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Abstract

Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone
metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence
suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of
Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing
endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin
paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway.
Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial
steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin
and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of
mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and
mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory
activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling.
Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by
fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular
physiology through a mechanism mediated by the mTOR signaling cascade.
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Introduction

The human body is protected from biological, physical, and
chemical insults by a physical barrier comprised of epithelial
and stromal cells that constitute the skin. The skin is primarily
responsible for preventing water loss by maintaining tissue
integrity and by responding to injuries in a controlled and time-
dependent manner [1-4]. Following injury, compromised
structures undergo a prolonged period of tissue remodeling
that culminates in the recovery of skin protective functions.

Recently, new molecules, including Periostin, have been
associated with the wound healing process. Periostin is found
in normal skin, during tissue repair, and in pathological
conditions, such as cancer [5-9]. Notably, Periostin (also called
OSF-2 and encoded by the POSTN gene) is found in tissues
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involved in mechanical stress conditions, such as periodontal
ligaments, periosteum [10] and cardiac valves [11], where it is
secreted into the extracellular matrix following acute injury to
the heart [12], skin [6,13] and others tissues [14,15].
Furthermore, recent studies have shown increased Periostin
expression and deposition in fibrotic conditions, including keloid
and hyperplastic scarring of the skin [13].

New insights into the role of Periostin in cutaneous wounds
came from analyzing its effect in mouse dermal fibroblasts and
in myofibroblast differentiation [7,8,16,17]. However, the effect
of Periostin signaling on epithelial response and other
molecular circuitry is poorly understood. We show that
Periostin is primarily secreted from fibroblasts and confers a
paracrine effect in human Kkeratinocyte proliferation and
migration. The mechanisms underlying Periostin-induced
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migration are associated with activation of mTOR circuitry, as
evidenced by phosphorylation of AKT at threonine 308 and
serine 473 and the mTOR downstream molecule S6.
Interestingly, we also found that upregulation of Periostin
following mechanical stress was accompanied by mTOR
overexpression; and their combined effects orchestrated the
migratory response of epithelial cells. Indeed, pharmacological
inhibition of mTOR by rapamycin and by siRNA targeting
Raptor and Rictor, which disrupted mTORC1 and mTORC2
complexes respectively, resulted in reduced migration and
proliferation of epithelial cells. Collectively, these findings
indicate that Periostin responds to mechanical stress during
wound healing to induce proliferation and migration by a
mechanism that requires activation of the PISK/mTOR
signaling pathway.

Material and Methods

Ethics Statement

This animal study was performed according to the University
of Michigan Committee on Use and Care of Animals (UCUCA)
approved protocol (protocol # 10428) and in compliance with
the Guide for the Care and Use of Laboratory Animals. Animals
were housed in 12-hrs light/dark cycles and received standard
rodent chow and water ad libitum in compliance with AAALAC
guidelines. Investigators and animal care staff observed the
animals daily. Mice showing discomfort, wasting, hunching, or
other signs indicative of distress were treated appropriately to
alleviate discomfort or were euthanized.

Experimental Mice and /n Vivo Wound Healing Assay

The in vivo wound healing assays were performed in the
shaved skin on the dorsal surface. Fifteen millimeters full-
thickness incisional epidermal wounds were made in the mid-
dorsal area. At day four after skin wounding, freshly prepared
5-bromo-2’-deoxyuridine (BrDU) was injected intraperitoneally
(I.P.) at a concentration of 100 pg/g body weight 2 hours before
sacrificing the animals. Wound fields were excised, fixed in
10% aqueous buffered zinc formalin, paraffin embedded, and
sectioned.

