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Abstract

Testicular function and future fertility may be affected by cancer treatment during 

childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential 

for fertility in these patients, the somatic cell populations also play a crucial role in 

providing a suitable environment to support germ cell maintenance and subsequent 

development. Regulation of the spermatogonial germ-stem cell niche involves many 

signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal 

axis. In this review, we describe the somatic cell populations that comprise the testicular 

germ-stem cell niche in humans and how they may be affected by cancer treatment 

during childhood. We also discuss the experimental models that may be utilized to 

manipulate the somatic environment and report the results of studies that investigate 

the potential role of somatic cells in the protection of the germ cells in the testis from 

cancer treatment.

Introduction

Fertility in males is dependent on the presence of a germ 
cell population that is capable of developing into sperm 
in adulthood. However, the ability of spermatogonial 
stem cells (SSC) to give rise to sperm is dependent on 
the presence of functioning somatic cell populations. 
This unique testicular microenvironment which includes 
the SSC, supporting somatic cell populations and the 
presence of specific growth factors is known as the germ-
stem cell niche. Cell populations deemed to be important 
include Sertoli, peritubular myoid and Leydig cells, with 
contribution from additional interstitial cell types and 
the vasculature (1). Animal studies, largely conducted in 
rodents, have identified a number of signalling pathways 

involved in maintenance of the germ-stem cell niche 
and highlighted their impacts on fertility when these 
pathways are disrupted (reviewed in (2, 3)).

In humans, cancer and its treatment are a recognised 
cause of subsequent infertility. This may be as a result of 
the underlying cancer (e.g. testicular cancer) or due to the 
damaging effects of chemotherapy or radiotherapy (4). 
Treatments that directly damage the SSC population will 
impact on subsequent fertility; however, indirect effects on 
germ cells mediated through the somatic cell populations 
may also lead to infertility (5). For adult men with cancer, 
it is possible to store sperm prior to treatment to allow 
them to be able to father children in the future using 
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artificial reproductive technologies. However, for those 
who are likely to be rendered infertile by their treatment 
and are unable to produce mature sperm (e.g. prepubertal 
boys), there are currently no established options to allow 
them to father biological children of their own (6). Several 
approaches are being investigated to preserve or restore 
fertility in these patients and whilst the primary focus of 
the majority of these studies are on the germ cells, the 
role of the somatic cell populations in mediating the 
effects of cancer treatment on the testis or in supporting 
the restoration of fertility following treatment is poorly 
understood (5).

In this review, we will describe the development 
and function of the key somatic cell populations in the 
testis and how they may be affected by cancer and its 
treatment. We will describe the experimental models that 
can be used to assess somatic cell function and discuss 
studies that have attempted to preserve fertility in males, 
which may involve manipulation of the somatic cells in 
the testis. We will primarily focus on studies involving 
human and non-human primates, supported by findings 
from rodent studies where appropriate.

Testicular development in infancy, childhood, 
puberty and adulthood

Hormonal control of testicular development 
and function

Secretion of gonadotrophins, luteinising hormone (LH) 
and follicle-stimulating hormone (FSH), from the pituitary 
gland is responsible for regulating hormonal control of 
the testis in the male. LH and FSH signal through the 
testicular somatic Leydig and Sertoli cell populations 
respectively. The male hypothalamo-pituitary-gonadal 
(HPG) axis is active in humans from foetal life and during 
the early postnatal period. This pattern of secretion has 
also been demonstrated in many other non-human 
primates, including the rhesus monkey and marmoset (7, 
8). In humans and non-human primates after the rise in 
gonadotrophins and testosterone during early infancy, 
there follows a period of relative HPG quiescence during 
which levels of these hormones are suppressed (Fig. 1). 
This ‘childhood period’ lasts from the end of infancy until 
peri-puberty (8). Although childhood has been described 
as a quiescent period in terms of testicular activity, it is 
clear that there is activity occurring within the testis, 
which includes periods of germ cell proliferation (9) 
and the transient appearance of meiotic cells (10). 

Puberty heralds the reactivation of the HPG axis, and 
this activity remains throughout adulthood. Both LH 
and FSH indirectly influence germ cell development in 
the testis. LH binds to the LH/CG receptor to promote 
testosterone secretion from the Leydig cells, and FSH 
signals through the FSH receptor of Sertoli cells within 
the seminiferous tubules to support spermatogenesis. 
This emphasises the importance of the somatic cells in 
supporting spermatogenesis and highlights the potential 
for targeting somatic cells for the purposes of preserving 
fertility in cancer patients.

Germ cells – development, maturation and function

Future fertility requires normal development of the germ 
cell population from foetal life through to adulthood. 
Foetal gonocytes must undergo differentiation to 
prespermatogonia during late foetal and early postnatal 
life (11) and spermatogonial proliferation continues 
during childhood. In humans, SSC have been reported 
to be present in the testis from ~2 to 3  months of 
postnatal age (11, 12). From puberty, SSCs exhibit a fine 
balance between self-renewal, which maintains their 
numbers and differentiation to generate meiotic cells 
to produce spermatozoa (13). Two populations of SSCs 
have been described in primates, Adark SSCs have been 
proposed to represent a regenerative reserve that may 
be replenished following insult e.g. cancer treatment 
(14), whilst Apale SSCs are also present in the postnatal 
testis and are proposed to represent a progenitor 
population acting as a functional reserve (14). In 
the rhesus monkey, Apale spermatogonia form clones 
and the subsequent differentiation and proliferation 
occurs in synchrony within these clones (15). Whilst 
differences in proliferation of the Adark (slow cycling) 
and Apale populations have been described in steady-state 
conditions, this may not be the case following damage 
by cancer treatment. Understanding of spermatogonial 
development in humans remains limited; however, 
it is clear that there are key differences between the 
spermatogonial populations of the primate and rodent 
testis, which make direct extrapolation from the results 
of rodent studies challenging (reviewed in (14)).

Sertoli cells – development, maturation and function

Sertoli cells serve a number of important functions in the 
testis including support of spermatogenesis by mediating 
FSH signalling. This, combined with their location within 
the seminiferous tubules and close association to the SSC 

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-17-0382

http://www.endocrineconnections.org © 2018 The authors
Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-17-0382


J-B Stukenborg,  
K Jahnukainen et al.

