that tRNA aminoacylation levels
exert, at most, weak control over translational
activity; and that decoding speeds and codon adap-
tation exert strong control over local (mRNA
specific) translation rates.

INTRODUCTION

The expression of heterologous recombinant genes is a
desired goal in many areas of biology. These include
reporter gene-mediated measurements of cellular

activities, the introduction of novel biochemical activities
for synthetic biology applications, and the high-level
over-expression of proteins for subsequent purification
and formulation of bio-pharmaceuticals.
In all of these cases, resources required for translating

the recombinant mRNA must be reallocated from their
normal destination; i.e. translation of the regular cellular
complement of gene products. Depending on the expres-
sion levels of the heterologous product, competition
between endogenous and heterologous gene expression
pathways can therefore greatly affect the quality and
quantity of both recombinant and endogenous gene
products. Aspects of this problem have been treated
before: for example, it was demonstrated analytically
that over-expression of heterologous proteins may lead
to significant sequestration of rare tRNAs (1).
In more general terms, different endogenous mRNA

species may similarly be regarded as competing for
limited resources. The question of how resources of the
translational system are allocated to different sequences,
and which particular resources limit the overall capacity of
the system, is thus important for understanding how
translation was shaped and optimized during evolution,
and how this optimization is affected when naturally
occurring systems are altered for the purposes of
bio-processing or synthetic biology.
A problem in quantifying the effect of resource compe-

tition lies in the complexity of the translational machinery.
Changes in the availability of translation factors, tRNAs,
ribosomes, etc., affect many different points in the trans-
lational system in a non-linear fashion: for example, with-
drawal of a tRNA species will impair decoding of its
cognate codon, but may positively affect decoding of
codons for which it is near-cognate (2).
There have been significant recent advances in the use of

computational approaches for studying translation.
Models of translation now exist on genome-wide
scales, mainly parameterized for bacterial systems (3–5).
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Such models would, in principle, allow us to examine how
translation resources are allocated to different sequences.
However, existing models still rely on overly simplified
descriptions of the tRNA system, which are assumed to
be always 100% charged. Because a translation elongation
cycle generates deacylated tRNAs that need to be
re-acylated before they are available for the next cycle,
this may not be realistic. Similar considerations apply to
the representation of ribosomes that are assumed to be
present in unlimited supply in many models.
In the current study, we develop a computational model

that can be used to assess the effect of competition for
ribosomes and tRNAs on both endogenous and heterol-
ogous gene expression in Saccharomyces cerevisiae.
Important hallmarks of our model include a mean-field
approach to describe the endogenous yeast translation
system. In this case this means that we consider an
‘average’ mRNA sequence instead of explicitly represent-
ing the species diversity that characterizes the mRNA
population in vivo. The mean-field mRNA is matched
like-for-like to the best available information on
ribosome activity and tRNA usage patterns in real yeast
cells. Our model allows us, for the first time, to consider a
tRNA re-charging step as part of translational activity.
Furthermore, the model also features an updated defin-
ition of near-cognate tRNAs compared to earlier models.
We quantitatively validate our model by comparison to
published and newly generated experimental data. We
then use the model to explore the effect of heterologous
gene expression on the overall translational system of
S. cerevisiae.

METHODS

Modelling

The model represents translation as a set of chemical
equations parameterized for S. cerevisiae. Simulations
are based on a custom implementation of the SSA-CR
algorithm (6), which is an efficient variant of the better
known Gillespie SSA (7). The program files can be down-
loaded from our web-server (ftp://ftp.cs.kent.ac.uk/pub/
djb/algo.tgz).
In the context of this study, we were interested in

analysing the competition between the cellular ‘back-
ground’ translational activity and additionally introduced
genes. We reduced computational cost of the model by
adopting a mean-field approach for describing translation-
al activity on endogenous genes, which accurately captures
the overall behaviour and resource consumption of the
system, while neglecting the finer details such as allocation
of resources to individual mRNA species.
The translational system of yeast is approximated by a

single mRNA species. The codon composition of this
single mRNA is calculated as the average codon compos-
ition of all endogenous yeast genes, weighted over avail-
able data on their gene expression levels (8). The resulting
mRNA is 799 codons long, its composition and sequence
are given in the Supplementary Data (Supplementary
File S1).

