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Abstract

Multiple cilia-associated genes have been shown to affect hair cells in zebrafish (Danio

rerio), including the human deafness gene dcdc2, the radial spoke gene rsph9, and multiple

intraflagellar transport (IFT) and transition zone genes. Recently a zebrafish alms1 mutant

was generated. The ALMS1 gene is the gene mutated in the ciliopathy Alström Syndrome a

disease that causes hearing loss among other symptoms. The hearing loss seen in Alström

Syndrome may be due in part to hair cell defects as Alms1 mutant mice show stereocilia

polarity defects and a loss of hair cells. Hair cell loss is also seen in postmortem analysis of

Alström patients. The zebrafish alms1 mutant has metabolic defects similar to those seen in

Alström syndrome and Alms1 mutant mice. We wished to investigate if it also had hair cell

defects. We, however, failed to find any hair cell related phenotypes in alms1 mutant zebra-

fish. They had normal lateral line hair cell numbers as both larvae and adults and normal

kinocilia formation. They also showed grossly normal swimming behavior, response to

vibrational stimuli, and FM1-43 loading. Mutants also showed a normal degree of sensitivity

to both short-term neomycin and long-term gentamicin treatment. These results indicate

that cilia-associated genes differentially affect different hair cell types.

Introduction

Hearing and balance disorders are common sensory disorders [1, 2]. There is a significant

genetic component to these disorders, with over 50% of congenital hearing loss seen in new-

borns being hereditary [3]. To date, 121 nonsyndromic hearing loss genes have been identified

in addition to many syndromic hearing loss genes [4]. While most of these genes are only

implicated in hearing loss, mutations in a small subset also cause balance disorders [5, 6].

Genetic mutations causing hearing loss can affect various processes important for hearing. A

number of these mutations specifically affect the development and function of the sensory hair

cells responsible for hearing [3].

Zebrafish have evolved as a useful model to study the genetics of hair cell function. Zebra-

fish are powerful genetic models and have hair cells on the surface of their bodies as part of the

lateral line system, which allows for the observation of hair cells in an intact in vivo model.

Researchers have carried out large-scale genetic screens to identify zebrafish mutants with

auditory or vestibular defects [7–9] as well as generated zebrafish models of known deafness

genes [10, 11].
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One class of genes that have been shown to influence hair cells in humans and zebrafish are

cilia-associated genes. Multiple ciliopathies, genetic disorders with mutations in cilia-associ-

ated genes, have been associated with hearing loss, including Usher Syndrome, Alström Syn-

drome, and Bardet-Biedl Syndrome (BBS) [12–16]. A number of Usher Syndrome genes have

also been shown to affect hair cell function in zebrafish [17–22]. Other cilia genes associated

with hearing loss in humans include DCDC2, CDC14A, CCDC114, and the basal body genes

CEP78 and CEP250 [23–28]. While some of these genes, such as dcdc2, are similarly necessary

for hair cell function in zebrafish [26] others such as cdc14A do not cause zebrafish hair cell

phenotypes when mutated [29]. There have also been a number of cilia-associated genes that

have not been implicated in human deafness but have been shown to cause hair cell pheno-

types when disrupted in zebrafish. Mutations in intraflagellar transport (IFT) genes, genes nec-

essary for the transport of proteins along cilia, in zebrafish have been shown to decrease hair

cell numbers, lead to resistance to aminoglycoside-induced hair cell death, and to cause defects

in FM1-43 uptake and early reverse polarity hair cell mechanotransduction activity [30–33].

Mutations in transition zone genes, genes that act as gatekeepers for proteins exiting and

entering cilia, have also been shown to cause resistance to aminoglycoside-induced hair cell

death but to have normal FM1-43 uptake and control hair cell numbers [32, 34], and a muta-

tion in rsph9, a radial spoke gene in motile cilia, caused a reduced initiation of the startle

response to acoustic stimuli in zebrafish suggesting a potential hair cell defect [35].

