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ABSTRACT

Motivation: Metabolic engineering aims at modulating the
capabilities of metabolic networks by changing the activity of
biochemical reactions. The existing constraint-based approaches
for metabolic engineering have proven useful, but are limited only to
reactions catalogued in various pathway databases.
Results: We consider the alternative of designing synthetic
strategies which can be used not only to characterize the maximum
theoretically possible product yield but also to engineer networks
with optimal conversion capability by using a suitable biochemically
feasible reaction called ‘stoichiometric capacitance’. In addition, we
provide a theoretical solution for decomposing a given stoichiometric
capacitance over a set of known enzymatic reactions. We determine
the stoichiometric capacitance for genome-scale metabolic networks
of 10 organisms from different kingdoms of life and examine
its implications for the alterations in flux variability patterns. Our
empirical findings suggest that the theoretical capacity of metabolic
networks comes at a cost of dramatic system’s changes.
Contact: larhlimi@mpimp-golm.mpg.de, or nikoloski@mpimp-golm.
mpg.de
Supplementary Information: Supplementary tables are available at
Bioinformatics online.

1 INTRODUCTION
Metabolic reactions play a fundamental role in sustaining cell growth
through the import of nutrients from the environment and their
conversion into molecules rendering a viable organism. Metabolic
reactions do not operate in isolation; they are in fact related through
shared metabolites and form large-scale metabolic networks (Klamt
and Stelling, 2003; Schilling et al., 2000; Schuster et al., 2000).
Altering the structure of metabolic networks provides the means
for modulating their capabilities. To this end, metabolic engineering
aims at re-programming cellular networks by controlling the activity
of biochemical reactions in order to obtain a desirable output
and has already found numerous application in biotechnology and
medicine (Feist et al., 2009; Lee et al., 2011; Müller and Hausmann,
2011). From the early attempts of engineering bacterial strains, it
had become apparent that the biosynthetic capabilities of organisms
are limited not only by the input in a form of nutrients but also by
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the reaction fluxes obeying the basic physico-chemical constraints.
Therefore, constraint-based approaches have gained considerable
attention in the metabolic engineering community (Price et al.,
2003).

Based on the stoichiometry of the considered reactions, flux
balance analysis (FBA) has provided the basic framework for
investigating reaction fluxes in a metabolic network (Edwards and
Palsson, 2000; Kauffman et al., 2004; Lee et al., 2006; Varma and
Palsson, 1994). Extensions of this framework have subsequently
allowed systematic investigations of network modifications directed
at enhancing the production of selected targets. For instance,
OptKnock (Burgard et al., 2003), OptStrain (Pharkya et al., 2004),
OptReg (Pharkya and Maranas, 2006), OptForce (Ranganathan
et al., 2010) and CASOP (Haedicke and Klamt, 2010) as
well as EMILiO (Yang et al., 2011) have facilitated prediction
and in silico verification of network modifications, including
insertion and deletion of reactions from other species or under-
and over-expression of gene products. All of these alternatives
for network modifications rely on the assumption that gene
expression is proportional to reaction flux. The findings of
these optimization-based approaches suggest alternative pathways
and/or flux redirections necessary to achieve the objective of
interest. We note that the enumerated approaches, although very
useful in designing strategies for metabolic engineering, are
limited to the reactions already catalogued in various databases
(Karp et al., 2000; Kanehisa and Goto, 2000; Kumar et al.,
2012). The performance of the suggested strategies is in turn
determined by the maximum achievable yield of a desired
target which is calculated with the help of various optimization
techniques.

Herein, we argue that quantifying the performance of metabolic
engineering strategies in a given metabolic network should rely on
the maximum ‘theoretically’ possible product yield in the network,
given by the optimal inter-conversion of metabolites by using any
biochemically feasible reaction. The notion of theoretical capacity
refers to the estimated maximum production that can be delivered
during a given period, provided a set of inputs. To emphasize the
analogy, in the case of metabolic networks, the inputs are represented
by the nutrients together with the set of metabolic intermediates and
reactions, while the maximum production to be estimated is given
by the suitably chosen objective function. Clearly, the inputs are
given by the existing biochemical knowledge structured in a form
of cellular networks together with the corresponding environmental
constraints.
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Estimation of the theoretical capacity for large-scale metabolic
networks is all the more pressing issue due to the incompleteness
of biological knowledge. The gaps in the current genome-scale
metabolic networks arising as a result of the uncharacterized
function of 20–60% of gene products (Hanson et al., 2010)
can have profound effect on the outcome of optimization-based
approaches (Feist et al., 2009; Marashi and Bockmayr, 2011). This
provides the first justification for using the theoretical capacity as
a golden standard. Therefore, the maximum theoretically possible
yield lends itself as a standard analogous to the ‘theoretical
capacity’ used in finance, transportation/logistics and batteries
research (Todorov et al., 1999; Transportation Research Board,
1997).