Histology and Immunohistochemistry

Hematoxylin and eosin (H&E) staining was performed on
sections from formalin-fixed and paraffin-embedded tissue
according to standard procedures. Immunohistochemistry
assays were performed on serial sections after antigen retrieval
using primary antibodies against BrDU (Axyll-Accurate
Chemical & Scientific Corporation, Westbury, NY), Cytokeratin
6 (K6) (169P, Covance) and Periostin (RD181045050,
Biovendor) and biotinylated secondary antibodies (BA-1000,
Vector Laboratories). Sections were washed, incubated with
avidin-biotin complex (ABC kit, Vector Laboratories) and
developed using the DAB substrate kit (Sigma-Aldrich). Slides
were analyzed and photographed using a Nikon Eclipse 80i
Microscope (Nikon, Melville, NY).
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Cell cultures

The normal oral keratinocyte spontaneously immortalized
(NOK-SI) cell line [18] was cultured in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 100 U/ml penicillin G, 100 ug/ml streptomycin,
and 250 ng/ml amphotericin B at 37°C in a humid 5% CO,
atmosphere. Primary human PDL fibroblasts (hPDL) [19] were
used between passages 4 and 7 and maintained in DMEM with
sodium pyruvate and supplemented with 10% FBS, 100 U/ml
penicillin G, 100 ug/ml streptomycin, 250 ng/ml amphotericin B
and 2 mM glutamine at 37°C in a humid 5% CO, atmosphere.

Conditioned media from NOK-SI and hPDL cells

Subconfluent monolayers of NOK-SI and hPDL cells were
cultured in DMEM and supplemented with 10% FBS. After
48 hours, media were collected and concentrated 6x by
centrifugation using Ultracel-30 Centrifugal membrane filters
(30 kDa) (Millipore, Billerica, MA, USA) following manufacturer
instructions. Concentrated conditioned media were mixed with
SDS electrophoresis loading buffer for western blot analysis.

In vitro scratch wound assay, immunofluorescence,
and proliferation

NOK-SI cells were plated at high confluence followed by a
mechanical scratch. Each well was treated with 50 ng/ml
Periostin and/or 50 nM rapamycin. Control cells were treated
with vehicle, and EGF served as a positive control. Quantitative
analyses of the open areas were performed using Axionvision
software (Carl Zeiss, Germany) at indicated time points. F-actin
staining was performed on glass coverslips 12 hours after
scratching. Cells were washed with cold PBS, fixed with fresh
4% paraformaldehyde (PFA) and permeabilized with 0.1%
Triton for 5 min. Cells were incubated with 100 nM phalloidin-
rhodamine for 30 min (Cytoskeleton, Denver, USA) and then
stained with Hoechst 33342. Cells were also stained with anti-
Periostin (Biovendor R&D, Candler, USA) and anti-pS6 (Dako,
Carpinteria, USA) antibodies and then incubated with FITC or
TRITC secondary antibodies. Images were taken with a
Qlmaging ExiAgqua monochrome digital camera attached to a
Nikon Eclipse 80i Microscope and QCapturePro software
(Nikon, Melville, NY). NOK-SI cell proliferation was assessed
following treatment with the rapid colorimetric MTT assay kit
(Trevigen Inc.) according to manufacturer's instruction.

Western blot analysis

Cells were harvested after indicated times, treated with RIPA
buffer and sonicated briefly. Protein lysates (30ug) were
separated by 10% SDS-PAGE gel and transferred to a
polyvinyl difluoride membrane (PVDF-Immobilon, Millipore).
Membranes were blocked in 0.1 M Tris (pH 7.5), 0.9% NaCl
and 0.05% Tween-20 (TBS-T) containing 5% nonfat dry milk
and probed with anti-Periostin (Biovendor), pS6 (Dako),
pAKTT™ (Abcam) and pAKTS*® (Cell Signaling) antibodies.
GAPDH (Calbiochem) was used as a loading control.
Membranes were incubated with appropriate secondary
antibodies conjugated with horseradish peroxidase, and bands
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were detected using ECL SuperSignal West Pico Substrate
(Pierce Biotechnology).

