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ABSTRACT Previous studies have shown that �-linolenic acid (ALA) has a signifi-
cant regulatory effect on related disorders induced by high-fat diets (HFDs), but
little is known regarding the correlation between the gut microbiota and disease-
related multitissue homeostasis. We systematically investigated the effects of
ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic
endotoxemia and systemic inflammation, white adipose tissue (WAT) homeosta-
sis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an
HFD (HFD mice). We found that ALA improved HFD-induced multitissue meta-
bolic disorders and gut microbiota disorders to various degrees. Importantly, we
established a complex but clear network between the gut microbiota and host
parameters. Several specific differential bacteria were significantly associated
with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella
were positively correlated with HFD-induced “harmful indicators” and negatively
correlated with “beneficial indicators.” Intriguingly, Bilophila showed a strong
negative correlation with HFD-induced multitissue metabolic disorders and a sig-
nificant positive correlation with most beneficial indicators, which is different
from its previous characterization as a “potentially harmful genus.” Turicibacter
might be the key beneficial bacterium for ALA-improved metabolic endotoxemia,
while Blautia might play an important role in ALA-improved gut barrier integrity
and anti-inflammatory effects. The results suggested that the gut microbiota, es-
pecially some specific bacteria, played an important role in the process of ALA-
improved multitissue homeostasis in HFD mice, and different bacteria might
have different divisions of regulation.

IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue
in modern Western-style diets. A large amount of evidence now suggests that a bal-
anced intestinal microecology is considered an important part of health. Our results
show that �-linolenic acid administration significantly improved the host metabolic phe-
notype and gut microbiota of mice fed a high-fat diet, and there was a correlation be-
tween the improved gut microbiota and metabolic phenotype. Some specific bacteria
may play a unique regulatory role. Here, we have established correlation networks be-
tween gut microbiota and multitissue homeostasis, which may provide a new basis for
further elucidating the relationship between the gut microbiota and host metabolism.
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In the past few decades, whether in the Eastern countries represented by China or the
Western countries represented by the United States, dietary habits have changed

dramatically. Modern diets that focus on fast, stimulating taste are rich in saturated
fatty acids and n-6 polyunsaturated fatty acids (PUFAs), while n-3 PUFAs are relatively
insufficient (1–3). This change in diet is a risk factor for many noncommunicable
diseases such as obesity, diabetes, metabolic syndrome, nonalcoholic fatty liver disease,
cardiovascular disease, osteoporosis, cognitive impairment, and even cancer (4). In-
creased consumption of n-6 PUFAs, which are abundant in Western diets, contributes
to obesity and related diseases. A high-fat diet (HFD) can cause systemic, multitissue
metabolic disorders, which in turn cause a range of health problems. Hence, HFD
animal models are increasingly being used to simulate the potential risks of Western
diets.

�-Linolenic acid (ALA), an essential fatty acid needed for human health, is commonly
found in some vegetable oil seeds. Perilla frutescens, Salvia hispanica, and flax (Linum
usitatissimum) are rich in ALA. ALA is the precursor of longer-chain n-3 fatty acids such
as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and has a variety of
nutraceutical and pharmacological effects, including cardiovascular-protective, neuro-
protective, anti-cardiovascular-disease, anticancer, antineuropathy, antiosteoporotic,
anti-inflammatory, and antioxidative effects (5).

A balanced intestinal microecology is now considered an important part of health.
The gut microbiota is associated with a number of health problems, especially meta-
bolic syndrome, diabetes, and obesity, which are closely related to dietary factors. In
recent years, a series of studies reported the effects of n-3 PUFAs or related carriers rich
in n-3 PUFAs on the gut microbiota of animals or humans, including healthy volunteers
(6), overweight individuals with metabolic syndrome (7), breast cancer survivors (8), mice
with alcohol-induced liver injury (9), obese mice (4), early-life antibiotic exposure-induced
obese mice (10), rats fed a high-fat diet (11), individuals with nonalcoholic fatty liver disease
(12), and early-life-stress rats (13). Most of these studies focus on the effects of EPA and DHA
on the gut microbiota of animals and humans with related diseases, and there are few
reports on the effect of ALA monomers on the gut microbiota (14–16).

Although existing research reports have shown that ALA and ALA-rich diets have
significant regulatory effects on related diseases induced by high-fat diets, gut mi-
crobes that play a key role in improving high-fat-diet-related diseases need to be
identified, and correlation networks between the gut microbiota and multitissue
homeostasis need to be established. To this end, the effects of ALA on the body
composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and sys-
temic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intes-
tinal homeostasis, and gut microbiota of mice fed a high-fat diet were studied system-
atically in this study.

RESULTS
Effects of ALA administration on body composition and energy intake in mice.

Daily oral administration of ALA (500 mg/kg of body weight [BW]) prevented diet-
induced weight gain from day 32 onward (Fig. 1A and B), and these findings were not
related to changes in energy intake (Fig. 1C and D). ALA prevented fat accretion in
white adipose tissue, including epididymal, perirenal, and inguinal fat depots (eWAT,
pWAT, and iWAT, respectively) (Fig. 1E). Additionally, liver weight was reduced in mice
of the HFD-ALA (HA)-treated group but not significantly (P � 0.076) (Fig. 1F). These
results indicate that ALA could prevent HFD-induced weight gain and obesity, which
are not related to changes in energy intake.

ALA administration improves HFD-induced glucose metabolism disorders. Af-
ter 9 weeks of treatment, we found that ALA enhanced glucose clearance (Fig. 1G and
H) by the oral glucose tolerance test (OGTT). These results indicate that ALA adminis-
tration improved HFD-induced glucose intolerance. Meanwhile, ALA significantly re-
duced the fasting glucose (FG) (Fig. 1I) and fasting insulin (INS) (Fig. 1J) levels, resulting
in improved insulin resistance (IR), as suggested by the lower homeostasis model
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assessment of insulin resistance (HOMA-IR) index (Fig. 1K). Interestingly, ALA signifi-
cantly enhanced the mRNA expression levels of glucose transporter 4 (Glut4) and
glucose-6-phosphatase (G6pc) in the liver (Fig. 1L) and significantly enhanced the
mRNA levels of the glucose transporter genes sodium-glucose cotransporter 1 (Slc5a1),
glucose transporter protein type 2 (Slc2a2), and glucose transporter protein type 5
(Slc2a5) (Fig. 1M). These results suggest that ALA might improve glucose tolerance and