Cancer treatment and 
testicular function

R717:2

means that Sertoli cells are widely considered to be a key 
component of the SSC niche. The total number of Sertoli 
cells determines the number of germ cells that can be 
supported and hence maximum sperm output (16). 
Sertoli cell proliferation in humans occurs during foetal 
and early postnatal life. Sertoli cells cease proliferation 
during childhood until a second proliferative wave 
begins around puberty (16). Interestingly, the marmoset 
monkey does not exhibit a prepubertal period of Sertoli 
cell proliferation; however, this does occur in marmosets 
in which Sertoli cell proliferation is suppressed during 
the neonatal period with GnRH antagonists. This 
indicates a compensatory increase in Sertoli cell number 
to normal adult levels, which may be important in 
terms of recovery of the Sertoli cell population following 
cancer treatment (17). Once adulthood has been reached, 
Sertoli cells have ceased to proliferate and no further 
compensation of Sertoli cell number is possible (18). 
Sertoli cell function during childhood may be indicated 
by the presence of normal levels of anti-Mullerian 
hormone (AMH) and inhibin B during a period when 

measurement of gonadotrophins may not be helpful to 
assess the testicular function due to the quiescence of 
the HPG axis (19, 20, 21); however, the role of inhibin B 
and AMH in determining the function of the germ-stem 
cell niche following damage has not been elucidated in 
prepuberty (Fig. 1).

Sertoli cell maturation is important for the support 
of spermatogenesis, and immaturity of Sertoli cells is a 
hallmark of many conditions that impair male fertility 
in humans (22, 23). Importantly, androgen action 
through Sertoli cells has been shown to be required 
for fertility in mice, and responsiveness to androgens 
requires the presence of the androgen receptor (AR). 
Knockout of AR specifically in Sertoli cells of mice results 
in azoospermia and infertility (24). Androgen receptor is 
not expressed in the Sertoli cells of the foetal or early 
postnatal human testis; however, AR can be identified 
in an increasing proportion of Sertoli cells during 
childhood before the final maturation of Sertoli cells (16, 
25, 26) (Fig. 1). Terminal differentiation into a mature 
Sertoli cell involves changes in cellular morphology 
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Figure 1
Sertoli and Leydig cell development and profile of reproductive hormone secretion in humans from birth to adulthood. Sertoli cell maturation involves 
changes in morphology, protein expression (including AMH and AR) and proliferation, whilst Leydig cell development involves two distinct populations 
of cells, which include a foetal Leydig cell population which regresses postnatally to be replaced by an adult Leydig cell population derived from a 
precursor population present in the prepubertal testis. Relative hormone production based on data taken from normal human populations (19, 20, 21). 
Whilst gonadotrophins are undetectable during childhood, Sertoli cell-derived hormones Inhibin B and AMH remain detectable.
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and protein expression, including downregulation of 
AMH, resulting in a non-mitotic mature Sertoli cell 
capable of supporting spermatogenesis (27). Sertoli cell 
maturation is also associated with the development 
of tight junctions that create the blood-testis barrier, 
which divide the seminiferous tubule into two distinct 
compartments. The spermatogonia (including the 
SSC population) remain in the basal compartment in 
adulthood, separated from the differentiating germ 
cells in the adluminal compartment. Whilst Sertoli 
cells appear to be important for supporting germ cell 
differentiation and spermatogenesis in adult mice, they 
are also important for regulating factors (e.g. retinoic 
acid) that prevent premature meiotic development 
in germ cells of the foetal testis, thus supporting the 
development of pre-spermatogonia (28, 29). In mice, 
this includes effects on the retinoic acid pathway  
(e.g. CYP26B1, NANOS2) (28, 29, 30); whilst in humans, 
additional factors (e.g. DMRT1) have also been proposed 
to play a role in regulating meiotic entry (31).

SSC and Sertoli cells remain in close contact with 
the basement membrane, which contains a number of 
extracellular matrix proteins potentially involved in 
promoting SSC development. Factors such as β1 integrin 
(expressed by spermatogonia), which associate with 
laminins in the basement membrane have been shown 
to be important for spermatogenesis in rodents (32), 
indicating that the basement membrane is also likely to 
be a key component of the SSC niche.

Peritubular myoid cells – development, maturation 
and function

The role of the peritubular myoid cell in supporting 
spermatogenesis in human and non-human primates is 
not well characterised and much of the understanding 
is derived from rodent studies. In mice, androgen action 
specifically through peritubular myoid cells has been 
shown to be necessary for fertility. Mice in which AR 
was knocked-out specifically in peritubular myoid cells 
were azoospermic and infertile (33). Androgen signalling 
through peritubular myoid cells also occurs in humans 
with AR expression described in peritubular myoid 
cells from foetal life (34, 35). Furthermore, inhibition 
of tyrosine kinase signalling in immature rats has been 
shown to impair peritubular myoid cell proliferation with 
subsequent reduction in adult testis size (36); however, 
the importance of these signalling pathways in PTM cells 
for subsequent testicular development and fertility in 
humans is unknown.

Leydig cells – development, sub-populations, 
maturation and function

Leydig cells are located within the interstitium of the testis 
and are responsible for the production of key hormones 
including testosterone and insulin-like growth factor 3 
(Insl3). Insl3 is involved in the trans-abdominal phase 
of testicular descent, which is important for subsequent 
testicular function, whilst testosterone is important for 
the final stage of testicular descent, masculinisation and 
spermatogenesis (37). Distinct populations of Leydig 
cells have been described at different stages during life. 
In the human, the foetal Leydig cell population regresses 
towards the end of the first year of life, whilst a population 
of undifferentiated mesenchymal cells remain in the 
interstitium. At puberty, these cells begin to proliferate 
and differentiate to adult testosterone-producing Leydig 
cells. Once terminally differentiated, adult Leydig cells 
cease proliferation (38). Leydig cells have been proposed 
as key components of the SSC niche based on several 
observations from studies in mice. This includes the 
location of SSC on the basement membrane in close 
proximity to the interstitium, in addition to Leydig 
cell-produced testosterone supporting spermatogenesis 
through AR signalling in Sertoli and peritubular myoid 
cells (38) (Fig. 2).

In addition to Leydig cells, the interstitium contains 
the vasculature, which has also been described as an 
important component of the SSC niche. The spatial 
location of the blood vessels in close proximity to the SSC 
in mice supports this hypothesis (1).

Somatic cell signalling pathways for 
supporting spermatogenesis

Several signalling pathways have been shown to be 
involved in somatic cell support for SSC development 
in rodents. This includes GDNF, which is expressed in 
the Sertoli cells and peritubular cells of the mouse testis 
and signals through the GFRα1 receptor on SSC. GDNF 
signalling has been proposed to be important for SSC 
self-renewal based on a study that demonstrated that 
manipulation of GDNF signalling appears to alter the 
balance between SSC self-renewal and differentiation, 
thereby resulting in the depletion of the SSC pool or 
alternatively the failure of SSC differentiation towards 
meiosis (39). However, whilst GDNF has a general role 
in maintaining SSC proliferation and survival, several 
other somatic cell-derived factors have been shown to 
be important in self-renewal of SSC in in vitro systems, 
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including colony-stimulating factor 1 (CSF-1; Leydig cells, 
peritubular myoid cells), fibroblast growth factor 2 (FGF2; 
Sertoli cells), epidermal growth factor (EGF; Sertoli cells), 
insulin-like growth factor 1 (IGF1; Sertoli cells, Leydig 
cells) and leukaemia inhibitory factor (LIF; Sertoli, Leydig 
cells) (2, 40, 41, 42). Migration of the germ cells from the 
centre to the basement membrane of the seminiferous 
tubules is important for subsequent spermatogenesis, 
and this process has been shown to be attenuated by loss 
of Sertoli cell factors such as GATA4 (3). GATA4 appears 
to play a role in maintenance of the SSC niche through 
regulation of chemokine signalling such as Sertoli cell-
derived CXCL12 (3), which has also been shown to be 
impaired in other models in which there is failure of 
prospermatogonial migration, such as the Sin3a-knockout 
mouse (43).