Raptor and Rictor Knockdown

Knockdown of Raptor and Rictor was performed in NOK-SI
cell lines as previously described [18,20,21]. Briefly, cells were
seeded in 24-well plates and transfected with 15 nM double-
stranded RNA oligonucleotides directed against human Raptor
(forward: 5- GGA CAA CGG CCA CAA GUAdTAT-3’' and
reverse: 5- UAC UUG UGG CCG UUG UCCdTdT-3’) and 5
nM double-stranded RNA oligonucleotides against Rictor
(forward: 5- CCU AAU GAA UAU GGC UGC AuUC Cuu
UdTdT-3’ and reverse: 5- AAA GGA UGC AGC CAU AUU
CAU UAG GdTdT-3’) (Invitrogen). Optimal concentrations and
time points were determined by dilution curves of siRNA for
each target and immunoblot analysis. The sequences of the
control negative siRNA (Invitrogen) oligonucleotides were as
follows: 5-UUC UCC GAA CGU GUC ACG UdTdT-3' and 5"-
ACG UGA CAC GUU CGG AGA AdTdT-3' [22].

Biomechanical stimulation

NOK-SI and hPDL cells were plated in flexible bottom 6-well
plates (BioFlex™ Culture Plates, Flexcell, USA) coated with
Collagen | at a density of 250,000 cells/well. At 24h post-
seeding, cells were subjected to biomechanical stimulation
(i.e., 14% stretching at 6 cycles/min) using the Flexcell
FX-5000 cell tension system (Flexcell, USA). Non-stretched
cells served as controls. At indicated time points, cells were
lysed and subjected to western blot analysis.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 5
(GraphPad Software, San Diego, CA). Statistical analyses of
cellular proliferation and migration assays were performed
using Student’s t test and ANOVA-one-way analysis followed
by Newman-Keuls or Bonferroni multiple comparison test.
Asterisks denote statistical significance (*p<0.05; **p<0.01;
***p<0.001; and NS p>0.05).

Results

Periostin is expressed in epithelial cells undergoing
wound-healing associated stress

Following skin injury, epithelial cells undergo an intricate
process of cellular proliferation and differentiation. During
wound repair, keratinocytes exhibit increased proliferation,
which results in thickening of the epidermis and formation of an
epithelial edge, characterized by enhanced motility [18,23,24].
Epithelial cells on the wound margins start to proliferate,
resulting in thickening of the epidermis, at days 2-3 post-
wounding and cell migration towards the wound bed is initiated.
As seen in Figure 1A, the migrating keratinocytes form a fine
wedge shape known as the epithelial tongue, which is
constituted by one or two cell layers, which establish the
leading wound edge by moving over the granulation tissue and
under the fibrin clot [1,25,26]. Interestingly, Periostin was found
differentially expressed in the actively migrating epithelial
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tongue and the adjacent epidermis observed under
homeostasis. Notably, Periostin was expressed under the
epithelium, specifically in the basement membrane of the skin,
but epithelial cells lacked Periostin expression (Figure 1B and
1D). Interestingly, epithelial cells undergoing active migration
(Figure 1A) showed accumulation of intracellular Periostin that
was localized at the cytoplasm (Figure 1C). Increased levels of
Periostin in epithelial cells were associated with elevated
proliferation (Figure 1E) compared to adjacent epithelial cells in
homeostasis (Figure 1F), as detected by short pulse BrDU
incorporation. Indeed, BrDU accumulation was evident in the
basal and parabasal layers of the epidermis, similar to what is
observed with Periostin staining (Figure 1C and 1E).

Periostin expression has been reported in diverse organs
and conditions, including the heart, the periosteum and the
periodontal ligament [27,28]. Interestingly, organs that express
Periostin are associated with mechanical stress, as
demonstrated by the normal physiology of heart valves and
periodontal ligaments undergoing mechanical tension [10,11].
In epithelial cells, mechanical stress and tension is detected by
expression of CK6 [18]. During wound healing, epithelial cells
responsible for closing the wound are stretched along the
wound borders and express CK6 throughout the epithelial
tongue layers (Figure 1G); however, CK6 is not expressed in
normal epithelium under homeostasis (Figure 1H), indicating
that mechanical stress and tension is involved in wound
closure.