FIG 1 Effects of ALA administration on body composition, energy intake, and glucose metabolism. (A and B) Body weight changes. (C
and D) Energy intake. (E) Epididymal (eWAT), inguinal (iWAT), and perirenal (pWAT) weights. (F) Liver weight. (G) Oral glucose tolerance
test (OGTT). (H) Area under the concentration-time curve (AUC) for the OGTT. (I to K) Fasting glucose, fasting insulin, and homeostasis
model assessment of insulin resistance (HOMA-IR) index. (L) Relative mRNA expression levels of glucose transporter 4 (Glut4) and
glucose-6-phosphatase (G6pc) in the liver. (M) Relative mRNA expression levels of the glucose transporter genes glucose transporter
protein type 1 (Slc2a1), glucose transporter protein type 2 (Slc2a2), glucose transporter protein type 5 (Slc2a5), sodium-glucose
cotransporter 1 (Slc5a1), and glucocorticoid-regulated kinase 1 (Sgk1) in the jejunum. The data are expressed as means � SEM (n � 10 to
12 [A to K] and n � 6 [L and M]). *, compared with the NCD group; #, compared with the HFD group (using the unpaired two-tailed Student
t test). *, P � 0.05; **, P � 0.01; ***, P � 0.001; #, P � 0.05; ##, P � 0.01; ###, P � 0.001. Data with different superscript letters are significantly
different (P � 0.05) according to post hoc one-way ANOVA.

Gut Microbes Link �-Linolenic Acid with Obesity

November/December 2020 Volume 5 Issue 6 e00391-20 msystems.asm.org 3

https://msystems.asm.org


IR by promoting glucose transport and gluconeogenesis in mice fed an HFD (HFD
mice).

ALA administration improves WAT homeostasis and hyperlipidemia in HFD
mice. To investigate whether the reduced WAT amount (Fig. 1E) was due to differences
in adipocyte volumes, we measured the size distribution of eWAT cells. Compared to
the group fed a normal chow diet (NCD), mice in the HFD group had increased numbers
of large adipocytes and decreased numbers of small adipocytes in their eWAT, while
ALA treatment reversed these changes (Fig. 2A to C). Subsequently, we investigated
whether ALA could affect lipogenesis and lipid oxidation in eWAT. Compared to the
NCD group, the mRNA expression levels of markers of lipogenesis (Acc1) and lipid
oxidation (Acox1 and Pgc1�) in eWAT were altered by the HFD, while ALA treatment
reversed these mRNA expression levels to different extents (Fig. 2E). Meanwhile, ALA
administration also reduced the mRNA expression of inflammatory factors in the eWAT
of HFD mice (Fig. 2D).

Moreover, ALA improved HFD-induced hyperlipidemia. As depicted in Fig. 2F, ALA
significantly reduced serum triglyceride (TG) levels and enhanced high-density lipopro-
tein cholesterol (HDL-C) levels (P � 0.05). The total cholesterol (TC) and low-density
lipoprotein cholesterol (LDL-C) levels were also reduced but not significantly (P � 0.05).

FIG 2 ALA improves HFD-induced lipid metabolism disorders in eWAT and serum. (A to E) Effects of ALA
administration on adipocyte morphology and relative mRNA expression levels of lipogenesis, lipid oxidation, and
inflammatory factors in eWAT. (A) H&E staining of paraffin sections of eWAT. (B) Adipocyte mean area (square
micrometers). (C) Cell size profiling of adipocytes from eWAT. (D and E) mRNA expression levels of markers of
lipogenesis (Acc1) and lipid oxidation (Acox1, Pgc1�, Ppar�, and Ppar�) (E) and inflammatory factors, including
MCP-1 and CD11c (D). (F) Serum lipid profile. The data are expressed as means � SEM (n � 8 [B to E] and n � 10
to 12 [F]). *, compared with the NCD group; #, compared with the HFD group (using the unpaired two-tailed
Student t test). *, P � 0.05; **, P � 0.01; ***, P � 0.001; #, P � 0.05; ##, P � 0.01; ###, P � 0.001. Data with different
superscript letters are significantly different (P � 0.05) according to post hoc one-way ANOVA.
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ALA administration attenuates fatty liver, metabolic endotoxemia, and sys-
temic inflammation. As shown in Fig. 3A to C, ALA attenuated the extent of HFD-
induced ballooning degeneration and reduced hepatic TG accumulation. Meanwhile,
ALA regulated the mRNA expression of liver inflammatory factors, suggesting that ALA
improved HFD-induced hepatic inflammation, as indicated by the lower mRNA levels
of tumor necrosis factor alpha (TNF-�) and the strong tendency toward reduced
interleukin-1� (IL-1�) (P � 0.052) (Fig. 3D). It is worth mentioning that the anti-
inflammatory factor IL-10 was significantly upregulated by ALA.

The high serum levels of lipopolysaccharide (LPS), TNF-�, IL-6, and IL-1� in the HFD
group indicate that the HFD triggered metabolic endotoxemia and systemic inflam-
mation. Importantly, ALA administration significantly reduced the serum levels of LPS,
IL-6, and IL-1� (Fig. 3E and F).

ALA remodels intestinal homeostasis in HFD mice. The intestinal mucosa, local
and systemic immune factors, and gut microbial content are important interaction
factors for maintaining intestinal homeostasis. ALA treatment reduced HFD-induced
intestinal inflammatory responses (Fig. 4A), including the infiltration of inflammatory
cells and the mRNA expression of proinflammatory factors (Fig. 4B and E). Although the
mRNA expression of proinflammatory factors in the ileum was not significantly en-
hanced by the HFD, TNF-� and IL-1� were significantly reduced by ALA to levels lower
than those in the NCD group. The situation in the colon was different. The mRNA