Whilst rodent studies have uncovered a number of SSC 
niche signalling pathways that can affect SSC self-renewal 
and differentiation, whether the same mechanisms are 
also important for SSC development in humans and 
whether manipulation of these pathways can prevent SSC 
loss or enhance SSC survival and differentiation in the 
context of exposure to cytotoxic therapies is unknown.

Effects of gonadotoxic therapies on the 
prepubertal testis – evidence from human 
and non-human primate studies

Testicular cells including the germ and somatic 
populations are sensitive to cytotoxic treatment such 
as chemotherapy and radiotherapy. Whilst fertility is 
ultimately dependant on the development of mature 
gametes from undifferentiated germ cells, infertility may 
result directly from damage to the germ cells or indirectly 
via damage to the somatic population. Moreover, somatic 
cell damage may affect germ cells by a number of 
mechanisms including paracrine (such as those described 
earlier) and endocrine signalling pathways (Fig. 2).

Germ cell effects – direct

Low doses of chemotherapy or radiotherapy may deplete 
the pool of differentiating spermatogonia, whilst reserve 
SSCs survive, and spermatocytes and spermatids continue 
their maturation into sperm (44). The potential for 
recovery of sperm production after a cytotoxic insult 
in adulthood or at puberty depends on the ability of 
mitotically quiescent stem spermatogonia to survive and 
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Figure 2
Cellular targets for chemotherapy and/or radiotherapy-induced damage in the prepubertal testis. Infertility may result from damage within the 
seminiferous tubules as a result of direct damage to the spermatogonia leading to alterations in proliferation, differentiation, protein deamination and 
apoptosis and ultimately infertility. Alternatively, damage to the Sertoli cells by such treatments may result in alterations in hormones, growth factors or 
seminiferous tubule structure that will indirectly mediate the effects of chemo/radiotherapy on the germ cells. Similarly, interstitial effects include 
damage to the Leydig cells that can lead to alterations in hormones or growth factors that may impact germ cells directly or indirectly (e.g. testosterone 
deficiency) through effects other somatic cell populations.
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resume mitotic activity and to produce differentiating 
spermatogonia. If the damage is severe, for example, as 
a result of a high cumulative dose of alkylating agent or 
irradiation (45), all the Adark SSCs may commit to apoptosis 
and the patient will become permanently infertile. 
Spermatogonia have been shown to be susceptible to such 
depletion at all stages of life (46, 47).

Alkylating and platinum agents cause direct DNA 
and RNA damage and can therefore affect even non-
dividing reserve (Adark) stem cells. The threshold dose 
of cyclophosphamide, in relation to infertility, has 
been shown to be between 7.5 and 10 g/m2 (48, 49, 50). 
However, a recent large study of non-irradiated childhood 
cancer survivors failed to identify any threshold dose 
for alkylating agent exposure that predicted impaired 
spermatogenesis or azoospermia after a median follow-up 
of 21 years (51). There may be other factors, in addition 
to absolute doses and regimen, such as genetic variation 
in drug metabolising pathways that modulate the impact 
of alkylating agent exposure on spermatogenesis or its 
recovery (51).

The germinal epithelium is very susceptible to 
irradiation-induced damage (52, 53). The progenitor 
and differentiating spermatogonia are radiosensitive to 
scattered doses as low as 0.1 Gy leading to short-term 
cessation of spermatogenesis (54). Doses of 2–3 Gy also 
affect stem cell spermatogonia and cause long-term 
azoospermia. Doses in excess of 6 Gy are able to deplete 
the SSC pool and lead to permanent infertility (54, 55). 
Fractionation of radiotherapy increases the germ cell 
toxicity possibly because of repeated hits to activated Adark 
SSCs (55, 56). Total body irradiation (TBI), as conditioning 
for haematological stem cell transplantation (HSCT), is 
also associated with significant germ cell failure (57, 58). 
Following treatment with TBI (10 or 13 Gy), azoospermia 
was found in 85% of men and oligozoospermia occurred in 
the rest (59). Recovery of spermatogenesis never occurred 
before the 4th year after transplantation; therefore, 
azooospermia after HSCT may be overestimated if semen 
samples are evaluated too early.

Sertoli cell effects

The underlying mechanisms of chemotherapy and 
irradiation-dependent germ cell loss are poorly 
understood in humans, and in particular, the effect on 
the testicular stem cell niche and the involvement of 
Sertoli cells. Evidence for Sertoli cell dysfunction following 
conditioning treatment for HSCT has been demonstrated 

by a typical pattern of raised FSH, low inhibin B +/− low 
AMH at puberty (60) and raised FSH has been shown to be 
a predictor of azoospermia in childhood cancer survivors 
(61, 62). Few clinical and experimental studies have been 
performed previously to explore direct effects of cancer 
treatments on the somatic compartment of the SSC niche 
and long-term recovery of spermatogenesis (47, 58, 63). 
The study of de Rooij using rhesus monkeys showed that 
single or fractionated irradiation with doses of 4–8.5 Gy 
leads to a dose-dependent increase in the proportion of 
seminiferous tubules, which are fully depleted of germ 
cells (63). A complete Sertoli cell only (SCO) situation 
was only observed at the highest single dose or following 
fractionated doses, whilst lower doses induced a mild-to-
severe focal SCO pattern. This study reported a depletion of 
Sertoli cells at higher doses of irradiation leading to lower 
testis weights in adulthood. The study of Jahnukainen 
and coworkers showed that testicular irradiation with a 
single fraction of 10 Gy before initiation of pubertal testis 
growth in rhesus monkeys had a more severe detrimental 
effect on pubertal outgrowth of seminiferous tubules 
compared to irradiation of testes, which had started 
pubertal development (47). Interestingly, Sertoli cells 
before initiation of pubertal spermatogenesis were more 
radiosensitive than the Sertoli cells after initiation of 
spermatogenesis. These observations suggest that signals 
responsible for the terminal differentiation of the primate 
Sertoli cells at puberty affect the radiosensitivity of Sertoli 
cells. The authors speculated that since the increase in 
the amount of germ cells in the germinal epithelium at 
puberty is known to follow a peri-pubertal period of Sertoli 
cell proliferation, (64), the higher fraction of proliferating 
Sertoli cells in the peri-pubertal testis could have increased 
the proportion that are sensitive to irradiation. Pubertal 
status in humans at the time of HSCT has been shown to be 
an independent predictor of adult testicular volume (58), 
which in turn is primarily determined by Sertoli cell number 
(16). Exposure to gonadotoxic conditioning (typically TBI 
10–12 Gy) before initiation of pubertal maturation led to 
significantly smaller adult testicular volumes (mean 9 mL) 
compared with HSCT during or after puberty (mean 14 mL) 
(58). This observation is consistent with the experimental 
data from monkeys and confirms that testicular irradiation 
before spermarche is more detrimental on outgrowth of 
seminiferous tubules and adult testicular volume than 
irradiation at puberty. Chemotherapy has also been 
reported to affect the Sertoli cell population as determined 
by the presence of undifferentiated Sertoli cells in regions 
of impaired spermatogenesis in the adult testis, following 
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chemotherapy exposure during childhood (65). Taken 
together, these findings provide evidence for effects of 
cancer treatment on the Sertoli cell population.