In addition, given the large fraction of unknown chemical
reactions in biological systems and the immense space of
macromolecules potentially catalyzing chemical reactions (Dobson,
2004), the most promising targets for metabolic engineering may
not be found among the already characterized enzymes. Instead,
synthetic alternatives obtained through systematic screening for
chemically feasible, but so far uncharacterized, reactions may
offer novel promising options for metabolic engineering (Basler
et al., 2012). This becomes particularly interesting in cases where
the synthetic reactions can be readily decomposed into pathways
of equivalent net conversion capability, involving only known
enzymes.

The article is organized as follows: we first provide a brief
overview of optimization-based approaches for metabolic network
analysis. We then give a detailed and formal description of our novel
concept, called stoichiometric capacitance. Our approach is designed
to determine the theoretical capacity of a given metabolic network
and relies on determining a feasible chemical reaction whose
addition to the network results in maximum product yield. Therefore,
it can be used in designing synthetic metabolic engineering strategies
aimed at improving the yield of any product of interest. We illustrate
the proposed concept on the Krebs cycle with the idea of verifying
if glucose can be synthesized from fatty acids (de Figueiredo et al.,
2009). In addition, we apply the proposed method to improve
biomass yield in genome-scale metabolic networks of 10 organisms
from different kingdoms of life. Finally, we examine the implications
of stoichiometric capacitance for the alterations in flux variability
patterns.

2 METHODS

2.1 Optimization-based approaches
Metabolic networks are composed of metabolites inter-converted by a
set of biochemical reactions. Based on the chosen system boundary, the
metabolites in a given metabolic network can be categorized as ‘internal’
and ‘external’ (Heinrich and Schuster, 1996). The structure of a metabolic
network is fully described by its stoichiometric matrix S ∈R

m×n which
is equivalent to the incidence matrix of the underlying weighted directed
hypergraph (Klamt et al., 2009). The rows of the stoichiometric matrix
correspond to the internal metabolites and each column represents a reaction.
At steady state, the rate of formation of every internal metabolite equals the
rate of its consumption. This is expressed by the flux balance equation

Sv=0, (1)

where v∈R
n denotes the vector of fluxes, also termed ‘flux distribution’, for

the reactions included in the metabolic network. Aside from the flux balance
conditions, flux distributions are also subject to other constraints related to

thermodynamics, environmental conditions and flux capacities, which are
often modeled as linear inequalities

vmin ≤v≤vmax, (2)

where vmin and vmax stand for the lower and upper bounds of the flux
capacities of the considered reactions, respectively.

In addition, the law of mass conservation implies that all internal reactions
must be stoichiometrically ‘mass balanced’, i.e. each stoichiometric column
corresponding to an internal reaction must lie in the kernel of the mass matrix,
M , which contains the molecular sum formulas of the internal metabolites.
More formally,

MS∗j =0 for all internal reactions j∈{1,...,n}, (3)

where Mk,l is the k-th atomic species (i.e. chemical element) in the sum
formula of the l-th metabolite and S∗j stands for the j-th column in the
stoichiometric matrix corresponding to the internal reaction j. Interestingly,
this fundamental physical constraint is rarely considered in metabolic
network analyses, although it provides a necessary precondition for the flux
balance equation (1). Indeed, violation of equation (3) for any metabolite
would allow for the removal or creation of atomic species out of nothing,
thus rendering the flux balance equation meaningless.

The linear constraints given in equations (1) and (2) define a polyhedron

P ={v∈R
n |Sv=0, vmin ≤v≤vmax}, (4)

which contains all possible steady-state flux distributions. Here, we are
interested in those flux distributions that maximize a predefined objective
corresponding to a metabolic network function, such as growth or product
yield. We assume that the network objective of interest is a linear function
τ defined by a vector c∈R

n, such that cT v≥0 for all v∈P. As in FBA, the
optimal value, τ ∗, for a metabolic network with stoichiometric matrix, S, is
obtained by solving the following linear programming (LP) problem:

τ ∗ =max {cT v : Sv=0, vmin ≤v≤vmax}. (5)

Clearly, the set of feasible fluxes for the problem in equation (5) is
narrowed down by the constraints in equations (1) and (2). Namely, under
these constraints, certain reversible reactions proceed only in one direction,
while other reactions, termed ‘blocked’, are unable of carrying flux. A
reaction carrying non-zero flux is termed ‘unblocked’. Furthermore, due to
these constraints, a non-zero flux of certain reactions implies a non-zero flux
through other ones (Burgard et al., 2004). In particular, several reactions can
be essential for performing the considered metabolic capability τ .