FIG 3 ALA attenuates HFD-induced fatty liver, metabolic endotoxemia, and systemic and hepatic inflammation. (A)
Photomicrographs of H&E-stained liver sections. (B) Ballooning degeneration area (percent) in the liver. (C) TG
content in the liver. (D) Relative mRNA expression levels of the liver inflammatory factors monocyte chemotactic
protein 1 (MCP-1), TNF-�, IL-6, IL-1�, IFN-�, and IL-10. (E) Serum LPS. (F) Serum TNF-�, IL-6, and IL-1�. The data are
expressed as means � SEM (n � 8 [A to D] and n � 10 to 12 [E and F]). *, compared with the NCD group; #,
compared with the HFD group (using the unpaired two-tailed Student t test). *, P � 0.05; **, P � 0.01; ***, P � 0.001;
#, P � 0.05. Data with different superscript letters are significantly different (P � 0.05) according to post hoc
one-way ANOVA.
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FIG 4 Effects of ALA administration on intestinal homeostasis in mice. (A) Photomicrographs of H&E-stained distal ileum and
proximal colon sections. Infiltration of inflammatory cells into the tissue is shown in blue in the photomicrographs in the HFD
group. (B and E) Expression of inflammation genes in the ileum (B) and the colon (E), including IFN-�, MCP-1, TNF-�, IL-1�, IL-6,
and IL-10. (C and F) Expression of AMP genes in the ileum (C) and colon (F), including Defa, Lyz1, Reg3g, and Pla2g2. (D and
G) Expression of intestinal barrier genes in the ileum (D) and colon (G), including Muc2, Occludin, and ZO-1. (H to K) Expression

(Continued on next page)
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expression of interferon gamma (IFN-�) in the colon was significantly enhanced by the
HFD, and ALA significantly reduced TNF-� and monocyte chemotactic protein 1 (MCP-1)
to levels lower than those in the NCD group. Notably, the anti-inflammatory factor IL-10
in both the ileum and colon was significantly reduced by the HFD, and ALA significantly
reversed it in the colon.

Antimicrobial peptides (AMPs) in the intestine are important to defend against
pathogens and maintain microbiota-host homeostasis. The mRNA expression levels of
AMPs, including �-defensins (Defa), lysozyme C (Lyz1), regenerating islet-derived
3-gamma (Reg3g), and phospholipase A2 group II (Pla2g2), in the ileum (Fig. 4C) were
significantly upregulated by HFD challenge (P � 0.05), but only Lyz1 was significantly
downregulated by ALA treatment in HFD mice (P � 0.05). Defa and Pla2g2 were also
reduced but not significantly (P � 0.05). In the colon (Fig. 4F), Defa, Lyz1, Pla2g2, and
Reg3g were all upregulated by HFD challenge but not significantly (P � 0.05). However,
Defa and Pla2g2 were significantly reduced by ALA treatment in HFD mice (P � 0.05).

Muc2 and Occludin in the colon were significantly downregulated by HFD challenge
(P � 0.05), while both were significantly upregulated by ALA treatment (Fig. 4G) (P �

0.05), suggesting that ALA could protect against HFD-induced impaired intestinal
barrier function and intestinal homeostasis. The Western blot results for the Occludin
and zona occludens protein 1 (ZO-1) proteins also proved this (Fig. 4H to K).

Toll-like receptor 4 (TLR4), cluster of differentiation 14 (CD14), and cannabinoid
receptor 1 (CB1) also play important roles in the maintenance of homeostasis in the
intestinal commensal system and are closely related to intestinal inflammation and
barrier function. Bacterial LPS can bind to TLR4, and CD14 may be required during the
binding process. We found that the HFD challenge induced high mRNA expression
levels of TLR4, CD14, and CB1, and ALA significantly inhibited these HFD-induced high
expression levels (Fig. 4L). It is worth mentioning that both the gene and protein
expression levels of TLR4 were significantly upregulated by HFD challenge, while ALA
significantly inhibited such high expression levels (Fig. 4L). This is consistent with the
result that we measured for LPS in the circulatory system (Fig. 3E). Taken together, we
believe that ALA can restore intestinal homeostasis to a certain extent by improving
HFD-induced intestinal inflammation, inhibiting antibacterial peptide overexpression,
and repairing the intestinal barrier.

Effect of ALA on gut microbiota in HFD mice. To evaluate the effect of ALA on the
gut microbiota of HFD mice, we sequenced the V3-V4 regions of the 16S rRNA gene.
Through systematic bioinformatics analysis, we found that ALA restored the HFD-
induced gut microbial community structural and composition shifts. Although the effect of
ALA on alpha diversity was limited (see Fig. S1A to C in the supplemental material), ALA
altered the beta diversity of HFD mice (Fig. 5A). Moreover, ALA changed the cecum
microbial composition of HFD mice (Fig. S1D to F), and the microbial composition of
ALA-treated mice was clustered with that of the NCD group (Fig. S1G to I).

To define which bacterium might be the main bacterium responsible for the impact
of ALA on HFD mice, linear discriminant analysis (LDA) effect size (LEfSe) analyses were
used to obtain the dominant microbiota at different levels for each group (Fig. 5B
and Fig. S2A to D). Here, a total of 79 different taxa from the 3 groups are displayed,
including 4 phyla, 4 classes, 9 orders, 18 families, and 44 genera (Fig. S2A to C).
Therefore, many different taxa also reflect the strong influence of the HFD and ALA on
the cecum microbiota. We focused on the taxa that were significantly affected by HFD
or ALA, especially those reversed by ALA treatment. At the phylum level (Fig. 5C), the
relative abundances of Patescibacteria and Cyanobacteria were significantly reduced by

FIG 4 Legend (Continued)
of the intestinal barrier protein occludin in the ileum (H and I) and expression of occludin, ZO-1, and TLR4 in the colon (J to
K). (L) Relative mRNA expression levels of TLR4, CD14, and CB1 in the colon. The data are expressed as means � SEM (n � 8
[B to L]). *, compared with the NCD group; #, compared with the HFD group (using the unpaired two-tailed Student t test).
*, P � 0.05; **, P � 0.01; ***, P � 0.001; #, P � 0.05; ##, P � 0.01. Data with different superscript letters are significantly different
(P � 0.05) according to post hoc one-way ANOVA.
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HFD challenge, and ALA reversed these changes. Notably, the relative abundance of
Patescibacteria was significantly increased by ALA. At the family level, the HFD signif-
icantly increased the abundances of Rikenellaceae, unclassified_o_Bacteroidales, Propi-
onibacteriaceae, and Burkholderiaceae (Fig. 5D and E), while ALA reduced their abun-
dances to various degrees. Propionibacteriaceae and Burkholderiaceae (Fig. 5E) were
significantly decreased to levels close to those of the NCD group (P � 0.05). Interest-
ingly, although the HFD showed limited effects on the relative abundances of Chris-
tensenellaceae, Family_XIII, Peptococcaceae, and Rhodocyclaceae, ALA treatment signif-
icantly enhanced their abundances (P � 0.05).