Leydig cell effects

Chemotherapy-induced Leydig cell failure resulting 
in androgen insufficiency and requiring testosterone 
replacement therapy is relatively rare (66). The majority 
of males treated for cancer undergo a normal puberty 
and most produce normal adult levels of testosterone. 
Compensated Leydig cell failure (increased LH with low 
normal testosterone levels or exaggerated FSH and LH 
responses to LH-releasing hormone) and gynaecomastia 
have been reported in patients treated with a combination 
of mustine and procarbazine and after treatment with 
high-dose cyclophosphamide (49, 67, 68). Young boys 
and adolescent males who receive 200 mg/kg (6.7 g/m2) 
cyclophosphamide or a combination of busulphan and 
cyclophosphamide as conditioning therapy for bone 
marrow transplantation appear to retain normal Leydig 
cell function (57). Whilst relatively low irradiation doses 
may result in damage to the seminiferous epithelium, 
resulting in oligozoospermia (69), much higher doses 
(>20 Gy) appear to be required to cause Leydig cell 
dysfunction. However, significant rises in LH have been 
demonstrated following single radiation doses above 
0.75 Gy and fractionated doses above 2 Gy (70). No change 
in testosterone levels was seen at these doses, indicating 
compensated Leydig cell damage, and LH values gradually 
return to normal levels over 30  months. Essentially all 
males who are pubertal or younger when they receive 
24 Gy for testicular leukaemia are at high risk of delayed 
sexual maturation associated with decreased testosterone 
levels and require androgen replacement therapy (52, 53). 
The majority of males who receive 20 Gy fractionated 
testicular irradiation appear to retain their ability to 
produce normal amounts of testosterone (57, 66). Whilst 
testosterone production is generally maintained in 
patients receiving cancer treatment, whether there are 
additional aspects of Leydig cell function that may impact 
on germ cells in the prepubertal testis, and whether they 
can be affected by cancer treatment is unknown.

Peritubular myoid cell effects

Peritubular myoid cells are increasingly recognised 
as important players in the regulatory network of 
testicular somatic cells and the stem cell niche (35).  

One recent study has explored irradiation-induced 
changes in peritubular myoid cells in testicular tissue 
from immature non-human primates (71). In this study, 
testis tissue was xenografted into immunocompromised 
host mice. Smooth muscle actin (SMA; a functional 
marker of PTM cells) expression in non-irradiated 
tissues was reported to appear following the 6.5 months 
of xenografting indicating cell differentiation. 
However, in irradiated grafts, the appearance of SMA 
was partly or almost fully diminished. Similarly, 
normal expression of signalling of chemokine ligand 
type 11 (CXCL11) was only established in peritubular 
myoid cells of non-irradiated grafts. These findings 
suggest that irradiation can affect peritubular myoid 
cell development. However, it remains to be elucidated 
whether irradiation has a direct effect on peritubular 
myoid cells or if irradiation-evoked changes in SMA 
and CXCL11 is a consequence of indirect effects on 
the microenvironment. Furthermore, whether these 
peritubular myoid cell effects can impact on germ cell 
development remains to be determined.

Vasculature effects

Radiation-induced damage to the vasculature has been 
recognised for several decades and exposure to radiation 
can lead to early intimal signs of atherosclerosis (72). 
Small vessels have been reported to be sensitive to high-
dose radiotherapy and show subendothelial connective 
tissue proliferation, disruption of the elastic lamina, 
accumulation of intimal and subintimal fibrinoid 
substances, degeneration of smooth muscle, dense 
fibrosis of the adventitia, aggregates of foamy histiocytes 
in the damaged wall and eventual obliteration of 
the vasa vasorum. These changes are pathologically 
indistinguishable from naturally occurring atherosclerosis 
(73, 74). One clinical study evaluated the testicular 
blood flow by Doppler ultrasound in 12 subjects with 
non-obstructive azoospermia (including four patients 
who had received radiotherapy) and in patients with 
obstructive azoospermia (75). Testicular ultrasound 
in non-obstructive azoospermia revealed decreased or 
absent intratesticular arterial flow, whilst in obstructive 
azoospermia the testes exhibited a uniform perfusion 
comparable to controls. Whilst these effects on the 
vasculature are described in adults undergoing cancer 
therapy, no similar studies have been conducted in the 
prepubertal testis.
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Experimental approaches to fertility 
preservation – focus on somatic cell function

One approach to preserve fertility in young males who are 
due to receive treatment for cancer is to remove testicular 
tissue prior to treatment and to develop strategies to restore 
fertility using this tissue. Experimental models designed 
for generating gametes from immature testicular tissue in 
human and non-human primate primarily focus on the 
differentiation status of the germ cells. These studies can 
be broadly divided into three approaches; (a) germ (stem) 
cell transplantation; (b) tissue fragment transplantation 
and (c) in vitro culture employing single cells or tissue 
fragments. Although the somatic environment present 
in the testis plays an important role in the outcome of 
the spermatogenic process, the suitability of these systems 
for sustaining somatic cell development is often only 
mentioned briefly as additional information to the germ 
cell differentiation potential of the described system. 
Here, we will describe these experimental approaches 
focusing on development and function of somatic cell 
populations.

Germ-stem cell transplantation

Germ cell transplantation has been successfully used 
in rodent models to generate gametes from germ cells 
derived from SSCs injected into the seminiferous tubules 
of germ cell-depleted host mice (76). The somatic cells are 
likely to play a key role in supporting the development of 
transplanted cells. This has been demonstrated in studies 
investigating the role of Sertoli cell-derived stem cell 
factor which signals via the cell surface KIT receptor on 
germ cells. Mutation in the gene encoding stem cell factor 
results in a failure of spermatogonial differentiation, which 
is rescued when the spermatogonia from these mice are 
transplanted into host mice without the mutation (77). 
These results highlight the importance of the somatic 
cell environment of the host mouse for supporting the 
development of SSC following transplant. This concept is 
supported by studies involving reciprocal experiments of 
transplantation of rat SSC into a host testis in which either 
the transplanted germ cells or the host testis has been 
irradiated. Transplantation of irradiated prepubertal SSC 
into a non-irradiated host mouse resulted in restoration 
of spermatogenesis, whereas transplantation of non-
irradiated SSC into an irradiated adult rat testis did not 
result in resumption of spermatogenesis in the host (78).