Our model represents the average mRNA as a string of
codons in the following form:

C1
1 � C1

2 � :::� C1
n1
� C2

1 � C2
2 � :::� C2

n2
� C3

1 � :::� C64
n64

Here C1
j abbreviates the codon AAA, C2

j stands for AAC
and so on. This means that the superscript i indicates the
codon and the subscript distinguishes between different
copies of this codon on the average mRNA; ni stands
for the number of occurrences of the codon of type i on
the average mRNA sequence.

Within the model, three types of reaction are possible:

(1) Cognate tRNA binding to the ribosome.
(2) Near-cognate tRNA binding to the ribosome.
(3) tRNA re-charging.

Cognate tRNA binding is followed by the release of a
de-acylated tRNA and translocation of the ribosome to
the next codon. We assume essentially instantaneous
translocation, which is a simplification that tends to over-
estimate the ribosome processing rate. This effect is small
(as we confirmed in independent simulations). However,
avoiding it entails a significant penalty in terms of simu-
lation time. Cognate tRNA binding is represented as
follows:

Cj
i þ aa-tRNA*

140
Cj
ðiþ1Þ þ tRNA

Here ‘aa-tRNA’ stands for an aminoacylated cognate
tRNA, and ‘tRNA’ for an unloaded one. The pseudo
first-order rate constant for this reaction is calculated
from the known biochemical rate constants for codon
decoding (2). If, in the above reaction scheme, the i= nj,
then the reaction becomes instead:

Cj
nj
þ aa-tRNA*

140
C
ðjþ1Þ
1 þ tRNA

i.e. the ribosome moves to the first codon of the next type.
If we now use ‘aa-tRNA’ for any aminoacylated tRNA

from the near cognate set, then near-cognate binding is
described by the following reversible reaction:

Cj
i þ aa-tRNAÐ Xj;i

Here, Xj,i is a place-holder representing the aa-tRNA-
ribosome complex. In order to ensure that the dynamics
of the model is correct, in the sense that they represent the
walk of the ribosome from one codon to the next in a
modelling framework that only allows perfect mixing, it
is necessary that this place-holder is specific to a particular
codon. In practice this means that each complex is repre-
sented as its own chemical pseudo-species. Here this is
indicated by the indices j and i that uniquely identify the
place-holder species as belonging to the complex formed
at the i-th copy of the j-th codon on the average mRNA.
Note that what is represented here as Xj,i is in reality a
whole sequence of possible states of the ribosome–mRNA
compound. The transition rates between these individual
steps are known (2), but within our framework there is
nothing to be gained from modelling these explicitly; all
we are interested in is the time the near cognate occupies
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the ribosomal binding site, preventing the cognate from
binding. If we neglect the probability of a misread error
occurring, then this is modelled by the above reaction with
a forward rate of 140 and a reverse rate of 25.5; this latter
value was calculated based on the parameters given by
Fluitt et al. (2).

There is a further reaction to represent the re-charging
reaction from tRNA to aa-tRNA given by:

tRNA*
ai
aa-tRNA

The rate of this reaction, ai, depends on the tRNA species
and is given in Supplementary Data S3.

Gillespie-type stochastic simulation algorithms assume
perfect mixing of all molecules, and cannot directly repre-
sent spatial structures such as linear sequences of codons.
We must therefore represent sequences indirectly, which
can be achieved by having each codon Ci

j as a separate
molecular species. At any time the total number of ribo-
somes at position Ci

j is represented by the cardinality of
the number of ‘particles’ of type Ci

j. The model thus does
not distinguish whether two ribosomes are on the same
mRNA strand or on separate ones, i.e. the mRNA
number in the cell is not explicitly defined. The sumP

i;j C
i
j is best interpreted as the number of ribosomes; in

the present implementation this was chosen to be close to
the experimentally measured value of 200 000 (9).