Recently a zebrafish alms1 mutant line was generated [36]. ALMS1 is the gene responsible for

Alström Syndrome, a ciliopathy characterized by hearing and vision loss in addition to obesity

and diabetes [13, 37, 38]. Dilated cardiomyopathy, hypertriglyceridemia, gastrointestinal distur-

bances, neurological symptoms, and liver and kidney dysfunction have also been observed in

some patients [39]. ALMS1 localizes to the basal body at the base of cilia leading to the classifica-

tion of Alström Syndrome as a ciliopathy [40]. Hearing loss in Alström Syndrome patients usually

begins in childhood and is progressive [39, 41, 42] with patients also showing abnormal distortion

product otoacoustic emissions (DPOAEs) [42, 43] Vestibular defects have not been observed.

Postmortem analysis of patient auditory tissue shows degeneration of the organ of Corti, includ-

ing a loss of hair cells. Additionally, there is atrophy of the stria vascularis and spiral ligament and

degeneration of the spiral ganglion. In contrast to the auditory tissue, vestibular epithelium looked

normal in these patients, in agreement with the lack of vestibular symptoms [44]. Mouse Alms1
mutants show similar phenotypes as human patients, including obesity, retinal dysfunction,

hyperinsulinemia, and delayed onset hearing loss [45–47]. Hair cells in Alms1 mutant mice show

misshapen stereocilia bundles and polarity defects and a loss of outer hair cells with age. Strial

atrophy is also seen similar to what was observed in human postmortem samples [44, 47]. Similar

to mouse mutants, zebrafish alms1 mutants share many phenotypes with Alström Syndrome

patients, including retinal degeneration, kidney and cardiac defects, increased fat disposition in

the liver, a propensity for obesity, hyperinsulinemia, and glucose response defects [36]. However,

hair cells and the auditory and vestibular systems of these fish have not been examined.

We wished to examine alms1 mutant zebrafish to see if they showed hair cell phenotypes

similar to mammalian Alms1 mutants and other zebrafish cilia-associated gene mutants. We

found that alms1 mutant zebrafish had normal cilia formation in lateral line hair cells and

other ciliated cells similar to what has been observed in mammalian Alms1 mutants. We also

failed to find any hair cell phenotypes in these mutants. They showed grossly normal audioves-

tibular behavior and sensitivity to aminoglycosides as both larvae and adults. They also showed

normal FM1-43 uptake into hair cells. These results and the lack of vestibular defects seen in

mammals following Alms1 mutations suggest a specific role for Alms1 in the auditory system

rather than more global hair cell function. It also shows that cilia-associated genes have distinct

roles in different hair cell types.
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Materials and methods

Animals

Experiments used either 1 or 5 days post-fertilization (dpf) Danio rerio (zebrafish) larvae or

adult zebrafish over three months of age. We used the previously described alms1umd2 mutant

line, which causes a premature stop codon [36]. Mutant larvae were generated by either cross-

ing two heterozygous animals together, or one heterozygous animal to a homozygous mutant,

and comparing homozygous mutants to either wild-type or heterozygous siblings born at the

same time. For the experiments on vibrational stimulus response and adult zebrafish, homozy-

gous mutants were incrossed to generate the mutant animals, and homozygous wild-type sib-

lings of those mutants were crossed to heterozygous wild-type siblings to generate the wild-

type controls. Larvae were raised in embryo media (EM) consisting of 1 mM MgSO4, 150 μM

KH2PO4, 42 μM Na2HPO4, 1 mM CaCl2, 500 μM KCl, 15 mM NaCl, and 714 μM NaHCO3

and housed in an incubator maintained at 28.5˚C with a 14/10 hour light/dark cycle. The Lafa-

yette College Institution Animal Care and Use Committee approved all experiments.

Antibody labeling, imaging, and cilia length measurement

Zebrafish larvae and fins used for antibody labeling were fixed for two hours at room tempera-

ture in 4% paraformaldehyde. Antibody labeling was carried out as previously described [48].