At the genus level, the relative abundances of 25 genera belonging to different
phyla are shown in Table S1. Compared with the NCD group, the HFD significantly
increased the relative abundances of Alistipes, Rikenellaceae_RC9_gut_group, GCA-
900066575, Faecalibaculum, and Romboutsia (P � 0.05) (Fig. 5F and G). However, they
were influenced by ALA differently. ALA inhibited the HFD-induced high relative
abundances of Alistipes, Rikenellaceae_RC9_gut_group, and Faecalibaculum but signifi-
cantly increased the relative abundances of GCA-900066575 and Romboutsia (P � 0.05).
Although Blautia, unclassified_f_Christensenellaceae, and norank_f_Peptococcaceae were

FIG 5 ALA restores the HFD-induced gut microbial community structural and compositional shift. (A) 3D-PCoA (principal-coordinate analysis) plot based on
Bray-Curtis distance. (B) Linear discriminant analysis effect size (LEfSe) analyses (LDA score of �2.0). (C to K) Relative abundances of gut microbiota at the
phylum, family, and genus levels, respectively, which were significantly affected by the HFD or ALA, especially those reversed by ALA treatment. The data are
expressed as means � SEM (n � 8 [C to K]). *, compared with the NCD group; #, compared with the HFD group (using the unpaired two-tailed Student t test).
*, P � 0.05; **; P � 0.01; ***, P � 0.001; #, P � 0.05; ##, P � 0.01; ###, P � 0.001. Data with different superscript letters are significantly different (P � 0.05)
according to post hoc one-way ANOVA.
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less affected by HFD challenge, ALA significantly increased their relative abundances in
HFD mice (P � 0.05) (Fig. 5F and G).

Compared with the NCD group, the HFD also reduced the relative abundances of many
genera of Firmicutes (Fig. 5H and I), including Christensenella, unclassified_f_Family_XIII,
Turicibacter, ASF356, Ruminococcaceae_NK4A214_group, Ruminococcaceae_UCG-013, Ru-
miniclostridium_5, and Ruminiclostridium_1. Among these genera, ALA significantly reversed
the low relative abundances of Christensenella, unclassified_f_Family_XIII, and Turicibacter in
HFD mice (Fig. 5H) while further reducing the abundance of Ruminococcaceae_NK4A214_
group (Fig. 5I).

Similar to Alistipes and Rikenellaceae_RC9_gut_group (belonging to Bacteroidetes),
the abundances of unclassified_o_Bacteroidales and Muribaculum (genera of Bacte-
roidetes) were also significantly increased by HFD challenge (P � 0.05) and decreased by
ALA treatment (Fig. 5J). norank_f_Atopobiaceae and Bifidobacterium are the two genera
of Actinobacteria. Both the HFD and ALA significantly promoted the abundance of
norank_f_Atopobiaceae in mice (P � 0.05) (Fig. 5J). Importantly, the HFD significantly
inhibited the famous probiotic Bifidobacterium (P � 0.05), while ALA markedly restored
its abundance to a level close to that of the NCD group (P � 0.05). Moreover, Candi-
datus_Saccharimonas (belonging to Patescibacteria), Bilophila, and Escherichia-Shigella
(genera of Proteobacteria) were all significantly inhibited by the HFD, but all were
markedly promoted by ALA treatment (Fig. 5K). Notably, the effects of HFD and ALA
treatments on Parasutterella (genus of Proteobacteria) were exactly the opposite of
those on Bilophila.

Correlations between specific gut bacteria and core host parameters. Based on

the significant improvement in multitissue homeostasis and gut microbiota of HFD
mice by ALA, two-factor correlation network analysis (Fig. 6A to C) and bivariate
correlation analysis (Fig. 6D to G) were used to establish the correlations between
specific gut bacteria and core host parameters. As shown in Fig. 6A, correlations
between specific gut bacteria (genus level) and body composition are tight and clearly
visible. Alistipes, Rikenellaceae_RC9_gut_group, and unclassified_o_Bacteroidales (belonging
to Bacteroidetes) showed significant and positive correlations with body composition.
Genera of Firmicutes showed some differentiation. GCA-900066575 and Negativibacillus
were positively correlated with body composition, while the other four genera of Firmicutes
(Ruminococcaceae_NK4A214_group, ASF356, Turicibacter, and Ruminiclostridium_1) were the
opposite. Both Parasutterella and Bilophila are genera of Proteobacteria, and Parasutterella
was positively correlated with all five parameters of body composition. However, Bilophila
was completely the opposite. Notably, Bifidobacterium (belonging to Actinobacteria) and
“Candidatus Saccharimonas” (belonging to Patescibacteria) showed negative correlations
with body composition (Fig. 6A and Fig. S3A).

Correlations between specific gut bacteria and blood glucose homeostasis are
shown in Fig. 6B (genus level) and Fig. S3B. Rikenellaceae_RC9_gut_group showed a
significant and positive correlation with FG and the area under the concentration-time
curve (AUC) and a negative correlation with liver Glut4 and jejunum Slc2a2. Parasut-
terella showed a significant and positive correlation with FG, AUC, INS, and HOMA and
a negative correlation with liver Glut4. Bilophila showed exactly the opposite correla-
tions. In addition, Bilophila was the only genus that was positively correlated with liver
G6pc. Many genera of Firmicutes showed significant and positive correlations with FG,
AUC, INS, and HOMA, especially Turicibacter and Ruminiclostridium_1; however, Faeca-
libaculum and Negativibacillus were positively correlated with FG and AUC.

Specific gut bacteria of different taxa were also commonly associated with lipid
metabolism in both blood and eWAT (Fig. 6C and Fig. S3C). The noticeable groups are
Cyanobacteria, Gastranaerophilales, Turicibacter, ASF356, unclassified_f_Christensenel-
laceae, and Parasutterella. Cyanobacteria, Gastranaerophilales, Turicibacter, and ASF356
showed strong negative correlations with TC, TG, and LDL-C in serum and Acox1, MCP-1,
and CD11c in eWAT. Parasutterella was basically the opposite. Notably, unclassified_
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f_Christensenellaceae was the only genus that was significantly and positively related to
HDL-C.