DNA constructs and strains

Dual luciferase expression constructs were cloned into a
bidirectional yeast expression vector as follows. The bidir-
ectional promoter/transcription terminator cassette
pBEVY-U (10) was amplified by PCR and cloned as
XhoI/NotI restriction fragment into the centromeric
vector pRS316 (11), yielding pTH644. DNA encoding
the Renilla luciferase gene was amplified from pDB688
(12), and cloned as an XmaI/EcoRI fragment into
pTH644, thus placing expression of the Renilla luciferase
under control of the ADH1 promoter. The resulting
plasmid was designated pTH645. The wild-type firefly
luciferase gene was then PCR-amplified from pDB688
and inserted into pTH645 as a BamHI/SalI fragment,
yielding pTH650. This construct is referred to as the
standard firefly luciferase construct (StaFLuc) throughout
the rest of the manuscript.

In order to make versions of this plasmid with altered
FLuc codon composition, we designed DNA sequences in
which each codon from the StaFLuc sequence had been
replaced by the isoaccepting codon with the highest
(MaxFLuc) or lowest (MinFLuc) cognate tRNA gene
copy number. These DNA sequences were synthesized
by GenScript USA Inc. (Piscataway, NJ, USA), and
cloned as BamHI/SalI fragments into pTH645 to yield
pTH651 (MinFLuc) and pTH652 (MaxFLuc),
respectively.

In order to generate a plasmid expressing all five essen-
tial single-gene encoded tRNAs in yeast, we amplified the
respective genes plus 100 nucleotide DNA portions
upstream and downstream via PCR. The five tDNA
genes were then sequentially cloned into pRS315 (11). In
detail, the respective genes are tQ(CUG)M (cloned as

HindIII fragment), tS(CGA)C (cloned as SpeI
fragment), tR(CCG)J (cloned as SalI fragment),
tT(CGU)K (cloned as BamHI fragment), and
tL(GAG)G (cloned as EclXI fragment). The resulting
plasmid was designated pTH490.
All yeast strains used in thus study were derivatives of

BY4741 (haploid) or BY4743 (diploid) (13). Gene dele-
tions were obtained from Thermo Fisher Scientific/Open
Biosystems (Huntsville, AL, USA).
DNA constructs were introduced into yeast using

standard lithium acetate-based DNA transformation
methods (14). All physical DNA constructs used in this
study have been deposited with the Addgene plasmid re-
pository (http://www.addgene.com).

Other experimental procedures

Luciferase assays were conducted and evaluated as previ-
ously described in (15). Protein expression and western
blots were conducted as described in (16).

RESULTS

With a computational model as described in the ‘Materials
and Methods’ section in place, we required knowledge of
cognate and near-cognate tRNA abundances for each
codon, as well as rate-constants for the tRNA re-charging
steps. The derivation of these parameters is explained in
the following sections.

Identification of near-cognate tRNA species

The nature and abundance of individual tRNA species can
be estimated from the known yeast tRNA genes (17), the
individual gene copy numbers which are proportional to
tRNA expression levels (18), and a total cellular tRNA
population of 3� 106 (19). In order to assign near-cognate
tRNA levels, existing modelling studies use a ‘third-base
mismatch’ rule (2,4), where a near-cognate tRNA is
defined as any tRNA which can establish Watson–Crick
base pairs with the first two nucleotides of the codon while
not being cognate for that codon.
This definition of near-cognate tRNAs has recently

been challenged (20), based on experimental identification
of near-cognate tRNAs that do not follow this rule.
Instead, this study proposes a more complex set of rules
that is based around the ability of tRNAs to establish
transient three-nucleotide base pairs with the codon,
which require canonical Watson–Crick base pairs only
in the central nucleotide.
It is possible to interpret these rules with respect to all

possible cognate/near-cognate combinations of the yeast
system (Figure 1). The resulting near-cognate:cognate
tRNA ratios differ significantly from those following the
third-base mismatch rule (Figure 1A), with the average
ratio about 2-fold higher for the new set. The resulting
near-cognate tRNA set is shown in Figure 1C, and is
used to calculate near-cognate tRNA abundances for the
simulations.
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tRNA re-charging-steps

tRNA synthesis is a complex reaction involving three
co-substrates (ATP, amino acid, and tRNA). While
some biochemical parameters are available for many
tRNAs, there are few synthetases for which all three
possible KM values have been determined. We therefore
made the simplifying assumption that the assembly of the
quaternary complex was fast compared to the catalysis of
the aminoacylation reaction, and that tRNA synthesis
rates depended largely on the kcat of the respective
synthetase. Indeed, at reported intra-cellular concentra-
tions of yeast tRNAs (1–10mM, Supplementary File S2),
synthetases (1–4 mM, Supplementary File S3), amino acids
[0.1–100 mM (21)] and ATP [2–3 mM (22)], all binding
reactions are much faster than the kcat.
A literature search indicates that kcat values are avail-