In analogy to essential reactions for the growth of a micro-
organism (Edwards and Palsson, 2000), if τ ∗ >0, an unblocked reaction
i is termed essential for τ if there exists αi >0 such that cT v≤αivi for
all v∈P. Let the essential reactions for τ be denoted by �. If we have

αi =min { cT v
vi

: v∈P} for all essential reactions i∈�, then the optimal (i.e.
maximum) capability τ ∗ is given by

τ ∗ =min {αivi : v∈P and i∈�}. (6)

Therefore, increasing the maximum value of the objective τ ∗ requires the
relaxation of the upper bound imposed by the essential reactions on the
objective τ . Such a relaxation either allows essential reactions to carry more
flux or reduces the set of essential reactions, i.e. certain reactions are no
longer essential for τ .

In the following, we introduce the concept of stoichiometric capacitance,
which inherently depends on the aforementioned relaxation, and illustrate
its applications in genome-scale metabolic networks as well as well-studied
pathways.

2.2 Stoichiometric capacitance
The relaxation of some of the linear inequalities (2) may lead to an increase
of the maximal objective τ ∗ in the original network. This can be achieved
by placing the living system in an environment which is in favor of
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the maximization of the objective τ ; for instance, the living system can
import more nutrients. The change in the objective value τ due to the
relaxation of environmental conditions can be assessed using shadow prices
in linear programming (Varma and Palsson, 1993).Alternatively, a significant
improvement of τ can be obtained by determining a sparse vector r ∈R

m such
that τ ∗(r)>τ ∗ with

τ ∗(r)=max {cT v : Sv+r =0, vmin ≤v≤vmax}. (7)

Let I (r)={i∈{1,...,m} |ri �=0}. The vector r can be chosen to simulate
a boundary reaction exporting (respectively importing) the accumulated
(respectively depleted) internal metabolites in I (r). More importantly, if the
vector r lies in the null space of the mass matrix M , defined in equation (3),
then r represents the stoichiometry of a feasible chemical conversion of the
internal metabolites I (r), up to multiplication by scalars. This may include
any set of feasible chemical reactions with net conversion given by r. In the
following, we refer to r as stoichiometric capacitance. We note that if the net
conversion of the stoichiometric capacitance is thermodynamically feasible,
its inclusion in the considered metabolic model, specified by equation (4),
may increase the network objective, τ , given the same amount of nutrients.

In physics and engineering, the term capacitance is classically used to
denote the change that must be added to a system to raise the electrical
potential by one unit. Analogously, the concept of stoichiometric capacitance
will denote the change in the metabolic structure given by the feasible
chemical reaction whose inclusion in the network increases the objective
of interest. The reference point for the increase is provided by the maximum
value of the objective in the original metabolic network.

To investigate the extent to which we can improve the objective τ by
adding a stoichiometric capacitance r to an investigated metabolic network,
for each internal metabolite i∈{1,...,m}, we first introduce a binary variable
xi such that i∈ I (r) implies xi =1. Let μ denote a given maximum number
of non-zero components of r and λ be a predefined upper bound on the
flux through the added reaction. The maximum capability τ ∗(r) and the
corresponding stoichiometric capacitance r can be obtained by solving the
following mixed integer linear programming (MILP) problem

τ∗(r)=max cT v
subject to: Sv+r =0,

vmin ≤v≤vmax ,
Mr =0, (i)
Tr ≤0, (ii)
-λx≤r ≤λx, (iii)∑m

i=1xi ≤μ, (iv)
ri =xi =0,for all i /∈E, (v)
v∈R

n, r ∈R
m, x∈{0,1}m.

Condition (i) ensures that the stoichiometric capacitance, i.e. the added
reaction, is chemically feasible. In other words, it ensures that r represents
a mass-balanced net conversion that preserves the number of consumed and
produced atoms. The inequality in (ii) guarantees that the stoichiometric
capacitance is thermodynamically feasible, with T denoting the vector of
the standard Gibbs free energy of formation of the internal metabolites.
Constraints (iii) and (iv) ensure that r involves a limited number of
metabolites from I (r), i.e. |I (r)|≤μ. Finally, the optional condition (v)
allows modeling a stoichiometric capacitance that involves only a predefined
subset E ⊆{1,...,m} of metabolites. For instance, E may be the set of
metabolites in a particular subcellular compartment or tissue. It is clear
that further constraints can be included in the above MILP problem to
determine a stoichiometric capacitance corresponding to a net conversion
of only reactions that are more likely to occur in nature.