Correlations between specific gut bacteria and metabolic endotoxemia and systemic
and hepatic inflammation are shown in Fig. 6D. Rikenellaceae, Burkholderiaceae,
Rikenellaceae_RC9_gut_group, Negativibacillus, and Parasutterella were positively corre-
lated with LPS, TNF-�, IL-6, and IL-1� in serum and IL-1�, MCP-1, and TNF-� in liver.
Patescibacteria, Cyanobacteria, Gastranaerophilales, Turicibacter, g_ASF356, Bilophila, and
Candidatus_Saccharimonas showed almost the opposite correlations. Of particular
interest is the correlation of these specific gut bacteria with LPS. Rikenellaceae, Burk-
holderiaceae, Rikenellaceae_RC9_gut_group, and Negativibacillus were significantly pos-
itively related to LPS. Turicibacter was the only genus that was significantly negatively
related to LPS.

Correlations between specific gut bacteria and intestinal hemostasis are shown in
Fig. 6E to G. A number of specific gut bacteria were significantly associated with the
mRNA expression of intestinal inflammatory factors (Fig. 6E). Among them, IL-10 in the

FIG 6 Network and heat maps showing correlations between specific gut bacteria and core host parameters. (A to C) Two-factor correlation network analysis
(P � 0.05; Spearman’s r coefficient |r| of �0.5 [n � 8 in each group]). Red lines represent r values greater than or equal to 0.5, and green lines represent r values
less than or equal to �0.5. (D to G) Bivariate correlations (Spearman’s r coefficient r � 0.5 or r � �0.5 [n � 8 in each group]). (A) Correlation between gut
bacteria and body composition. WG, body weight gain; Liver, liver weight; ING, weight of inguinal fat; PER, weight of perinephric fat; EPI, weight of epididymal
fat. (B) Correlation between gut bacteria and glucose hemostasis. FG, fasting glucose; INS, insulin; AUC, area under the OGTT curve; HOMA, HOMA-IR index. (C)
Correlation between gut bacteria and blood lipid profile of TC, TG, HDL-C, and LDL-C in serum. (D) Correlation between gut bacteria and metabolic endotoxemia
and systemic and hepatic inflammation. LPS, sTNF-�, sIL-6, and sIL-1� indicate LPS, TNF-�, IL-6, and IL-1� in serum, respectively; lIL-1�, lIL-10, lMCP-1, and lTNF-�
indicate the mRNA expression levels of IL-1�, IL-10, MCP-1, and TNF-� in liver, respectively. (E) Correlation between gut bacteria and intestinal inflammation.
iTNF-�, iIL-1�, and iIL-10 indicate the mRNA expression levels of TNF-�, IL-1�, and IL-10 in the ileum, respectively; cIL-10, cTNF-�, and cIFN-� indicate the mRNA
expression levels of IL-10, TNF-�, and IFN-� in the colon, respectively. (F) Correlation between gut bacteria and intestinal AMPs. iDefa, iLyz1, iPla2g2, and iReg3g
indicate the mRNA expression levels of Defa, Lyz1, Pla2g2, and Reg3g in the ileum, respectively; cDefa and cPla2g2 indicate the mRNA expression levels of Defa
and Pla2g2 in the colon, respectively. (G) Correlation between gut bacteria and gut barrier-related indicators. iOccludin indicates the mRNA expression of
Occludin in the ileum; cMuc2, cZO-1, cCB1, cTLR4, and cCD14 indicate the mRNA expression levels of Muc2, ZO-1, CB1, TLR4, and CD14 in the colon, respectively.
The color at each intersection indicates the value of the r coefficient; P values were adjusted for multiple testing according to the Bonferroni and Hochberg
procedures. * indicates a significant correlation between these two parameters (P � 0.05).
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colon was the most noticeable parameter. Rikenellaceae, Rikenellaceae_RC9_gut_group,
unclassified_o_Bacteroidales, Muribaculum, and Faecalibaculum were significantly neg-
atively related to IL-10 in the colon. Patescibacteria, Cyanobacteria, Gastranaerophilales,
Candidatus_Saccharimonas, ASF356, and Ruminiclostridium_5 showed exactly the op-
posite correlations. Many specific gut bacteria have also shown a significant correlation
with the gene expression of intestinal AMPs (Fig. 6F). Reg3g and Pla2g2 were more
related to bacteria than other AMPs. Alistipes, Faecalibaculum, Negativibacillus, Rikenel-
laceae, Rikenellaceae_RC9_gut_group, and Parasutterella were significantly and posi-
tively related to Reg3g and Pla2g2, while Patescibacteria, Gastranaerophilales, ASF356,
Ruminiclostridium_1, Turicibacter, Candidatus_Saccharimonas, and Bilophila showed the
opposite correlations. Moreover, Alistipes, Faecalibaculum, Negativibacillus, Rikenel-
laceae, Rikenellaceae_RC9_gut_group, and Parasutterella were also positively related to
Defa in the ileum. Correlations between specific gut bacteria and gut barrier-related
indicators are shown in Fig. 6G. Parasutterella and Burkholderiaceae were negatively
correlated with Occludin in the ileum and Muc2 in the colon but positively correlated
with TLR4 in the colon. Christensenellaceae and unclassified_f_Family_XIII showed the
opposite correlations. Patescibacteria, Gastranaerophilales, Bilophila, Turicibacter, and
ASF356 were positively related to Occludin in the ileum but negatively correlated with
TLR4 in the colon. Notably, Blautia was positively related to Muc2 in the colon, and the
Rhodocyclaceae family was positively related to ZO-1 in the colon. Taken together, these
results constitute a complex but clear network between gut microbiota and host
parameters and explain the systemic effects of ALA on HFD mice to some extent.

DISCUSSION

Excessive growth of WAT, abnormal glucose metabolism, and lipid metabolism
disorders are the basic physiological phenomena induced by a high-fat diet. Previous
studies have shown that ALA or ALA-enriched diets alter body composition, improve
glucose tolerance, and attenuate IR (17–19). Supplementation of ALA improves serum
adiponectin levels and insulin sensitivity in patients with type 2 diabetes (20). The
results of these previous studies are basically consistent with our findings. Moreover,
we also found through correlation analysis that the improvement of the body compo-
sition of HFD mice by ALA may be attributed to the combined effects of several specific
gut bacteria. Therefore, those specific gut bacteria that were significantly altered by
ALA and significantly correlated with body composition parameters deserve more
attention, especially those that were significantly reversed. Rikenellaceae_RC9_
gut_group, Parasutterella, Turicibacter, Bilophila, and Bifidobacterium are their typical
representatives at the genus level (Fig. 5F, H, J, and K).