able for 10 of the 20 cytoplasmic tRNA synthetases from
S. cerevisiae (Supplementary File S3). For one further
tRNA, data are available from another eukaryote, and
for a further nine tRNAs data are available from
bacteria or archea. The only enzyme for which we were
unable to find biochemical data in the literature is
asparaginyl-tRNA synthetase (Asn-RS), to which we
assigned the median value of the experimental data as a
best guess.

Having fully parameterized the model, we then used it
to run simulations of the yeast translation system. In these
simulations, we use the cumulative number of finished
translation cycles of the average mRNA over time as a
measure of translational activity. We term this measure
the ‘global translation rate score’ (GTRS). Although this
parameter does not have a physiological equivalent,
changes in it accurately reflect changes in translational
activity in the modelled system.

When we used the published synthetase data at face
value, simulations yielded a base GTRS of 250.
Uniformly varying the rate of re-charging ai for all
tRNAs strongly affected activity (Figure 2). A plateau
around a GTRS of 3000 was reached if all ai were
increased 30-fold. Thus, in this scenario, tRNA synthesis
rates were limiting for overall translational activity. When
all near-cognate tRNA:codon interactions were removed
from the model, we observed no acceleration of the
system, nor any further decrease in the proportion of un-
charged tRNAs. These results would contradict the
well-supported conclusion from earlier studies that
near-cognate tRNA interactions with codons limit the
speed of decoding (2), and would instead place strong
limitations on the tRNA aminoacylation step.

A detailed examination of empty to aminoacylated
tRNA ratios showed that limitations were exerted via
only a few tRNAs (Figure 3). tRNA species 8
(tD(GUC)) is nearly completely deacylated, while
species 7, 12 and 19 (tR(ACG), tE(UUC) and tL(UAG))
are less than 50% aminoacylated. We note that the kcat for
the aspartyl-tRNA synthetase that charges the limiting
species 8 has an unusually low Kcat value. This value is
from a study on the enzyme of a thermophilic archean,
and is indeed the lowest in our compiled list of values
(Supplementary File S3). When this value was increased
so that reloading of this tRNA species was no longer
rate-limiting, limitations were transferred to the
synthetase with the next lowest kcat (data not shown).

A

C

B

Figure 1. Definition of the near-cognate tRNA system in S. cerevisiae.
(A) Comparison of near-cognate:cognate (nc:c) ratios for individual
codons as defined by the ‘third base mismatch’ rule, or by the rule
proposed in ref. (20). (B) Base-pairing rules for nucleotides one and
three that were used to establish near-cognate relationships. (C) The
relationship between codons and decoding tRNAs in the yeast system.
Cognate tRNAs are indicated in grey, near-cognate tRNAs are
indicated in black.
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Figure 2. The change of the GTRS as the re-charging rate for the
tRNA is increased. A value of 1 means that the parameter corresponds
to empirically determined values.
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Thus, in this scenario translational activity appears very
sensitive to the activities of individual tRNA synthetases.

As an alternative, we explored the use of a single
re-charging parameter, a�i, corresponding to the mean of
reported values for all tRNA synthetases. In this scenario,
translational activity reaches the same plateau value
observed with the individual ai, although at much lower
re-charging activity (Figure 2). Both translation and
tRNA synthetase activity are now robust to changes in
a�i over a wide range (Figures 2 and 3). Removal of
near-cognate tRNAs now profoundly accelerate transla-
tion (Figure 3B). All of these observations indicate that in
this scenario, tRNA re-charging does not exert limitations
on the translational system, but that the codon decoding
step is now strongly limiting.