Although the stoichiometric capacitance represents a chemically feasible
reaction, it may not correspond to any of the characterized enzymatic
reactions from investigated organisms. Therefore, it is interesting to address
the problem of determining if the stoichiometric capacitance, determined by
solving the proposed MILP problem, can be expressed as a combination of
a given set R of known enzymatic reactions. The set R can be defined by

using the reactions catalogued in several existing databases of biochemical
reactions (Kanehisa and Goto, 2000; Karp et al., 2000; Kumar et al., 2012).

Here, we define a linear programming problem whose solution resolves
the raised issue. Suppose, the stoichiometry of the reactions in R is given
by the matrix (

A B
0 C

)
,

where A∈R
m×p, B∈R

m×q and C ∈R
m′×q such that A is a stoichiometric

matrix defined in the space of m internal metabolites and

(
B
C

)
describes the

stoichiometry of the reactions in R which involve additional m′ metabolites.
An identified stoichiometric capacitance r can be considered as a net
conversion of the reactions in R if there exist two vectors α∈R

p and β ∈R
q

such that

Aα+Bβ =r,

Cβ =0,

αi(TA∗i)≤0,for all i∈{1,...,p},
βi(TB∗i +T ′C∗i)≤0,for all i∈{1,...,q},

with T ′ denoting the vector of the standard Gibbs free energy of formation
of the additional m′ metabolites.

3 RESULTS AND DISCUSSION
We implemented the proposed method for determining the
stoichiometric capacitance within the TOMLAB environment
(Holmström, 1999).

To illustrate our novel concept, we first consider the Krebs cycle
whose mass-balanced reactions are depicted in Figure 1. Although
a net synthesis of glucose from fatty acids may be feasible in the
entire network of human metabolism (Kaleta et al., 2011), a recent
theoretical analysis has demonstrated that such a conversion cannot
be achieved by using the Krebs cycle (de Figueiredo et al., 2009).
Here, we investigate whether this conversion becomes possible
when a stoichiometric capacitance is added to the model of the Krebs
cycle. To this end, we focus on finding a stoichiometric capacitance
r with the objective of synthesizing glucose, where the set I (r) of
involved metabolites consists only of the following six metabolites:
acetyl coenzyme A (AcCoA), coenzyme A (CoA), isocitrate (Isocit),
(S)-malate (Mal), succinate (Succ) and water (H2O). The rows of the
matrices M and T corresponding to these metabolites are included
in Supplementary Table S1.

Solving the proposed MILP problem, with S given by the
stoichiometric matrix of the glycolysis/gluconeogenesis and Krebs
cycle (de Figueiredo et al., 2009), the matrices M and T for
all the involved metabolites, and the synthesis of glucose as a
metabolic function τ , results in the stoichiometric capacitance r
whose equation is

Isocit+AcCoA+H2O→Mal+Succ+CoA.

Interestingly, the stoichiometric capacitance r is the sum of the
enzymatic reactions catalyzed by the isocitrate lyase (ICL) and the
malate synthase (MAS) from the glyoxylate cycle:

ICL : Isocit→Succ+Gly,

MAS : Gly+AcCoA+H2O→Mal+CoA,

where ‘Gly’ stands for Glyoxylate. This result is in agreement with
the findings in de Figueiredo et al. (2009) which state that glucose
can be produced out of AcCoA using the Krebs cycle when the
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Fig. 1. Metabolic model of glycolysis/gluconeogenesis and Krebs cycle in humans adopted from de Figueiredo et al. (2009). It has been shown that a net
synthesis of glucose from fatty acids cannot be achieved by using the Krebs cycle. A stoichiometric capacitance with the synthesis of glucose as a metabolic
function τ is colored in red. Adding this chemical reaction to the network allows for a net conversion of fatty acids into glucose

Table 1. Comparison of the increases in biomass yield by using the stoichiometric capacitance (SC)

Network FBA SC Reaction equation

M. barkeri, iAF692 0.03 160847% 6 H2O + 2 nac (C6H4NO2) = 2 glycogen (C6H10O5) + N2

S. cerevisiae, iND750 0.10 72% 24 CO2 + 10 sbt_l (C6H14O6) = 14 glycogen (C6H10O5) + 19 O2

M. tuberculosis, iNJ 661 0.05 486% 11 H + 58 ppa (C3H5O2) = 22 glycogen (C6H10O5) + 3 ttdca (C14H27O2)
E. coli, iJR904 0.92 830% 12 CO2 + 20 H = 2 glycogen (C6H10O5) + 7 O2