Fibroblast-Secreted Periostin Induces Paracrine
Activation of Epithelial Migration and Proliferation

A few regulatory mechanisms associated with Periostin
expression in the epidermis and dermis have been elucidated
[8,29], but the physiological impact of Periostin expression and
secretion by epithelial and stromal cells in skin biology is
largely unknown. We first examined Periostin production and
secretion by epithelial and mesenchymal cells. Using a human
keratinocyte cell line (NOK-SI) [18] and a primary culture of
human fibroblasts (hPDL) [30], we found that both cell types
produced Periostin (Figure 2A). Full length Periostin is a
93 kDa protein, and additional human Periostin isoforms range
from 83 kDa to 87 kDa (from UniProtKB/Swiss-Prot database -
Q15063). When secreted, Periostin isoforms become part of
the extracellular matrix. NOK-SI produced full-length Periostin,
and hPDL produced and secreted a Periostin isoform (Figure
2A). To examine Periostin secretion from NOK-SI and hPDL
cells, we analyzed their conditioned medium. We found that
fibroblast cells produced and secreted large amounts of the
Periostin isoform (Figure 2A). NOK-SI cells did not secrete
Periostin, as evidenced by similar Periostin detection in the
negative control (DMEM supplemented with 10%FBS) and
NOK-SI conditioned medium alone, suggesting that Periostin
expression in NOK-SI is a byproduct of serum-supplemented
culture media (Figure 2A). Next, in order to understand the
physiological effect of fibroblast-secreted Periostin on epithelial
cell biology, we treated NOK-SI cells with conditioned medium
from hPDLs. Interestingly, conditioned medium enhanced
proliferation of epithelial cells compared to vehicle treated cells
(Figure 2B, ***p<0.001). To confirm that Periostin was acting as
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Figure 1

Adjacent skin

Periostin

BrDU

CK®6

Figure 1. Expression of Periostin and CK6 during cutaneous wound healing. H&E: Representative histological sections of
cutaneous incisional wounds. (A) Morphology of the wounded site shows a thin edge of epithelial cells migrating across the wound
bed, termed the epithelial tongue and (B) intact and normal skin adjacent to the wounded site were stained with Hematoxylin and
Eosin (H&E). (C) Epithelial cells at the epithelial tongue express intracellular Periostin. (D) In normal adjacent skin, Periostin is in the
connective tissue at the basal lamina, which is juxtaposed to the epithelial basal layer. (E) Note that basal and parabasal layers of
the epithelial tongue have a large number of proliferating BrDU positive cells. (F) As expected, the epithelial basal layer of adjacent
skin has few proliferating cells. (G) Upregulation of the epithelia stress/tension marker CK6 is depicted in the epithelial tongue
compared to normal adjacent skin observed in (H). Scale bars represent 50 pm.

doi: 10.1371/journal.pone.0083580.g001

a paracrine mitogenic effector originated from fibroblast enhanced the proliferation of keratinocytes (Figure 2E,

condition medium, competitive assay using anti-Periostin ***n<0.001).
antibody revealed a reduction in proliferation (Figure 2B,
**p<0.01). Additionally, much like the secreted isoform, Periostin induces stress fiber formation and activation

recombinant Periostin enhanced epithelial migration (Figure 2C of the AKT/mTOR signaling pathway
and 2D). Indeed, Periostin induced robust cellular migration
that was similar to the epidermal growth factor (EGF) positive
control. In addition to migration, full-length Periostin also

We next examined the molecular signaling involved in
Periostin-induced epithelial migration and proliferation. Using
an in vitro wound scratch assay, we found that Periostin
induced the polarization pattern of F-actin cytoskeleton
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Figure 2. Periostin-driven migration and proliferation. (A) Total cell lysates and conditioned medium (cond. medium) from
NOK-SI and hPDL cells were blotted for Periostin. New cell culture medium supplemented with 10% FBS was used as a negative
control (control). Intracellular Periostin is detected in epithelial cell lysate. However, conditioned medium from NOK-SI shows that
keratinocytes did not secrete Periostin, as the same band was observed in the negative control media. hPDL cells have low levels of
the intracellular Periostin isoform as observed in the cell lysate. Increased levels of secreted Periostin were found in the conditioned
medium from hPDL. (B) hPDL conditioned medium induces keratinocyte proliferation compared to vehicle alone (***p<0.001), which
is reduced upon administration of anti-Periostin antibody (*p<0.05). (C) Representative pictures of NOK-SI migration following
treatment with recombinant Periostin (50 ng/ml), EGF (100 ng/ml) as the positive control, or vehicle. Scale bars represent 50 pm.
(D) Graphic represents the quantification of the wound areas at indicated times (n=4; mean + S.E.M). (E) Periostin enhances
proliferation of keratinocytes compared to vehicle treated cells (***p<0.001). EGF treatment was used as positive control (*p<0.05)
(n=6; mean + S.E.M).