In order to distinguish which of these sharply contrast-
ing scenarios corresponded most closely to translation in
S. cerevisiae, we used the observation that in fast-growing

yeast half of all translation occurs in order to supply the
protein complement of the daughter cell, rather than
counteracting ongoing protein decay (8). Under fast
growth conditions, reductions in translation therefore
produce linked reductions in growth rate. Factors that
exert strong rate-limitations on global translation can
thus be identified because a moderate decrease in their
activity should significantly impair growth rates in rich
medium, but this effect should be less pronounced in
poorer medium where growth rates are slower.
We initially examined a published genome-wide data set

that measured the reduction in fitness upon a 50% reduc-
tion in gene dosage for all yeast genes (23). We selected
genes involved in translation, grouped them according to
specific sub-processes, and compared the effect on fitness
between these groups (Figure 4A). Surprisingly, the only
significant reduction in fitness is observed for genes
encoding for proteins of the ribosomal subunits, and, for

A

B

C

Figure 3. The proportion of aa-tRNA with and without near cognates for the standard parameters (A), the model with ai= a�i (B), and a model
where the average tRNA re-charging rate has been increased by a factor of 100 (C).
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these genes, the effect is indeed significantly different for
different growth speeds as predicted above.
Because the genome-wide data were generated in com-

petition experiments—where all deletion strains were
grown in one mixed culture, and the relationship
between fitness score in these experiments and actual
growth rates is not fully understood—we measured
growth rates for all 20 heterozygous synthetase deletions,
and for the seven single-gene encoded small ribosomal
subunit protein deletions. These data confirmed our
findings with the reported genome-wide data, in that ribo-
somal protein depletion limited growth significantly more
strongly than the synthetase mutants. In sum, these data
indicate that tRNA re-charging is not particularly limiting
for global translational activity. In the remainder of this
study, we therefore used the a�i scenario (average
synthetase rates) for our simulations.

Experimental model calibration

In the preceding paragraphs, we have developed a model
of yeast translation that is qualitatively similar to avail-
able experimental data. In order to assess the model more
quantitatively, we conducted a series of simulations in
which we introduced additional mRNAs. The three
chosen mRNA sequences encode the same firefly luciferase
with differing codon usage (Figure 5). One of these se-
quences corresponds to that commonly used as a
reporter gene [e.g. (12)], and is referred to as standard
luciferase (StaFLuc). The other two sequences are
derived from this by systematically replacing all codons
for the synonymous codon with the highest (MaxFLuc)
or lowest (MinFLuc) decoding tRNA abundance. In
terms of the commonly used Codon Adaptation Index
(CAI) (24), these sequences are equivalent to the

median, best, and worst adapted endogenous yeast
tRNAs (Figure 5B). The sequences for these different
luciferase versions are given in Supplementary File S4.

The same FLuc sequences were also synthesized as
physical DNA, and introduced into yeast cells in the
form of plasmid-born genes. Because our computer
model cannot account for differences in mRNA stability,
we used a yeast strain deleted for the dom34 gene, which
minimizes the potential for mRNA degradation in
response to rare codons (25). Compared to the StaFLuc
sequence, MinFLuc luciferase activity was 5-fold lower in
this strain, whereas MaxFLuc was 5-fold higher
(Figure 6). We confirmed these data in quantitative
western blots, which showed the same ratio as the
activity measurements (Supplementary File S5). The
observed changes were thus not caused by changes in
specific activity due to impaired protein folding. Since all
three luciferase versions are expressed from the same
plasmid, promoter and with the same 50- and
30-untranslated regions, limitations at the elongation
stage of translation are the most likely explanation for
these observations.

Simulations yielded changes in FLuc GTRS score that
were quantitatively similar to the experimental data
(Figure 6). It should be noted that the absolute FLuc
GTRS depends on the total number of ribosomes
diverted to expressing these additional sequences. The
regulatory sequences for FLuc expression are derived
from the yeast TDH3 gene, which is expressed at ca6500
proteins/min (8). At identical translation initiation rates,
we estimate a diversion of 6000 ribosomes for translation
of the StaFLuc construct. At this expression level, the
simulation moderately underestimates the effect of
codon changes compared to experimental data, predicting