Despite the success of transplanting SSC from rodents 
into host mice, transplant of germ cells from several 

other species including non-human primate failed to 
result in full spermatogenesis despite colonisation of 
mouse seminiferous tubules by the injected cells (79). 
Human SSCs transplanted into mice were also able to 
colonise the seminiferous tubules of a mouse host for at 
least 6  months (80). Proliferation of the spermatogonia 
occurred; however, no evidence of meiotic progression 
was demonstrated in this study or in another study using 
host mice lacking endogenous germ cells either as a result 
of a mutation in the Kit gene or following busulphan 
treatment (80). In addition, treatment of the host mice 
with GnRH did not improve the outcome (81). To date, 
there has been only report describing the generation of 
spermatozoa from transplanted human spermatogonia in 
approximately 25% of the host animals; however, these 
results are yet to be reproduced in subsequent studies and 
therefore should be interpreted with caution.

This failure of the host mouse testis to support 
spermatogenesis following SSC transplantation from larger 
species may be due to the failure of the host mouse somatic 
cells to support the development of germ cells from distant 
species. Therefore auto- or allo-transplantation of SSCs 
back into a compatible somatic environment may support 
normal development of the transplanted cells. Indeed, 
this has been demonstrated in a study involving allogenic 
transplantation of SSCs in adult macaque monkeys, which 
resulted in the generation of functional gametes capable 
of producing embryos. These gametes were shown to have 
been derived from the transplanted SSCs (82). To date, the 
only similar study to attempt to restore spermatogenesis 
in humans using this approach involved 11 men with 
Hodgkins lymphoma. Testis tissue was obtained prior to 
their cancer treatment and, in 5 patients, cell suspensions 
derived from these tissues were autotransplanted back into 
the testis following completion of their treatment (83). 
The outcomes in terms of restoration of spermatogenesis 
have not been published. Further studies involving 
autotransplantation of human SSCs into a compatible 
somatic environment are warranted to demonstrate the 
potential for SSC transplantation as a viable option for 
fertility preservation.

Testicular tissue transplantation

Xenografting of testicular tissues into 
immunocompromised host mice has increasingly been 
used as a tool to investigate testicular development 
in human and non-human primates (84). This model 
system can be used to determine the effects of exposure 
to exogenous chemicals (including chemotherapy, 
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radiotherapy and other pharmaceuticals) (71, 85) and 
also to investigate the role of manipulation of somatic 
cell signalling (e.g. exposure to hormones) on the 
testicular development and function in human and 
non-human primate testis (34, 85). Leydig cell function 
can be maintained in xenografts of testicular tissue 
from human and non-human primate as a result of 
stimulation by endogenous host mouse gonadotrophins, 
as demonstrated by a ‘basal’ level of testosterone secretion 
from the grafts of castrate hosts. Testosterone secretion 
can be significantly increased following administration of 
exogenous gonadotrophins (e.g. hCG) (34). Furthermore, 
Sertoli cell maturation is supported in xenografts of 
human foetal testis with or without administration of 
hCG to host mice (34, 86, 87). Recently, it has also been 
reported in prepubertal rhesus monkey testis xenografts 
that irradiation affects gene expression, in a dose-
dependent manner, not only in germ cells but also in 
Sertoli and peritubular myoid cells (71).

Full spermatogenesis can be achieved in xenografts 
of juvenile rhesus monkey testis, and this occurs earlier 
(5–7 months after grafting) than it would occur in vivo, 
which may be influenced by effects on the somatic cell 
environment by the host mouse e.g. by stimulation of 
xenografts from endogenous activity of the HPG axis 
(88, 89). Indeed, subsequent studies have demonstrated 
that administration of exogenous gonadotrophins 
in the form of PMSG (FSH equivalent) and hCG  
(LH equivalent) can accelerate and sustain spermatogenesis 
in xenografts of infant rhesus monkey testis retrieved 
from castrated host mice (90). In addition, the Sertoli 
cells from gonadotrophin-exposed xenografts showed an 
increase in the proportion of tubules expressing AR, which 
coincided with a decrease in the proportion expressing 
AMH, compared to untreated control xenografts. Further 
evidence for maturation of the Sertoli cells was provided 
by investigating cell proliferation based on PCNA 
staining. Administration of gonadotrophins resulted 
in cessation of Sertoli cell proliferation indicating 
maturation of these cells. Taken together, these results 
suggest that gonadotrophins signalling through the 
somatic cells can induce maturation of the Sertoli cell 
population capable of supporting germ cell proliferation 
and spermatogenesis (90). Comparison of the results 
from these studies using testis tissue from infant and 
juvenile monkeys highlights potential differences in 
terms of Leydig cell responsiveness in testicular tissues 
at these two developmental stages. Exogenous hCG was 
able to stimulate androgen production in xenografts from 
both juvenile and infant monkeys. However, for host 

mice receiving no exogenous gonadotrophins, androgen 
production resulting from endogenous host mouse 
gonadotrophin was only demonstrated in xenografts 
from juvenile monkeys (88, 90).

To date, only one study has investigated the role of 
gonadotrophin supplementation on testicular maturation 
in human prepubertal testis xenografts. Exogenous FSH 
was administered to host mice xenografted with tissue 
from 6 boys aged 2.5–12  years. FSH did not promote 
germ cell survival and meiotic differentiation in human 
prepubertal testis xenografts; however, the impact of 
FSH on somatic cell maturation was not reported (91). In 
addition, these studies did not include the administration 
of hCG, which may be important for stimulating 
androgen production within the xenografts in order to 
support further development of the tissue. Further studies 
are warranted to investigate the potential for modifying 
the somatic cell environment to support development of 
human prepubertal testis xenografts.

In vitro maturation of testicular tissues and cells

During the last century, tissue culture conditions for in 
vitro spermatogenesis have been developed in rodents. 
These studies have indicated a role for maintaining intact 
cell-to-cell communication pathways between somatic 
and germ cells to support germ cell development (92). 
Important aspects related to male germ cell differentiation 
and proliferation, for example, the positive effects of 
temperature below 37°C (93, 94, 95, 96, 97) or the need 
for functional cell–cell interactions (98, 99, 100) were 
reported. A smaller number of studies have been conducted 
using human tissues and of those only ten included the 
use of prepubertal tissue (summarised in Table 1).

Studies performed in the 1970s using testicular tissues 
taken from adult men described the effect of different 
culture conditions on the somatic compartment of the 
testis. Kato and coworkers described the functional 
maintenance of seminiferous tubules obtained from 23 
men in explant tissue culture conditions at 32°C and 5% 
CO2 for up to 56 days (93). The germ cell compartment 
showed a degeneration of secondary spermatocytes and 
early spermatids after only four days in vitro, whereas the 
number of spermatogonia did not change during the first 
28 days. Interestingly, Sertoli cell numbers did not change 
over the whole culture period, whilst interstitial cells 
showed gradual transition into fibroblast-like cells.