Cilia were labeled with a mouse anti-acetylated tubulin primary antibody (Millipore-Sigma,

T7451) diluted at 1:1,000 in antibody block. Larvae used for hair cell counts were labeled with

a rabbit anti-parvalbumin primary antibody (ThermoFisher, PA1-933) diluted at 1:1,000 in

antibody block. Fins used for hair cell counts were labeled with both the parvalbumin antibody

and a mouse anti-otoferlin antibody (Developmental Studies Hybridoma Bank, HCS-1)

diluted at 1:100 in antibody block.

Images of antibody labelled larvae and fins were taken on a Zeiss LSM800 confocal micro-

scope. A stack of images 1 μm apart were taken throughout the tissue of interest and then max-

imum projection images of these stacks were generated for inclusion in the figures. To

measure cilia length we chose a representative cilia that we could easily trace in each image

and measured the length using Fiji.

Vibrational stimulus response

To test if alms1 mutants would respond to vibrational stimuli we tapped a petri dish contain-

ing 50 alms1 mutants with a glass pipette and recorded their response with an iPhone SE. To

quantify this behavior we used a modified version of methods previously described [49]. Fish

were moved into a fresh petri dish 8 fish at a time. After giving the fish a few minutes to accli-

mate to the new dish the dish was taped with a glass pipette three times a few seconds apart

while recording the response of the fish with an iPhone SE. Videos were then scored with each

fish given a score of 0 for no movement in response to the tap and a score of 1 if they moved in

response to the tap. Fish that were showing spontaneous movement at the times of any of the

taps or that were on the edge of the dish during the experiment were excluded. An average

score across the three experiments was generated for each fish.

FM1-43 uptake

Fish were treated with 2.25 μM FM 1-43FX (ThermoFisher, F35355) for 1 minute in EM,

washed 3 times in EM, and then anesthetized with MS-222/Tricaine-S (Pentair Aquatic Eco-

Systems, TRS1) for imaging. Fish were imaged on a Zeiss LSM800 confocal microscope. For

each fish, a single neuromast was imaged by taking a stack of 5 1 μm optical sections. Image
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analysis was carried out in Fiji. A maximum projection image was made of each stack of

images, and the average fluorescent intensity of the cell bodies of the entire neuromast was

measured. Additionally, the average fluorescent intensity of an area in the background of the

image was measured. Finally, the value for the fluorescence of the neuromast was divided by

the value of the background fluorescence. Larvae were euthanized and genotyped after

imaging.

Aminoglycoside treatment and hair cell counts

Fish were treated with either neomycin solution (Sigma-Aldrich, N1142) or gentamicin solu-

tion (Sigma-Aldrich G1272) at the indicated doses diluted in EM. For all neomycin treatment

experiments, fish were treated with neomycin for 30 minutes, washed 3 times in either plain

EM for larvae or plain system water for adult fish, left to recover in the third wash for one

hour, and then tissue was collected for antibody labeling. In the case of larvae, whole larvae

were fixed, whereas for adult fish, the fish were anesthetized, and their caudal fins were ampu-

tated and fixed. For gentamicin treatment, larvae were treated with gentamicin for 6 hours,

washed 3 times in plain EM, and then fixed for antibody labeling. For adult zebrafish, 6 neuro-

masts on each fin were counted using the HCS-1 stain, and an average hair cell/neuromast

number was generated for each animal. For larvae, the OP1, M2, IO4, MI2, and MI1 neuro-

masts [50] were counted using the parvalbumin stain, and again an average number of hair

cells/neuromast number was generated for each animal. Larvae were genotyped after counting

was complete. All hair cell counts were carried out on an Accu-Scope EXC-350 microscope.

Statistical analysis

All statistics were calculated using GraphPad Prism software (version 6.0).