Glucose homeostasis plays an important role in the normal function of various
physiological functions of the animal body. Increasing evidence has linked impaired
glycemic control and insulin resistance to the specific gut microbiota composition.
Specific gut bacteria that were significantly altered by ALA and significantly correlated
with parameters of glucose metabolism were also found in this study. Rikenellaceae_
RC9_gut_group, Parasutterella, Turicibacter, and Bilophila are the four genera most
closely related to glucose metabolism parameters.

Previous studies have reported that ALA-rich carriers show significant lipid-lowering
activity, including reducing liver fat accumulation, alleviating liver steatosis, and low-
ering blood lipid levels (21–23). This is basically consistent with our findings. In addition,
our results showed that ALA can significantly reduce the average area size of WAT cells
in HFD mice. Turicibacter and Parasutterella were the two important genera that were
significantly altered by ALA and significantly correlated with parameters of lipid me-
tabolism in this study. It is suggested that Turicibacter and Parasutterella may regulate
lipid metabolism in mice fed a high-fat diet. It has been shown that high-fat feeding
modulates the gut microbiota, which strongly increases intestinal permeability, leading
to lipopolysaccharide (LPS) absorption and metabolic endotoxemia that triggers in-
flammation and metabolic disorders (24, 25). We also detected HFD-induced metabolic
endotoxemia in mice; inflammation of the circulatory system, liver, and adipose and
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intestinal tissues; and impaired intestinal barrier function. ALA improved hyperlipid-
emia and WAT homeostasis in HFD mice (Fig. 2), attenuated HFD-induced metabolic
endotoxemia and systemic and multitissue inflammation (Fig. 3), altered the gut
microbial community structure and composition of HFD mice, and remodeled intestinal
homeostasis (Fig. 4 and 5).

Few studies have reported the effects of ALA on metabolic endotoxemia. ALA-
enriched linseed oil supplementation may aid in the prophylaxis of endotoxemia in
horses (26). Therefore, the inhibitory effect of ALA on LPS production in HFD mice
found in our study is innovative and significant because the trigger factor for ALA to
improve inflammation and intestinal barrier-related indicators in HFD mice may be the
reduced LPS (outer membrane component of Gram-negative bacteria). Our correlation
analysis results show that Rikenellaceae_RC9_gut_group, Burkholderiaceae (the family of
the genus Parasutterella), Turicibacter, and Bilophila were significantly altered by ALA
and correlated with parameters of metabolic endotoxemia and systemic and hepatic
inflammation. It is worth mentioning again that Turicibacter was the only genus that
was significantly and negatively related to LPS.

At present, some studies have reported the effects of n-3 PUFAs on intestinal
homeostasis-related factors, including intestinal inflammation, intestinal antimicrobial
peptides, and the intestinal barrier (27, 28). However, few studies have reported the
effects of ALA on intestinal homeostasis-related factors. According to Zeng and co-
workers, optimal dietary alpha-linolenic acid/linoleic acid ratios could improve gill
immunity and strengthen the physical barrier of juvenile fish (Ctenopharyngodon idella),
while the triggers of these improved immune indicators and physical barriers and their
correlation with the gut microbiota are still unknown (29). We not only found that the
ALA monomer remodeled intestinal homeostasis (Fig. 4) and altered the structure and
composition of the gut microbial community (Fig. 5) of HFD mice but also established
correlations between the indicators of intestinal homeostasis and the gut microbiota
(Fig. 6).

Consistent with the above-mentioned correlations, similar microbial groups showed
strong correlations with core indicators of intestinal inflammation, intestinal AMPs, and
intestinal barriers. Specifically, Rikenellaceae_RC9_gut_group was significantly and neg-
atively related to IL-10 in the colon; Rikenellaceae_RC9_gut_group, Burkholderiaceae (the
family of the genus Parasutterella), Turicibacter, and Bilophila were significantly related
to Reg3g and Pla2g2; Parasutterella was negatively correlated with Occludin in the ileum
and Muc2 in the colon but positively correlated with TLR4 in the colon; and Bilophila
and Turicibacter were positively related to Occludin in the ileum but negatively corre-
lated with TLR4 in the colon. Notably, Blautia was positively related to Muc2 in the
colon.

Overall, we believe that Rikenellaceae_RC9_gut_group, Parasutterella, Turicibacter,
and Bilophila may play more important roles in the process of ALA-improved multitis-
sue homeostasis in HFD mice, while other taxa might play a synergistic role with these
four genera in various ways. This potential synergy may be systemic evidence that ALA
improves multitissue homeostasis in HFD mice by reducing metabolic endotoxemia.
Many previous reports can help us to prove that these taxa have such functions, and
many other studies have also reported the potential correlation between these taxa
and core host parameters.

Rikenellaceae_RC9_gut_group is a dominant group of Bacteroidetes. A few special
reports have focused on this group. However, existing research suggests that this
group may have some specific functions. The significantly increased abundance of
Rikenellaceae_RC9_gut_group may be associated with the decreased serum levels of TG
and TC in the early life of female offspring by maternal dietary genistein (30). The
significant alteration of Rikenellaceae_RC9_gut_group may contribute to the pathogen-
esis of acute myocardial ischemia by impacting intestinal permeability, oxidative stress,
and energy metabolism (31). The abundance of Rikenellaceae_RC9_gut_group impacted
the interaction between vitamin A and TLR4 (32). In our study, this group was generally
positively correlated with HFD-induced “harmful indicators” and negatively correlated
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with “beneficial indicators.” These findings collectively reflect the vital role of this
potentially harmful bacterium in HFD-induced health problems.