doi: 10.1371/journal.pone.0083580.g002

filaments. As revealed by phalloidin staining, F-actin filaments
were predominantly localized at the cellular periphery in
vehicle-treated NOK-SI cells, but Periostin-treated cells
showed strong actin polymerization and morphological
changes, such as a spindle-like shape (Figure 3A and 3B),
similar to the lamellipodial protrusions found in highly motile
cells [31,32]. Emerging evidence suggests that mTORC1
pathway coordinates changes in cell morphology [33]. Here, we
found that Periostin induced dose-dependent activation of AKT/
mTOR signaling, evidenced by phosphorylation of pS6 and
AKT at threonine 308 (pAKT™38) Additionally, upon Periostin
stimuli, AKT was also activated at serine 473 (pAKTSer473)
compared to the vehicle (control), but its level remained
constant thereafter (Figure 3C). Because mTORC2 complex

PLOS ONE | www.plosone.org

activation results in phosphorylation of AKT at Ser473 [34,35]
and S6 phosphorylation is mediated by mTORCH1, our results
suggest that Periostin signaling is mostly mediated through
mTORCH1. Periostin activated AKT/mTOR signaling at very low
concentrations (i.e., 0.1 ng/ml) relative to vehicle (Figure 3C).
Interestingly, Periostin-induced activation of AKT/mTOR
peaked at 50 ng/ml. Higher concentrations of Periostin (100
and 200 ng/ml) caused a reduction in AKT/mTOR expression.
These results suggest that the effect of Periostin on AKT/
mTOR activation is concentration dependent, and 50 ng/ml is
the optimal dose for inducing AKT and mTOR phosphorylation.
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Figure 3
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Figure 3. F-actin polarization and PI3K/ImTOR signaling activation by Periostin-induced epithelial cell migration. (A)

Phalloidin detection shows cells with polarized F-actin (white arrow) following treatment with recombinant Periostin compared to
vehicle control. Scale bars represent 10 uym. (B) Graphic represents percentage of cells with stress fiber formation (polarized F-
actin) after periostin or vehicle stimuli. Results were determined by measuring fields using independent triplicates (**p<0.01) (C)
Activation of PI3K and mTOR signaling is triggered by Periostin treatment in a dose-dependent manner, as detected by
phosphorylated AKT at Threonine 308 (pAKT™3%) and Serine 473 (pAKTS¢%73) and phosphorylated S6 (pS6). Note that 50 ng/ml of

Periostin is the optimal concentration for PI3K activation. GAPDH was used as a loading control.