Results

Cilia morphology is normal in alms1 mutants

There have previously been conflicting results regarding whether ALMS1 plays a role in cilia

formation and maintenance. Cilia in Alms1 mutant mice and fibroblasts isolated from Alström

syndrome patients appear grossly normal [40, 46, 51–53] even when there is no visible anti-

body labeling for ALMS1 protein [52]. However, RNAi knockdown of Alms1 in cultured cells

results in abnormal and stunted cilia [53, 54]. To test what cilia morphology looked like in zeb-

rafish alms1 mutants, we stained 24 hours post fertilization (hpf) and 5dpf zebrafish larvae

with acetylated tubulin. We found that cilia morphology looked grossly normal in both early

hair cells of the otic vesicle, hair cells of the lateral line and cells of the olfactory pit in alms1
mutants (Fig 1) We also failed to see any early hair cells of the otic vesicle or neuromasts that

were missing cilia or obvious gaps of missing cilia in the olfactory pit. Measuring cilia length

we did not see any significant differences in the average cilia length in these tissues. We did

however, observe an increase in the variability of cilia length in alms1 mutants in the early hair

cells in the otic vesicle (Fig 1).

alms1 mutants do not show mechanotransduction defect phenotypes

Zebrafish mechanotransduction mutants show several characteristic behavioral phenotypes,

including a failure to remain upright, circling behavior when swimming, and a failure to

respond to acoustic-vibrational stimuli [9]. It has previously been shown that zebrafish mor-

phants of another cilia-associated deafness gene, dcdc2, show similar behavioral defects [26].

We, however, failed to observe any of these phenotypes in alms1 mutant zebrafish. alms1 5dpf
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Fig 1. Cilia formation is largely normal in alms1 mutants. (A) Representative images of the otic vesicle of a 24 hpf wild-type (left) and alms1 mutant (center)

zebrafish embryo stained with acetylated tubulin. The arrows point to the cilia of the early hair cells. To the right is quantification of cilia length. There was no

significant difference in average kinocilia length between wild-type and mutant zebrafish, however, there was more variation in length seen in alms1 mutants.

(p = 0.0065 by F test to compare variances) (B) Representative images of the IO1 neuromast stained with acetylated tubulin in wild-type (left) and alms1
mutant (center) 5dpf zebrafish larvae. The brackets show the position of the kinocilia. Kinocilia appear grossly normal in alms1 mutant fish. To the right is

quantification of IO1 kinocilia length. There was no significant difference between wild-type and mutant zebrafish (p = 0.1312 by an unpaired t-test) (C)

Representative images of the olfactory pit stained with acetylated tubulin in wild-type (left) and alms1 mutant (center) 5dpf zebrafish larvae. Again cilia appear
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mutant larvae remain upright, and those without body morphology defects showed a grossly

normal escape response following a vibrational stimulus generated by taping on their dish (S1

Movie and Fig 2). Adult homozygous mutants also showed normal swimming behavior (S2

Movie). The rapid uptake of FM1-43 is also reduced or eliminated when hair cell mechano-

transduction activity is impaired [55–57]. It has previously been shown that other cilia gene

mutants, specifically IFT mutants, show reduced levels of FM1-43 loading into lateral line hair

cells [32, 33]. However, we failed to observe any significant differences in FM1-43 loading in

alms1 mutants compared to wild-type siblings (Fig 3).

alms1 mutants are not resistant to aminoglycoside-induced hair cell death

It has previously been shown that some zebrafish cilia-associated gene mutants are resistant to

aminoglycoside-induced hair cell death, specifically transition zone, including the basal body

gene cep290, and IFT gene mutants [32–34]. To test if this was also the case for alms1 mutants,

we used both short-term neomycin and long-term gentamicin treatment paradigms and

grossly normal in alms1 mutants. To the right is quantification of cilia length in the olfactory pit. There was no significant difference between wild-type and

mutant zebrafish (p = 0.9247 by unpaired t-test). Scale bar for all images = 10 μm. Quantification graphs show individual data points along with the mean and

standard deviation of the data, n = 10 fish per group.

https://doi.org/10.1371/journal.pone.0246844.g001

Fig 2. alms1 mutants respond to vibrational stimuli. Quantification of the number of times fish respond to a

vibrational stimuli across three times. A score of 1 means a fish responded all three times whereas a score of 0 means a

fish never responded. There was no significant difference between the two groups by an unpaired t-test (p = 0.6977),

n = 12 fish per group. Individual data points are shown along with the mean and standard deviation of the data.