Sertoli cell function has been demonstrated in 
cultures of human Sertoli cell monolayers, obtained from 
transsexual individuals (101). Primary cultures consisting 
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of 95% Sertoli cells could be maintained for up to 45 days 
in vitro during which the response to FSH stimulation was 
maintained. Functionality of Leydig cells has also been 
demonstrated in cultures of testicular material from adult 
and prepubertal patients treated with gonadotrophins 

showing the conversion of pregnenolone and progesterone 
in vitro (102) as well as production of testosterone in vitro in 
testicular samples of infertile men (103). The latter study 
revealed the positive effect of hCG on serum testosterone 
levels and in vitro conversion of progesterone. However, in 

Table 1  Results of studies involving in vitro culture of somatic cells of human prepubertal testicular tissue.

Age (years) n Clinical reason for biopsy Culture conditions Main findings References

4–10 5 Cryptorchidism Tissue culture (short-term) In vitro conversion of pregnenolone 
(both groups) and progesterone (adult 
group) into testosterone

(102)

1–17 13 Prepubertal patients Sertoli-spermatogenic 
co-cultures

Similar patterns of secretory proteins in 
vitro, when compared to testicular 
tissue. Cell viability, and 
differentiation potential, via 
synchronous DNA synthesis of 
preleptotene spermatocytes

(105)

1–2 7 Unilateral undescended 
testes

Tissue culture No different synthesis of RNA or DNA 
between both groups (undescended 
testis and lateral control) when 
cultured at 31°C or 37°C

(137)

2–16 17 Unilateral undescended 
testes, left-sided 
varicocele

Tissue culture Maximum DNA synthesis in pubertal 
and postpubertal testes at 31°C. 
Maximum DNA synthesis in 
prepubertal boys at 37°C. RNA and 
protein synthesis decreased in all 
three groups at 40°C and 43°C

(138)

0–3 17 Cadaveric testes Single-cell culture Prepubertal human testicular cells 
cultured for several days keeping their 
steroidogenic potential; cells can 
respond to hLH in vitro and their 
response to hrFSH might be mediated 
via paracrine factors. Response to 
human growth hormone is observed 
in the absence of gonadotropins

(139)

0–3 12 Cadaveric testes Single-cell culture Serum levels of LH, FSH, growth 
hormone and prolactin are higher 
during the first months postnatally 
than later in childhood

(140)

0–7 22 Cadaveric testes Single-cell culture In vitro secretion of inhibin B is related 
to the age of the tissue, the cells are 
obtained from. Newborn samples 
show the highest secretion potential

(141)

12–36 7 Cadaveric testes Primary Sertoli cell cultures Phenotypic characteristics and 
functionality of primary human Sertoli 
cells isolated from adult testes after 
their in vitro expansion could be 
established

(142)

15 1 Fertility preservation due 
to cancer treatment 
(pubertal boy)

Single-cell/ testicular 
organoid cultures on 
decellularised testicular 
scaffolds

Primary human testicular cells are able 
to self-organize into testicular 
organoids, either with or without 
support of testicular scaffolds. 
Spermatogonia and supporting 
somatic cells could be cultured for a 
period up to four weeks

(113)

2–12 
 
 
 
 

3 
 
 
 
 

Fertility preservation due 
to cancer treatment 
(prepubertal boy) 
 
 

Tissue culture 
 
 
 
 

Survival of spermatogonia in vitro and 
expression of GDNF for 139 days. 
Decrease of AMH and testosterone 
production, demonstrating matura-
tion of Sertoli and Leydig cells, 
respectively

(114) 
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this patient, the treatment with hCG alone did not result 
in complete spermatogenesis unless human menopausal 
gonadotrohpin was added to the treatment, suggesting 
that testosterone alone could not initiate complete 
spermatogenesis. A change in Leydig cell size and number 
was reported to be most evident in patients showing in 
vitro conversion of progesterone. However, in cases of 
spermatogenic arrest with normal in vitro conversion of 
progesterone, gonadotrophin treatments did not improve 
spermatogenesis and/or sperm counts. The authors 
suggest that these cases of maturation arrest were most 
probably not due to impaired steroidogenesis. Therefore, 
the authors conclude that testicular explant cultures 
evaluating the in vitro conversion of progesterone can be 
used as additional diagnostic tool to evaluate the potential 
success of treatment protocols with gonadotrophins.

Leydig cell function has also been demonstrated in 
cultures of human testicular tissue, obtained from 11 
normal men (age 20–31  years) and 13 men diagnosed 
for testicular cancer (age 20–49 years) (104). The tissue of 
both groups showed the conversion of pregnenolone to 
all steroid metabolites in vitro. Higher levels of estradiol, 
DHT, testosterone and 17-OHP were observed in cultured 
tissue of normal men, after stimulation with 100 ng/mL of 
hCG in vitro (104).

To assess the proliferation and differentiation potential 
of spermatogenic cells in children, co-cultures of human 
Sertoli cells with spermatogenic cells has also been 
performed, which showed comparable patterns of secretory 
proteins, when compared to intact testicular tissue (105). 
Testicular cells of 13 boys between 1 and 17 years of age 
diagnosed with cryptorchidism, were compared with cells 
obtained from two normal adult testes, testes of two men 
with prostate cancer and one man undergoing vasectomy-
reversal. In addition to comparable secretory profiles, cell 
viability and differentiation via synchronous DNA synthesis 
of preleptotene spermatocytes was observed (105).

In another study, involving culture of testicular 
material from 12 men (age 22–38 years), FSH stimulation 
was able to induce human plasminogen activator (PA), a 
highly specific serine protease, which has an important 
role in the destruction and remodelling of different tissues 
and in cell migration. This Sertoli cell-derived factor that 
is believed to play a role in the blood-testis barrier and 
spermatogenesis in rodents, could not be observed in 
human testicular cell cultures employing digested cell 
suspensions (106). These results highlight the importance 
of a functioning microenvironment with intact cell–
cell contacts, which may be damaged after enzymatic 
digestion. Therefore, preparations and the use of cell 

monolayers might result in less suitable culture conditions 
to study the regulation of spermatogenesis in vitro.