A B

Figure 4. Components of the translational machinery that exert rate limitations on global translation. (A) Sensitivity of yeast fitness to 50%
reductions in gene dosage for different translation-related proteins. Data were selected for heterozygous diploids in the case of single genes, and
for homozygous deletions in the case of duplicated genes (the average effect of both homozygous deletions was considered in this case). Data are
grouped according to translation initiation (eIFs), elongation (eEFs) and termination (eRFs) factors; small (SSU) and large (LSU) ribosomal subunit
proteins, aminoacyl-tRNA synthetases (tRNA AS) and tRNA modifying enzymes (tRNA mod). Fitness effects in rich medium (YPD, fast growth)
and defined medium (MM, slower growth) are summarized. The box-plots indicate the median (line), 25th/75th percentile range (box), full range
without outliers (feathers) and individual outliers (points). (B) Growth rate measurements for the 20 possible heterozygous aminoacyl-tRNA
synthetase deletions and for the 7 essential, non-duplicated small ribosomal subunit proteins. These data confirm the competition data in (A).
Error bars indicate the standard deviation observed for three independent samples.
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3–4 fold differences in expression level rather than the
experimentally observed 5-fold difference (Figure 6).
However, this discrepancy is relatively small.
Simulations with different ribosome numbers also
revealed that the discrepancy between simulation and ex-
periment is not sensitive to the total number of ribosomes
in the system, nor to the numbers of ribosomes diverted to
FLuc expression. It is possibe that the discrepancies arise
because of aspects of the gene expression pathway that can

modulate translation and/or mRNA stability in response
to codon usage. These effects are not represented in our
model. Overall, the simulation results confirm that our
interpretation of the cognate:near-cognate system, our im-
plementation of tRNA synthetase activities, and the
general modelling approach yield a model that represents
yeast translation with a high degree of accuracy.
Since one of the intended uses of the model was the

identification of limiting resources, we explored in more
detail how yeast translation would react to changes in its
tRNA pool. Yeast contains five essential tRNAs encoded
by a single isogene. A sixth single-gene tRNA, tR(CCU),
is non-essential and likely to decode the AGG codon co-
operatively with tR(UCU) (26). Because of the strong link
between tRNA gene dosage and tRNA abundance (18),
the introduction of additional copies of these single-gene
tRNAs on centromeric plasmids will roughly double the
cellular content of the tRNAs. Accordingly, we generated
a plasmid containing each of the five single-gene tRNAs,
and compared its effect on expression of the different
FLuc variants to simulations in which the concentration
of these five tRNAs was doubled.
Our simulations predicted that doubling of the five

rarest tRNA concentrations should lead to an improve-
ment of MinFLuc expression by 26%, of StaFLuc expres-
sion by 9%, and to a minute reduction of MaxFLuc
expression by 1% (Figure 7). These predictions agree
with our experiments within the experimental standard
deviation. In the cases of MinFLuc and MaxFLuc, agree-
ment between simulation and the mean of experimental

Figure 5. Firefly Luciferase sequences used in this study. (A) Principal organisation of the vector used for the luciferase experiments. Three different
versions of this vector were constructed with varying FLuc codon composition. The invariant RLuc gene served as an internal control.
(B) Comparison of the CAI of the three FLuc sequences to endogenous yeast genes. (C) Cognate tRNA abundance for the three FLuc variants.

Figure 6. Simulated and experimentally observed expression differences
for three FLuc variants. Grey bars indicate experimental values, black
bars simulation results. Error bars on the experimental values indicate
one standard deviation above and below the mean (n=12).
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data is surprisingly exact with <2% difference. In the case
of StaFLuc, the difference is slightly larger, for reasons we
do not fully understand. Overall, however, our data
indicate that the model can be used to predict expression
differences arising from changes in tRNA availability with
good reliability.

Effects of heterologous gene expression

Having established that the model reliably represents
basal translational activity, as well as changes to this
activity caused by changes in the tRNA system, we
simulated the expression of heterologous genes with
varying codon optimization over a range of expression
levels. The results showed that expression increased
nearly linearly with the numbers of ribosomes allocated
to translation of the heterologous sequences. The ratio of
expression efficiency remained constant over a wide range
of expression levels, indicating that their expression was
limited by the absolute rate of ribosome movement along
these sequences, rather than limitations in the tRNA
supply. Only at very high expression levels (>20 000 or
10% of all yeast ribosomes) did the MaxFLuc sequence
become disproportionally more efficient compared to the
other two (Figure 8A). When half of all yeast ribosomes
are committed to FLuc synthesis, this difference is of a
magnitude of &15%. Thus, only at these very high ex-
pression levels does rare tRNA availability exert add-
itional limitations on global translational activity.
Figure 8B shows how the endogenous yeast translation

system changed when ribosomes were re-assigned to
translating additional heterologous sequences.
Endogenous translation declines linearly with the
number of ribosomes withdrawn from it. This reaction
of endogenous translation is only weakly modulated by
the codon usage in the heterologous sequence. However,
at high expression levels, heterologous codon usage does
make a small difference in that better-adapted heterol-
ogous genes allow slightly higher levels of endogenous

translation to remain than the worst adapted heterologous
sequences.