The genus Parasutterella (Proteobacteria) has been defined as a core component of
the healthy human and mouse gut microbiota and has been correlated with various
health outcomes (33), including inflammatory bowel disease (IBD) (34), obesity (35, 36),
diabetes (37), fatty liver disease (38), chronic kidney disease (39), major depression (40),
Henoch-Schönlein purpura in children (41), cholestasis in infants (42), and Hashimoto’s
thyroiditis in patients (43). A reduction of Parasutterella in response to an HFD has been
observed in both animal models and human studies, indicating a positive correlation
between Parasutterella abundance and HFD-induced metabolic phenotypes (44–46).
Our results also showed that the abundance of Parasutterella increased significantly
after the induction of the HFD, but ALA reversed this change. Notably, a previous study
of flaxseed oil (rich in ALA) improving alcoholic fatty liver also found similar phenom-
ena. Through correlation analysis, we found that Parasutterella is the most striking
genus, which is positively correlated with almost all harmful indicators in HFD mice and
negatively correlated with all beneficial indicators. ALA may play a system-improving
role in HFD mice by inhibiting Parasutterella.

Bilophila is widely regarded as a potentially harmful genus or a conditional patho-
gen and is also considered an LPS-producing and intestinal sulfate-reducing bacterium (47).
Bilophila wadsworthia aggravates high-fat-diet-induced metabolic dysfunctions in mice (48).
A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in
specific-pathogen-free mice (49). Increased Bilophila abundances have been associated
with liver damage (50). However, the results of previous studies are also contradictory.
Some studies have reported that a decrease in Bilophila was related to the occurrence of
the disease. For example, a decreased abundance of the genus Bilophila was evident at the
inflamed sites of patients with ulcerative colitis (UC) compared with the corresponding sites
of non-IBD controls (51). In addition, stachyose showed a selective enrichment of Bilophila
in improving HFD/streptozotocin-induced inflammation in rats with type 2 diabetes (51).
Our results also show that ALA can significantly restore the abrupt decline in Bilophila
caused by an HFD. Bilophila showed a strong negative correlation with HFD-induced
multitissue metabolic disorders and a significant positive correlation with most of the
beneficial indicators. Therefore, we believe that the function of Bilophila might be condi-
tional and complex, and it is worthy of further analysis and research.

Turicibacter is a genus of the phylum Firmicutes with a variety of biological activities.
Studies have shown that Turicibacter is related to a series of diseases, including
diet-induced obesity (52, 53), autism spectrum disorder (54), lymphoma (55), difficulty
in defecation (56), hypertension (57), and Parkinson’s disease (58). The abundance of
Turicibacter was closely related to lipid metabolism in rats fed a high-fat diet (11, 59)
and type 2 diabetic rats (60). Random blood glucose in obese rats was significantly and
negatively correlated with the abundance of Turicibacter (61). Turicibacter also has
immunomodulatory (62) and inflammation-suppressive (63) effects. The results of these
previous studies are consistent with our findings. In addition, Turicibacter was the only
genus that was significantly and negatively related to LPS in this study. We speculate
that Turicibacter may be the key beneficial bacterium for ALA-improved metabolic
endotoxemia in HFD mice.

Blautia is a dominant genus of the Firmicutes. Although the HFD did not significantly
reduce its abundance, ALA treatment significantly increased its abundance in HFD mice. In
the analysis of the results of LEfSe, Blautia was an important factor for distinguishing the
HFD and HA groups. Our correlation analysis results also show that Blautia was strongly
positively correlated with the mRNA expression of the colonic mucus marker protein Muc2
and negatively correlated with colon and colonic IFN-� and ileal TNF-�. This suggests that
Blautia might play an important role in the ALA-mediated improvement in gut barrier
integrity and anti-inflammatory effects. Previous research also indicated that Blautia might
have diverse biological activities. Blautia was associated with reduced mortality from
graft-versus-host disease (64), metabolic results (obesity and reduced liver steatosis) ob-
served in humanized obese mice (65), and visceral fat accumulation in adults (66). When a
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variety of exogenous substances were found to improve steatohepatitis and the gastroin-
testinal barrier (67) and nonalcoholic fatty liver (68) and reduce obesity and maintain
intestinal barrier integrity (69) in mice, the abundance of Blautia increased significantly.
These rich previous studies corroborate our findings.

In summary, we systematically studied the influence of ALA monomers on HFD-
induced obesity-related host parameters and the gut microbiota. We found that ALA
could significantly improve HFD-induced multitissue homeostasis. Meanwhile, the
established correlation networks between the gut microbiota and multitissue homeo-
stasis in HFD mice lay a foundation for further clarifying the relationship between the
gut microbiota and host metabolism, which will be a good model of the “gut-derived
doctrine of chronic diseases.”

MATERIALS AND METHODS
Materials. �-Linolenic acid (ALA) (97%) was obtained from Shanghai Guchen Biological (Shanghai,

China). A normal chow diet (NCD) (catalog number AIN-93M) and a 60% high-fat diet (catalog number
TP23400) were purchased from Trophic Animal Feed High-tech Co., Ltd., Nantong, China. Triglycerides
(TG), serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), and liver TG were measured using kits from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Plasma insulin was assessed using an ultrasensitive enzyme-linked immunosor-
bent assay (ELISA) kit (Alpco, USA). Serum lipopolysaccharide (LPS) levels were quantified using an ELISA
kit (Cusabio, USA). Serum TNF-�, IL-6, and IL-1� were measured using enzymatic kits purchased from
Beijing 4A Biotech Co., Ltd. (Beijing, China). Antibodies were purchased from Abcam (occludin, catalog
number ab167161), Thermo Fisher (ZO-1, catalog number 61-7300), Wanleibio (TLR4, catalog number
WL00196), and Sino Biological (�-actin, catalog number SB100166-MM10).

Animals and treatment. C57BL/6J male mice aged 5 weeks (n � 36) (15 to 18 g; Chengdu Dossy
Experimental Animals Co., Ltd., China) were bred in the animal facility of Yunnan Agricultural University.
The animals were housed in a controlled environment (24°C � 1°C in a 12-h daylight cycle with lights off
at 20:00 h) with ad libitum access to food and water. After 1 week of acclimatization on an NCD, the mice
were fasted overnight (12 h) for the determination of fasting blood glucose levels. Subsequently, the
mice were divided into three groups of 12 mice each according to their body weights and fasting glucose
levels (70). Treatment started concomitantly with the introduction of an HFD and consisted of daily oral
doses (500 mg/kg·BW) of ALA. The mice in the control groups received the vehicle (water) for 9 weeks.
Body weight gain and food intake were assessed once every 4 days. At week 9, animals were sacrificed
in chambers saturated with CO2. The animal protocol used in this study was reviewed and approved by
the Institutional Animal Care and Use Committee of Yunnan Agricultural University with respect to
ethical issues and scientific care.