doi: 10.1371/journal.pone.0083580.g003

Biomechanical stimulation of epithelial cells triggers
endogenous Periostin expression and mTOR signaling
Tension-associated cellular polarization appears to play a
maijor role in a wide range of migratory cells. Cellular tension
can vary from protrusion to contraction and with tension-
bearing structures associated with the membrane or
cytoskeleton. However, the molecular mechanisms underlying
the translation of mechanical stress into migratory signaling are
largely unknown in epithelial biology. Periostin is upregulated in
diverse tissues exposed to continuous tension, including the
periosteum, where its mechanical properties are key to
maintaining bone strength [28,36]. Periostin is also expressed
in various soft tissues that are under continuous mechanical
stress, including the heart and heart valves [11,27], tendons
[37], cornea [38] and periodontal ligament [39,40]. Emerging
evidence indicates that mechanical stress plays a key role in
Periostin expression and signaling. We wanted to determine
the effects of mechanical tension in epithelial cell biology by
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examining Periostin and mTOR expression. In particular,
collective cell guidance of epithelial cells in culture after wound
scratch results in a dynamic interaction of intercellular stress
forces [41]. We found that migratory epithelial cells co-
expressed Periostin and the active pS6 mTOR signaling
marker at the leading edge of the migratory front (Figure 4A
and insert), corresponding to a five-fold increase in Periostin
and pS6 colocalization compared to static cells (***p<0.001)
(Figure 4B). To further characterize the impact of mechanical
stress on Periostin expression and activation of mTOR, we
subjected NOK-SI cells to a computer-controlled biomechanical
stimulation of stress and tension. NOK-SI cells were exposed
to various magnitudes of tensile strain for 0, 3, 6, 10, 24 and 48
hours (Figure 4C) and analyzed for Periostin and pS6 protein
expression. Western blot analysis revealed increased Periostin
after 3 hours of tension cycles, with greater expression at 24
and 48 hours. Notably, mTOR activation followed exactly the
same pattern as Periostin expression (Figure 4D), indicating a
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Figure 4. Co-expression of Periostin and mTOR during cellular migration and mechanical stress induced by tension. (A) A
representative wound healing scratch assay shows keratinocytes stained for Periostin (TRITC-red), pS6 (FITC-green) and DNA
(Hoechst-blue). Note colocalization of Periostin and pS6 staining (on merge and insert) in the migratory area. Scale bars represent
50 um. (B) Quantification of positive cells co-expressing Periostin and pS6 are depicted. Note increased number of positive cells co-
expressing Periostin and pS6. Most of these cells are in the migratory area (***p<0.001). (C) NOK-SI cells were subjected to
biomechanical stimulation (load of 14% stretching at 6 cycles/min) at the indicated time points. (D) Western blot analysis for
Periostin and pS6 expression in NOK-SI subjected to load assay. Non-stimulated cells (no load force) served as a control, and

GAPDH was used as protein loading control.
doi: 10.1371/journal.pone.0083580.g004

strong relationship among Periostin, AKT/mTOR activation and
mechanical tension.

Periostin-induced epithelial migration is dependent on
mTORC1 signaling

We previously demonstrated the involvement of mTOR
signaling in accelerated epithelial migration using genetically
defined mouse models and showed that in vivo inhibition of
mTOR using rapamycin directly impacts cutaneous healing
[23]. However, the molecular circuitry involved in mTOR-
induced cellular migration is still poorly understood. These
observations prompted us to explore the requirements for
mTOR signaling during Periostin driven accelerated epithelial
migration. For this, we took advantage of the ability of
rapamycin to selectively inhibit mTOR signaling [42] and
performed a scratch assay using NOK-SI cells. NOK-SI cells