A number of studies have utilised non-testicular 
somatic cell populations to provide support to the 
developing germ cells. One of these studies showed the 
successful use of Vero cells to support human male germ 
cell differentiation (107). Although this study described the 
differentiation of round spermatids solely on morphologic 
criteria, a follow-up study by the same group reported, 
in cases of successful fertilisation, normal blastocyst 
formation potential (108). However, the in vitro-matured 
spermatids revealed a low fertilisation potential. In this 
respect, the first successful completion of meiosis and the 
spermiogenic process in vitro in humans was described in 
1999 in a study that utilised seminiferous tubule cultures 
at 30°C (109, 110). Although morphologic analysis using 
the Papanicolaou method as well as fluorescence in situ 
hybridisation (FISH) and immunocytochemical detection 
of proacrosin 4D4 were performed to identify haploid 
cells generated in vitro, measurements of DNA contents 
supporting the haploid nature of the round spermatids 
were not performed. Despite limitations concerning 
the quality control of the produced sperm, further 
experiments on the functionality of the sperm were 
performed and the birth of healthy infants after ICSI using 
in vitro-differentiated sperm was reported (109). Already 
in 1998, the same authors highlighted the importance 
of the somatic environment, mainly the role of FSH and 
testosterone, on Sertoli and male germ cells (111). The 
main finding was that solely FSH induces the completion 
of meiosis and spermiogenesis and that testosterone has 
only a supporting effect on this process. The authors 
suggested that this was most probably due to a preventive 
effect of testosterone supporting Sertoli cell survival. 
However, testosterone alone did not initiate meiosis and 
spermiogenesis when added without FSH (111).

Interestingly, the differentiation of primary 
spermatocytes into round spermatids, which usually takes 
up to 32 days in vivo (109, 110), was reported to occur after 
only 48 h in this study and also in another study in which 
the meiotic cells were cultured on Vero cells (110, 111, 
112). The explanation for this accelerated differentiation 
has not been elucidated but could be due to the testicular 
tissue used in these studies containing a small number of 
haploid cells prior to culture or may be due to an abnormal 
endocrine or paracrine interaction between the cells as a 
result of in vitro culture.

In conclusion, the search for a reproducible method, 
when focusing on in vitro differentiation of human male 
germ cells as well as the functionality of testicular somatic 
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cells, clearly demonstrated that a microenvironment 
resembling a three-dimensional organisation of 
the situation in situ should be provided (4). The 
establishment of novel three-dimensional culture systems 
(e.g. scaffold, testicular explant or organoid culture 
conditions) has recently provided novel insights into 
the process of mammalian male germ cell differentiation 
and proliferation as well as formation of testicular 
microenvironments in vitro (113, 114, 115).

However, in order to establish systems for fertility 
preservation in humans, further studies are needed 
to increase our understanding of SSC niche function, 
formation and regulation in humans both in vivo and in 
vitro. In this respect, a recent study using testicular material 
from 16 patients with cryptorchidism and 9 patients 
with obstructive azoospermia (mean ± s.e.m. 29 ± 2  years 
old) reported the differentiation of human SSCs up to 
functional haploid spermatids in a conventional single-
cell culture for 7–10 days (116).

A key aspect of the studies described thus far is that it 
primarily involves the development of post-meiotic germ 
cells from human adult testis, often with spermatogenic 
arrest, and no similar results using prepubertal human 
testis tissue have been reported. In this respect, a very recent 
study of de Michele and coworkers reported preserved 
seminiferous tubule structures, along with survival of 
spermatogonia and Sertoli and Leydig cell maturation in 
cryopreserved prepubertal testis tissue cultured for up to 
139  days in vitro (114). Testosterone production, with a 
peak at 10 days in vitro showed the functionality of Leydig 
cells, whilst a decrease in AMH expression after 16 days in 
vitro, suggested Sertoli cell maturation in vitro (114).

In addition to the concept of using explant tissue 
cultures, the use of cytocompatible decellularised 
testicular matrix (DTM) for male germ cell differentiation 
and testicular organoid formation has been reported in 
humans (113, 115, 117). These studies showed the impact 
of structural support, as provided by human DTM, but 
also demonstrated that the cells themselves can generate 
the necessary components without any structural support. 
Follow-up studies will be needed to elucidate the potential 
application of testicular organoids for future research.

The proteomic analysis of the DTM produced by a 
decellularisation protocol, employing 1% SDS treatment 
for 24 h, revealed that in addition to well-known 
components such as collagens I and IV, laminins and 
fibronectin, more than 100 unique proteins belonging 
to, or associated with testicular extracellular matrix are 
present (117). Therefore, the DTM was identified as a 
potential supportive structure, which provides a suitable 

matrix for testicular cells to grow and differentiate. 
Interestingly, a follow-up study using the DTM revealed 
the generation of ECM produced by the cultured cells in 
addition to the DTM (113). Although, testosterone and 
inhibin b production as well as a similar expression of 
cytokines, along with protein expression profiles of germ, 
peritubular myoid, Sertoli (including the blood-testis-
barrier marker zona occludens 1) and Leydig cells could 
be demonstrated when using DTM as matrix, similar 
results could also be observed in cultures performed 
without addition of DTM as matrix (113). Future studies 
are required to investigate specific factors influencing the 
formation of de novo-formed matrices present in the testis 
under these culture conditions.

In parallel to the studies of Baert and coworkers, another 
study published recently, demonstrated the successful 
reorganisation of human testicular cells into testicular 
organoids (115). This study revealed the production of 
testosterone with and without hCG stimulation, also 
in addition to RNA expression levels for genes present 
in post-meiotic germ cells. In addition, experiments 
that generated testicular organoids demonstrated dose-
response to gonadotoxic substances as busulfan, cisplatin, 
doxorubicin and etoposide measured by morphology in 
PAS stained organoids, live/dead viability assays and ATP 
production after 48-h incubation of testicular organoids 
culture for 2 or 23 days in vitro. Both conditions (2 and 
23  days cultured testicular organoids) exhibited a dose-
response decrease in viability and maintained IC50 values 
significantly higher compared to cells cultured in two-
dimensional conditions (115).

Together these novel studies, highlight the potential 
use of testicular organoid systems for future experiments 
of male germ cell physiology. However, follow-up studies 
will be needed to elucidate the real benefit and reliability 
of these applications in studies on drug screening or 
fertility preservation methods in humans.

Manipulation of the germ-stem cell niche 
during cancer treatment to preserve fertility

Whilst the majority of studies relating to protecting 
the testis from chemotherapy- or radiotherapy-induced 
damage for fertility preservation in young males focus 
on the direct protection of the germ cells, manipulation 
of the somatic cells of the SSC niche may also represent 
a feasible approach either as a mechanism to confer 
protection to the SSC or as a potential for restoration 
of fertility. A number of recent studies investigating the 
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use of a variety of agents to protect the rodent testis 
from chemotherapy- or radiotherapy-induced testicular 
damage have been reported, mostly involving treatment 
of adult animals. This includes the use of traditional 
Chinese herbal compounds (118, 119), antioxidants (120, 
121) and pharmaceuticals (120, 122, 123) However, to 
date, only a limited number of studies have investigated 
the association between protection of the germ cell 
populations and somatic cell effects.