Oral glucose tolerance test. The oral glucose tolerance test (OGTT) was performed in week 9. The
mice were fasted overnight for 12 h and then given a glucose load (2 g/kg·BW). Blood glucose was
measured before (0 min) and after (15, 30, 60, 90, and 120 min) glucose administration.

Blood and tissue sample collection. After the mice were sacrificed, the thoracic cavity was opened,
and whole blood was taken from the abdominal aorta. The blood samples were centrifuged at 4,000 �
g for 10 min at 4°C to obtain serum. Subcutaneous and visceral fat pads, liver, clean intestines (jejunum,
distal ileum, cecum, and proximal colon), and cecum contents were collected from each mouse,
flash-frozen in liquid nitrogen within 10 min postmortem, and then stored in a �80°C freezer (70).

Histopathological examination. The liver, epididymal fat, distal ileum, and proximal colon were
immediately removed and fixed in 10% neutral formaldehyde fixative at 4°C. Tissues were cut into
5-mm-thick sections embedded in paraffin. Paraffin sections of 3 �m were stained with hematoxylin and
eosin (H&E). Images were captured with an Olympus CX43 microscope and CellSens Entry software. The
ratio of the ballooning degeneration area to the percent coverage of the nucleus was determined using
an image analyzer (Image pro-Plus 6.0; Media Cybernetics, Inc., USA). Measurements were made on liver,
epididymal fat, colon, or ileum sections from at least 10 independent pictures per mouse.

RNA preparation and quantitative PCR analysis of gene expression. Total RNA extraction and
quantitative reverse transcription PCR (RT-qPCR) analysis of gene expression were performed using a
method described previously (70). The primer sequences are presented in Table S1 in the supplemental
material.

Western blot analysis. Thirty milligrams of distal ileum or proximal colon was lysed in 300 �l of
radioimmunoprecipitation assay (RIPA) buffer (Strong, catalog number E121-01; Genstar, China) containing
phenylmethylsulfonyl fluoride (PMSF) (1 mM) and then homogenized. The protein concentration was deter-
mined using a bicinchoninic acid (BCA) protein kit (Beyotime Biotechnology, China). Whole amounts of
protein (60 �g) were loaded onto a 10% or 5% acrylamide gel, resolved in SDS-PAGE systems, and then
transferred onto polyvinylidene difluoride (PVDF) membranes (0.45 �m; Millipore). The membranes were
blocked in 5% skimmed milk powder, incubated with the primary antibodies overnight at 4°C, and then
incubated with the secondary antibody for 1 h at 37°C. After the membranes were washed 3 times, the
protein bands were visualized using an enhanced chemiluminescence kit (Tiangen Biotech, Beijing, China)
according to the manufacturer’s instructions. Protein levels were normalized to �-actin as a loading control.

Sequencing of 16S rRNA genes of gut microbiota and bioinformatics analysis. Metagenomic
DNA was extracted from the cecal contents using a QIAamp-DNA stool minikit (Qiagen, Hilden, Germany)
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according to the manufacturer’s instructions. For 16S rRNA gene sequencing, the DNA samples were sent
to Majorbio Biotechnology Co., Ltd. (Shanghai, China), under dry ice conditions. The DNA concentration
and purity were determined using a NanoDrop 2000 UV-visible (UV-Vis) spectrophotometer (Thermo
Scientific, Wilmington, DE, USA), and DNA quality was checked by 1% agarose gel electrophoresis. The
V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified with primers 338F (5=-ACT
CCTACGGGAGGCAGCAG-3=) and 806R (5=-GGACTACHVGGGTWTCTAAT-3=) using a thermocycler PCR
system (GeneAmp 9700; ABI, USA). The PCRs were conducted using the following program: 3 min of
denaturation at 95°C; 27 cycles of 30 s at 95°C, 30 s for annealing at 55°C, and 45 s for elongation at 72°C;
and a final extension step at 72°C for 10 min. PCRs were performed in triplicate in a 20-�l mixture
containing 4 �l of 5� FastPfu buffer, 2 �l of 2.5 mM deoxynucleoside triphosphates (dNTPs), 0.8 �l of
each primer (5 �M), 0.4 �l of FastPfu polymerase, and 10 ng of template DNA. The resulting PCR products
were extracted from a 2% agarose gel, purified using the AxyPrep DNA gel extraction kit (Axygen
Biosciences, Union City, CA, USA), and quantified using QuantiFluor-ST (Promega, USA) according to the
manufacturer’s protocol. Purified amplicons were pooled in equimolar amounts and paired-end se-
quenced (2 by 300) on an Illumina MiSeq PE300 platform (Illumina, San Diego, CA, USA) according to
standard protocols by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). All of the results were
based on sequenced reads and operational taxonomic units (OTUs). The taxonomy of each 16S rRNA
gene sequence was analyzed by the RDP Classifier algorithm against the Silva (SSU132) 16S rRNA
database using a confidence threshold of 70%. Subsequent bioinformatics analysis was performed
through the cloud platform of Majorbio Bio-Pharm Technology Co., Ltd. The details of these methods are
described in Text S1 in the supplemental material.

Statistical analysis. The data are expressed as means � standard errors of the means (SEM). One-way
analysis of variance (ANOVA) was performed to identify significant differences among three or more groups
followed by the indicated post hoc test (Student-Newman-Keuls comparison test). The unpaired two-tailed
Student t test was performed to analyze two independent groups. Bivariate correlations were calculated using
Spearman’s r coefficients. Multivariate analyses, i.e., 3D-PCoA (three-dimensional principal-coordinate analy-
sis), linear discriminant analysis effect size (LEfSe) analyses, and network analysis, were performed using the
cloud platform of Majorbio Bio-Pharm Technology Co., Ltd. Heat maps were constructed using HemI 1.0
software (http://hemi.biocuckoo.org/down.php). Unless otherwise specified in the figure legends, the
results were considered statistically significant at a P value of �0.05.

Data availability. The raw reads of 16S rRNA gene sequence data were deposited in the NCBI
Sequence Read Archive (SRA) database under BioProject accession number PRJNA628813.
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