PLOS ONE | www.plosone.org

treated with vehicle showed near closure of the open scratch
within 48 hours, but the accelerated epithelial migration
stimulated by Periostin became evident within the first 16 hours
of cellular migration and completely closed the scratch wound
within 48 hours. Furthermore, administration of rapamycin
abrogated Periostin-induced cell migration, resulting in
migration rates similar to vehicle control (Figure 5A and 5B
***p<0.001). These results suggest that mTOR signaling is
required for Periostin-driven cellular migration. Additionally, we
found that cell proliferation increased in a dose-dependent
manner following Periostin treatment at concentrations from 10
to 50 ng/ml (*p<0.05); inhibition was observed with 100 ng/ml
of Periostin (Figure 5C). Notably, such inhibition correlates with
the ability of Periostin to induce activation of mTOR signaling at
an optimal concentration of 50 ng/ml, which is followed by a
reduction in AKT (pAKT™r3%) and pS6 activation (Figure 3C).
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Figure 5. Periostin-driven cellular migration requires mTOR signaling. (A) Representative pictures of the NOK-SI cell scratch
assay following treatment with vehicle, recombinant Periostin (50 ng/ml), and rapamycin (50 nM). Scale bars represent 50 um. (B)
Quantitative analysis of open-wounded area over time (n=4; mean + S.E.M.). Note that rapamycin abrogates the Periostin migratory
activity of epithelial cells (***p<0.001). (C) Proliferation assay using keratinocytes treated with rapamycin and/or Periostin. Note that
Periostin alone induced significant cellular proliferation at 50 ng/ml (*p<0.05). Treatment with rapamycin blocked periostin-induced
cell proliferation (ns p>0.05). (D) Representative immunoblot depicting knockdown of Raptor and Rictor after siRNA treatment.
Scramble siRNA oligonucleotides sequences were used as controls. GAPDH was used as loading controls. (E) Graphic shows the
quantitative analyses of open-wounded areas using NOK-SI cells over time (n=4; mean + S.E.M.). Note that siRNA targeting Raptor
abrogates Periostin-induced cellular migratory resulting on complete wound closure by 48 hours (**p<0.05). siRNA targeting Rictor
did not change the Periostin induced accelerated cellular migration resulting on wound closure by 24 hours (ns p>0.05). (F)
Proliferation assay using NOK-SI cells treated with siRNA for Raptor, Rictor, or siRNA scramble, and/or Periostin. Note that
Periostin induced significant cellular proliferation (*p<0.05). Treatment with siRNA for Raptor or Rictor resulted in disruption of
Periostin induced cellular proliferation (***p<0.001).

doi: 10.1371/journal.pone.0083580.9g005

Next, we found that although cells continue to display Periostin- marginally impaired cellular migration at 16 hours of wound (ns
induced proliferation (Figure 5C; * p<0.05), this growth was not p>0.05) and did not interfere with Periostin—driven accelerated
statistically significant after rapamycin administration (Figure wound closure, which closed at 24hrs after wounding along
5C; ns p>0.05). These findings along our previous results with the positive controls receiving Periostin and scrambled
suggest that Periostin may signal through the mTORC siRNA (Figure 5E). Notably, interference of Raptor and Rictor
complexes to induce migration and proliferation. To further resulted in significant reduction of proliferation (**p<0.05)
dissect this molecular mechanism, we interfered with mTORC1 (Figure 5F). These findings suggest that Periostin-driven
and mTORC2 complexes by disrupting its correspondent epithelial migration is mainly mediated by mTORC1 signaling,
scaffold proteins, Raptor [43,44] and Rictor [45,46] (Figure 5D). while cellular proliferation involves the two complexes,
We found that by interfering with Raptor, NOK-SI cells shown mTORC1 and mTORC2 (Figure 5F).

reduced migration upon administration of Periostin requiring 48 Collectively, our results indicate that Periostin responds to

hours to close the wound (**p<0.05). Interference of Rictor only mechanical stress generated during the wound healing
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Figure 6. Proposed mechanism of Periostin-mediated accelerated epithelial healing through the mTOR pathway. During
wound healing, activation of the Periostin signaling circuitry is initiated by the extracellular accumulation of Periostin secreted by
fibroblasts, and by intracellular periostin originated after mechanical stress. Following, activation of the mTOR pathway occurs.
Notably, the mTORCH1 is required for Periostin-driven accelerated epithelial migration, while activation of mTORC1 and mTORC?2 is

required for epithelial proliferation.
doi: 10.1371/journal.pone.0083580.9g006

process. Following Periostin production and secretion by
fibroblasts, it generates a paracrine effect on keratinocytes.
Keratinocytes respond to Periostin stimuli by migrating via
mTORC1-dependent regulation, and by proliferating via
mTORC1- and mTORC2-dependent mechanisms (Figure 6).

Discussion

The process of wound healing is characterized by early
proliferation and migration of keratinocytes that play a
fundamental role in a well-orchestrated mechanism that
involves continuous exchange of signaling with the underlying
stroma. Skin healing is primarily supported by the interaction of
epithelial cells with the newly deposited extracellular matrix that
is rich in secreted factors that are released in the wound bed.
Many of these factors are associated with key cellular
functions, such as migration, proliferation, directional migration,
and cellular response to local mechanical stress, as shown
here. Indeed, we found that expression of Periostin induced
accelerated epithelial migration and proliferation through a
process that involves polarization of actin filaments and
activation of the mTOR signaling pathway.