https://doi.org/10.1371/journal.pone.0246844.g002
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quantified hair cell number in 5dpf zebrafish larvae. We failed to see any significant differences

between wild-type mutants and homozygous mutants in either control conditions or following

aminoglycoside treatment (Fig 4A–4C). Many cilia-associated genes are maternally expressed

in zebrafish, meaning a heterozygous mother loads wild-type RNA into the egg, and this can

mask mutant phenotypes early in development [58–60]. Therefore, we wished to test if this

was happening in alms1 mutants by generating mutant larvae out of both heterozygous and

homozygous mutant mothers and treating them with neomycin. We again failed to find any

significant differences between the different genotypes (Fig 4B).

In human Alström syndrome, patients’ hearing loss is usually not seen until later in child-

hood [39, 42, 61]. Likewise, hearing defects in Alms1 mutant mice show a delayed onset [45–

47]. Therefore, we wished to see if adult zebrafish were resistant to aminoglycoside-induced

hair cell death even though larvae were not. We treated fish slightly over 3 months of age that

Fig 3. FM1-43 loading is normal in alms1 mutants. (A) Representative images of neuromasts from wild-type siblings

(left) and alms1 mutants (right) treated with FM1-43. Scale bar = 10 μm. (B) Quantification of the fluorescent intensity

of FM1-43 in neuromasts of heterozygous wild-type siblings and homozygous alms1 mutants. There was no significant

difference between the two groups by an unpaired t-test (p = 0.2474). Individual data points are shown along with the

mean and standard deviation of the data.

https://doi.org/10.1371/journal.pone.0246844.g003
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appeared to be mature adults (S2 Movie) with neomycin. We again failed to find any signifi-

cant difference between homozygous mutants and related wild-type fish in either control lat-

eral line hair cell numbers or hair cell numbers following neomycin treatment (Fig 5).

Discussion

Zebrafish have emerged as a useful model to study hair cell function and death in part due to

the external location of hair cells in the lateral line system. Multiple genes associated with both

syndromic and nonsyndromic forms of deafness have been shown to cause hair cell related

phenotypes in zebrafish [10, 11]. This is particularly true for genes affecting mechanotransduc-

tion or synaptic activity [62, 63]. However, not all deafness genes have been shown to have

phenotypes when mutated in zebrafish, including the cilia-associated gene cdc114 [29]. We

found this also to be the case with alsm1. alms1 has previously been shown to be expressed in

hair cells of zebrafish larvae and adults [64, 65] as well as showing up in the mature lateral line

hair cell cluster in single cell RNA-Seq data [66]. Despite this we noticed no obvious hair cell

phenotypes in alms1 zebrafish mutants. Fish showed grossly normal swimming behavior and

response to vibrational stimuli, as well as normal hair cell number in contrast to what has pre-

viously been shown in mouse Alms1 mutants [47] and human patients [44]. These mutants

also showed normal FM1-43 uptake and aminoglycoside toxicity of lateral line hair cells in

contrast to what has been seen in other zebrafish cilia-associated gene mutants [32–34].

There are multiple explanations for the lack of phenotypes we observed. First, it has previ-

ously been shown that CRISPR mutants can show genetic compensation that is not present

when genes are merely knocked down [67]. It is also possible that the lack of phenotype we

observe is due to a lack of sequence conservation between the mammalian and zebrafish alms1
gene. The majority of the N-terminus of the human ALMS1 gene, encoding for the tandem

repeat domain of the protein, is specific to mammals [68, 69] with the first 1560 amino acids of

the human gene having no homologous region in the zebrafish gene. However, as the zebrafish

mutant shows multiple expected phenotypes due to defects in other tissues [36] if any of these

issues were responsible for the lack of phenotype we see, it would have to be relatively hair cell

specific. It is also possible that alms1 has an ohnologue compensating for its loss in hair cells.