Sertoli cell function

Administration of L-Carnitine (LC) has been reported 
to result in protection of spermatogenesis in both 
prepubertal and adult testis when administered prior to 
chemotherapy (121, 124, 125). In adult mice exposed 
to cyclophosphamide +/− LC sperm count recovery was 
enhanced in those receiving LC (121). Interestingly, 
there was also evidence of Sertoli cell dysfunction in 
cyclophosphamide-exposed mice. This included reduced 
expression of GDNF and occludin, with increased 
expression of TGF-β. These alterations in Sertoli cell 
protein expression were prevented by the concomitant 
administration of LC. Whilst LC has also been shown 
to provide some degree of protection to germ cells in 
the prepubertal rodent testis, the effect of exposure on 
the Sertoli cells and the potential for LC to protect this 
somatic population has not been studied (124, 125).

Recently, a potential role for G-CSF in protecting the 
testis from busulphan-induced loss of spermatogenesis 
has been described in 5-week-old mice. Mice receiving 
G-CSF in addition to busulphan had significantly 
improved recovery of spermatogenesis compared to those 
receiving busulphan alone (123), and this protection was 
maintained over the long term (126). G-CSF has also been 
reported to protect the testis from irradiation-induced 
germ cell apoptosis in 8-week-old mice (127). CSF3R, the 
receptor for C-CSF, has been reported to be present on the 
surface of undifferentiated spermatogonia, which suggests 
that the protective effects may be direct via the germ cells; 
however, G-CSF has also an anti-inflammatory effect 
involving a number of cytokines, which could indicate 
a role for somatic cells in mediating the G-CSF-induced 
reduction in germ cell apoptosis (127).

Androgen production and action

Two studies have described amelioration of androgen 
production or action in association with protection 
of the germ cell population in the adult rodent testis. 

Testosterone production (119) and AR (118) expression 
are reduced in adult mice following administration of 
cyclophosphamide. However, co-administration of the 
antioxidant Lepidium meyenii (Maca) or Yanjing capsule 
(traditional Chinese herbal preparation) were able to 
prevent the effects of cyclophosphamide on testosterone 
production and AR expression respectively.

Manipulation of the HPG axis

A number of studies in rodents have demonstrated the 
potential for manipulation of the HPG axis to preserve 
or restore fertility in the context of chemotherapy or 
radiotherapy exposure (reviewed in (128)). This includes 
the use of GnRH agonists or antagonists in adult rats 
prior to treatment with procarbazine to suppress the 
HPG axis (129). This resulted in enhanced recovery of 
spermatogenesis compared to the vehicle-exposed controls. 
GnRH agonists administered up to 10–15  weeks after 
irradiation or procarbazine treatment have also resulted 
in an enhanced spermatogenic recovery in adult rats (129, 
130). The mechanism of this protection or restoration of 
spermatogenesis is not clear; however, given the fact that 
gonadotrophins signal through the somatic cell population 
as described above it is likely that the effects are indirect 
and involve manipulation of the germ-stem cell niche. 
This concept is supported by results of studies in which 
transplantation of non-irradiated SSC into an irradiated 
adult rat testis did not permit resumption of spermatogenesis 
in the host (78); however, this could be rescued by 
administration of GnRH antagonists. Furthermore, 
subsequent studies demonstrated that introducing non-
irradiated Sertoli cells into the irradiated rat testis resulted 
in differentiation of endogenous spermatogonia into 
meiotic germ cells, suggesting that donor Sertoli cells can 
act indirectly to support germ cell differentiation following 
irradiation. Whether the findings of these studies are 
relevant to the situation in prepuberty and to primates is 
important in order to determine the potential as a fertility 
preservation strategy in childhood cancer.

Non-human primate studies have been limited to 
those conducted in adult monkeys. Administration of 
GnRH to adult macaques in combination with irradiation 
(4–6.7 Gy) did not result in an increase in germ cell survival 
18  months after treatment compared with irradiation 
alone (131, 132). Another study failed to show a protective 
effect of GnRHa on endogenous spermatogenesis in 
irradiated (7 Gy) cynomolgus monkeys (133). One study 
involving FSH pre-treatment of rhesus monkeys prior to 
receiving irradiation (1 Gy) demonstrated a significant 
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increase in spermatogonia (Adark and Apale) as well as a 
higher repopulation index (134).

Studies conducted in humans have also been restricted 
to adult populations and have failed to demonstrate any 
protective effect of manipulation of the HPG axis on 
chemotherapy-induced impairment of spermatogenesis 
(135). However, these studies involve limited numbers of 
patients, and in some instances, no appropriate control 
group were included indicating that further studies would 
be required to derive firm conclusions about their potential 
clinical use. Moreover, there have been no human studies 
looking at hormonal manipulation of the prepubertal testis 
in the context of chemotherapy or radiotherapy exposure.

Whilst it is recognised that the HPG axis is relatively 
quiescent during prepuberty, evidence from juvenile 
marmoset demonstrates that GnRH antagonist treatment 
can reduce testis weight, delay Sertoli cell function in 
terms of lumen formation and reduce Leydig cell volume, 
compared to controls. However, germ cell proliferation 
index, measured by PCNA expression in spermatogonia 
was not affected by GnRHa treatment, demonstrating that 
manipulation of the HPG axis in prepuberty can impact 
on somatic cell function independently of effects on germ 
cells despite the relatively low levels of gonadotrophins 
during this period of development (9). Similar reductions 
in testis weight, as well as a reduction in germ cell 
number, have also been described in neonatal/infantile 
marmoset following administration of GnRH antagonist 
from birth, compared to vehicle-exposed controls (136). 
This is associated with a significant decrease in germ cell 
proliferation in the GnRH antagonist-exposed animals 
((136) and unpublished results). However, complete 
suppression of germ cell proliferation did not occur 
suggesting that spermatogonia may remain susceptible to 
direct damage following cancer treatment.

Taken together, the potential for manipulation 
of the HPG axis to protect fertility in the infantile or 
prepubertal human testis exposed to chemotherapy or 
radiotherapy remains to be determined; however, the 
demonstration that testicular development and function 
can be impacted by suppression of the HPG axis and the 
mechanisms by which this occurs may be of importance 
for developing fertility preservation strategies.

Conclusion

Exposure to chemotherapy and radiotherapy during 
childhood is well known to impact on subsequent 
testicular function. Whilst effects of germ cells and fertility 

are the primary focus there are also potential impacts on 
the somatic cells of the testis, which may contribute to 
the germ cell effects as well as impacting on endocrine 
function. Whilst preventing direct germ cell effects remain 
the focus for fertility preservation strategies, manipulation 
of the somatic cells in the germ-stem cell niche to provide 
indirect protection of the germ cell population is less well 
described. In addition, strategies to restore fertility such 
as transplantation of cryopreserved SSC back into the 
patient after they have completed their treatment relies 
on the preservation of an intact somatic cell environment. 
Further studies are required to determine the importance 
of the somatic cell populations in mediating the effects 
of chemotherapy and radiotherapy on the testis and how 
this information can be used to develop strategies to 
preserve fertility in childhood cancer.
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