The matricellular protein Periostin is normally expressed in
adult skin and is highly upregulated during epidermal healing
[6,8,9,13,29]. In this study, we showed that Periostin
expression was associated with the activation of epithelial
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stress markers and was found in the proliferative epithelial
tongue that is localized in the wound. Both the CK6 stress
marker and Periostin expression were confined to the
proliferative and migratory component of the epithelial tongue,
as determined by increased BrDU positive cells. Interestingly,
the localization and expression pattern of Periostin were
dynamically altered according to their proximity to the wound
edge. Although Periostin was exclusively expressed at the
basal membrane under the skin, actively migrating epithelial
cells show remarkable cytoplasmic expression of Periostin,
suggesting distinct roles dependent on localization. Therefore,
the mitogenic and migratory capacity of epithelial cells during
wound healing may not be solely driven by cell intrinsic
signaling events, but may be the result of cooperative signaling
pathways derived from epithelial and stromal skin components.
Indeed, in vitro characterization of the process revealed that
epithelial cells did not secrete Periostin, but they produced and
accumulated low amounts of full-length Periostin. In contrast,
fibroblasts produced and secreted large amounts of a variant
isoform of Periostin. Indeed, Periostin is primarily associated
with fibroblast rich tissues [47], suggesting that its splice
variants are preferentially secreted and transduce signals to
different tissues and cell types (reviewed in 16). We found that
epithelial cells responded to exogenous Periostin by activating
cellular proliferation and migration in combination with
polarization of actin filaments. These data corroborate to the
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theory that epithelial migration during wound healing is not only
controlled by intrinsic factors, but also by extrinsic stimuli
compartmentalized in the wounded site, that promotes the re-
epithelialization process [48]. Indeed, fibroblasts exposed to
environmental changes during wound healing differentiate into
a-SMA myofibroblasts, which enhance Periostin secretion
[6,8,13].

As a component of the extracellular matrix, Periostin
interacts with integrin molecules that activate the PI3K
signaling pathway in tumor cells [49,50]. Recent advances in
the field of wound healing, driven by the use of genetically
defined animal models capable of dissecting individual
components of the PI3K pathway, have unveiled the molecular
framework underlying skin homeostasis and tissue
regeneration [23,24]. mTOR signaling is an integral component
of the normal process of cutaneous healing and inhibition of
mTOR results in delayed healing [23,51-53]. In this study, we
exploited the ability of Periostin to activate the mTOR pathway,
which is involved in a multitude of cellular functions, including
cell growth, proliferation, motility, protein synthesis and
transcription [54]. Surprisingly, we found that Periostin is
colocalized with the mTOR readout marker pS6 at the leading
edge of unstimulated epithelial cells.

Periostin is overexpressed in different anatomical locations in
the human body that are typically under mechanical stress,
such as the periodontal ligament and heart valves [10,11].
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10

Mechanical Stress Induces Periostin Expression

Artificial mechanical stimulation of epithelial cells mediated by a
computer-regulated bioreactor that applies “in vitro” cyclic
tensile strains resulted in the simultaneous expression of
Periostin and pS6, demonstrating a novel regulatory
mechanism of Periostin and mTOR signaling in epithelial cells
under mechanical stress.

The clinical implications of these findings range from a deep
understanding of the mechanism of Periostin in physiological
conditions to the potential pharmacological intervention of
Periostin in diseases and conditions like congenital ocular
pathologies, persistent fetal vasculature [55], idiopathic
pulmonary fibrosis [56], periodontal disease [57], and
ventricular rupture after myocardial infarction [58] among
others. Nonetheless, rapamycin and other FDA approved
rapalogs constitute a viable therapeutic strategy for diseases
and pathologies associated with increased levels of Periostin,
including colorectal, prostate, breast, and head and neck
cancers [59-62].
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