Teleost fish underwent a genome duplication event [70, 71] and other zebrafish hair cell gene

mutants have failed to completely phenocopy mammalian mutants due to either ohnologue

specific functions or restricted expression of ohnologues [19, 72–74]. alms1, however, does not

have any known ohnologues in zebrafish [75] and performing a protein blast for the human

and zebrafish alms1 gene as well as the ALMS protein motif did not identify any candidate

ohnologues. This blast did show the presence of a C10orf90 homologue in zebrafish, which is a

known centrosomal gene with an ALMS motif [37, 68], however, this gene is also present in

Fig 4. alms1 mutant larvae are not resistant to aminoglycoside-induced hair cell death. (A) Dose-response curve

for wild-type siblings and alms1 mutants from an incross of heterozygous parents treated with 0–400 μM neomycin for

30 minutes with a one-hour recovery time. n = 7–19 fish per neomycin dose for homozygous wild-type and mutants

and 20–25 for heterozygous fish. There were no significant differences due to genotype (p = 0.1273) or the interaction

between genotype and neomycin (p = 0.3939) by two-way ANOVA. (B) Dose-response curve for fish that were either

heterozygous or homozygous for the alms1 mutation from mothers also either heterozygous or homozygous for the

alms1 mutation treated with 0–200 μM neomycin for 30 minutes with a one-hour recovery time. M = maternal

genotype and Z = zygotic genotype. n = 7–16 fish per neomycin dose for each genotype. There were no significant

differences due to genotype (p = 0.8060) or the interaction between genotype and neomycin (p = 0.2024) by two-way

ANOVA. (C) Dose-response curve for wild-type siblings and alms1 mutants from parents heterozygous for the alms1
mutation treated with 0–200 μM gentamicin for 6 hours. n = 10–14 fish per gentamicin dose for homozygous wild-

type and mutants and 21–25 for heterozygous fish. There were no significant differences due to genotype (p = 0.9401)

or the interaction between genotype and neomycin (p = 0.2850) by two-way ANOVA. Data are shown as mean +/-

standard deviation.

https://doi.org/10.1371/journal.pone.0246844.g004
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mammals and is not able to compensate for alms1 defects there. We can also not rule out more

subtle defects, particularly in inner ear hair cells, that were not observed by the methods we

used.

However, we feel the most likely explanation for the lack of observed phenotypes is different

roles for alms1 in different hair cell types. While human Alström patients and Alms1 mutant

mice show hearing defects and defects in auditory hair cells, there have not been any reported

vestibular defects. ALMS1 specifically localizes to the centrosome or basal body of cilia [40, 47]

and other basal body proteins have likewise been associated with hearing loss but not vestibu-

lar dysfunction [23, 24]. While different hair cell types have many shared genes, there are also

many genes that are auditory or vestibular hair cell specific [76, 77]. Comparing lists of highly

expressed zebrafish hair cell genes [64, 65] to these lists show overlap with several vestibular

hair cell specific genes but no auditory hair cell specific genes. This suggests zebrafish hair cells

are more closely related to mammalian vestibular hair cells than auditory hair cells. One of the

defects seen in Alms1 mutant hair cells in mammals, is stereocilia polarity [47]. This defect has

also been shown in auditory hair cells of other cilia-associated gene mutants [15, 78–80]. How-

ever, in some cases, these mutants had no polarity defects in vestibular hair cells [79, 80] and

these polarity defects have not been seen in lateral line hair cells of zebrafish cilia-associated

gene mutants [30, 32]. Therefore, it appears that in mammalian auditory hair cells where the

kinocilia, the true cilia of the cell, is lost early in development [81] the primary role of cilia-

associated genes has evolved to be determining stereocilia polarity early in development.

Whereas, in mammalian vestibular hair cells and zebrafish hair cells, where the kinocilia are

maintained, these genes may play other functions that are not yet fully elucidated.
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https://doi.org/10.1371/journal.pone.0246844.g005
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