DISCUSSION AND CONCLUSION

Our study yields a number of important results. We estab-
lish a model that accurately represents aminoacylated
tRNAs and ribosomes as limited resources in the transla-
tional system of a model eukaryote. We show experimen-
tally that tRNA aminoacylation exerts, at most, modest
rate-limitations under conditions of endogenous transla-
tional activity. This information is used to guide our
interpretation of published rate information on
aminoacyl-tRNA synthetase activity, and to parameterize
our model accordingly. We compared the predicted and
experimentally measured translational activity on heterol-
ogous mRNAs with differing codon usage. We did this for
both the original tRNA complement and an experimen-
tally altered one and found that our model captures essen-
tial details of resources in yeast cells quantitatively
accurately. Lastly, we use the model to predict how the
expression of heterologous genes affects this resource and
thereby translation at a cellular level.

In real cells, translation of different mRNA species (be
it endogenous or heterologous) is coupled to several mech-
anisms. For example, translation of each mRNA
competes with the translation of those mRNAs that
encode the components of the translational machinery
itself. The introduction of additional sequences thus not
only withdraws resources from the existing sequences, but
makes the replenishing of these resources more difficult.
There are known feedback loops in the system—such as
the Gcn2/eIF2 system (27)—which exert additional
control over the way translation of the different mRNAs
is coupled.

Because of the implementation as a mean-field
approach, and the ensuing loss of information on individ-
ual mRNA sequences, our model disregards most of these
coupling mechanisms and intentionally isolates two such

Figure 7. The effect of changes in tRNA abundance on expression of different FLuc variants. Experimental results are shown in grey, simulated
results in black. Error bars indicate one standard deviation above and below the mean for the experimental results (n=8).
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mechanisms; namely, the competition for aminoacylated
tRNAs, and the competition for ribosomes. This simplifi-
cation enables us to analyse in better detail how these
particular coupling mechanisms affect the fitness of the
translational system as a whole. We find that the expres-
sion of different sequences is coupled to each other mostly
via their competition for ribosomes, and only to a small
extent via their competition for aminoacylated tRNAs.

Interestingly, the extent of the contribution that tRNA
competition makes to the coupling between different se-
quences depends to a small extent on codon usage as well
as expression levels (Figure 8). At very high expression
levels, mRNAs decoded by more abundant tRNAs
affect the translational system less strongly than mRNAs
decoded by rare tRNAs. This effect arises because only
less abundant tRNAs can become a scarce enough
resource to exert significant rate-limitations on transla-
tion. At extremely high expression levels, when 50% of
all ribosomes are involved in the translation of a single
mRNA species, the remaining translational system is
�10% more efficient when that particular mRNA is
codon-optimized.

In S. cerevisiae, such expression levels are not quite
achievable even with synthetic constructs, and are far
above levels achieved by any single endogenous gene.
However, similar levels are known to occur naturally in
some other contexts (e.g. the Pichia pastoris AOX1 gene),
as well as in modern high-yield recombinant protein ex-
pression systems based on slower growing mammalian
cells.

Moreover, although individual sequences could not
endanger the supply of other mRNAs with rare tRNA
species, highly expressed genes as a whole could signifi-
cantly deplete this resource if they contained many codons
decoded by such rare species. Thus, the fact that codons
decoded by rare tRNAs are confined to lower expressed
genes would be consistent with the prediction from our
models that in these lower expressed genes they do not
make a contribution to the coupling to other sequences.

It is likely that the relatively modest quantitative differ-
ences in our comparisons between model simulations and
experimental data reflect those coupling mechanisms in
the translational system that we have currently ignored
in our model. It will be interesting to extend the scope
of this model to take additional coupling mechanisms
into account, and to quantify the relative contribution
they make in enabling different mRNAs to compete for
the resources of the translational machinery with different
efficiencies.
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