E. coli, iAF1260 0.74 3202% 6 CO2 + 5 glc_d (C6H12O6) = 6 glycogen (C6H10O5) + 6 O2

E. coli, iJO1366 0.98 1714% 12 CO2 + 9 succ (C4H4O4) = 8 acon (C6H3O6) + 6 H2O2

S. aureus, iSB619 0.07 44% 5aizc (C9H11N3O9P) + arg_l (C6H15N4O2) = aicar (C9H13N4O8P) + citr_l (C6H13N3O3)
H. pylori, iIT341 0.69 370% 2 hom_l (C4H9NO3) = 2obut (C4H5O3) + acac (C4H5O3) + 2 NH4

H. vulgare seeds 2.76 0.75% 2 mal (C4H6O5) + 3 phpyr (C3H5O7P) = 5 CO2 + 3 e4p (C4H9O7P)
B. subtilis 0.40 58% 43 dha (C3H6O3) + 6 3dhsk (C7H7O5) + 9 pime (C7H10O4) = 39 glycogen (C6H10O5)

FBA stands for the optimal biomass yield using flux balance analysis, SC denotes the increases in the optimal biomass yield when a stoichiometric capacitance, determined by
solving the proposed MILP problem, is added to the corresponding network. The last column shows the reaction equation of the corresponding stoichiometric capacitances.

enzymes involved in the glyoxylate shunt are added. We note that
the proposed MILP problem often does not have a unique solution,
i.e. there may be more than one stoichiometric capacitance satisfying
the imposed constraints. For instance, additional stoichiometric
capacitances for the synthesis of glucose are given in Supplementary
Table S2.

To benchmark the proposed method, in the following we explore
the possibility of increasing biomass production in the following

metabolic networks: Saccharomyces cerevisiae, iND750 (Duarte
et al., 2004), Methanosarcina barkeri, iAF692 (Feist et al., 2006),
Mycobacterium tuberculosis, iNJ 661 (Jamshidi and Palsson, 2007),
Escherichia coli, iJR904, iAF1260, iJO1366 (Feist et al., 2007;
Orth et al., 2011; Reed et al., 2003), Staphylococcus aureus,
iSB619 (Becker and Palsson, 2005), Helicobacter pylori,
iIT341 (Thiele et al., 2005), Hordeum vulgare seed (Grafahrend-
Belau et al., 2009) and Bacillus subtilis (Oh et al., 2007).
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We constrain the stoichiometric capacitance to include up to
four metabolites localized in the cytoplasm of the 10 considered
networks. The results for the increase of biomass yield due to the
inclusion of the stoichiometric capacitance are included in Table 1. It
is evident that the stoichiometric capacitance allows for a very small
increase of 0.75% in the case of H. vulgare’s relatively small and
tightly constrained network. However, in the cases of M. barkeri,
iAF692 and E. coli, iAF1260, the maximum theoretically possible
yield is 160 847% and 3202%, respectively.

To further investigate the effect of adding the stoichiometric
capacitance to a given metabolic network, we used flux variability
analysis (Mahadevan and Schilling, 2003). To this end, we
computed the flux ranges with and without adding the corresponding
stoichiometric capacitance to the networks of E. coli, iJO1366,
S. cerevisiae, iND750 and M. tuberculosis, iNJ661. Reactions whose
flux is zero in all optimal FBA pathways are called ‘excluded
reactions’ as they are not involved in optimizing the biomass yield.
Other reactions, termed ‘indispensable’ for growth, carry non-zero
flux in all optimal FBA pathways. Figure 2 shows the changes in the
types of reactions due the inclusion of the stoichiometric capacitance
in the three considered network models.

By inspecting the panels in Figure 2, the following trends,
obtained from the flux variability analysis, become apparent: (i)
the number of indispensable reactions specific to the network with
stoichiometric capacitance (in orange) is smaller compared to that of
indispensable reactions specific to the original network (i.e. without
the stoichiometric capacitance, in red), (ii) the number of excluded
reactions specific to the network with stoichiometric capacitance (in
green) is smaller compared to that of excluded reactions specific
to the original network (in blue) and (iii) the number of reactions
that switch from excluded in the original network to indispensable
in the altered (in blue/yellow) is smaller than that of reactions that
switch from indispensable in the original network to excluded in the
network altered with the stoichiometric capacitance (in red/green);
however, this holds valid only for E. coli and S. cerevisiae.

In addition, we observe in Figure 2 that only few reactions
become indispensable (numbers in orange) or excluded (numbers
in green) and only few reactions change between these types when
adding the stoichiometric capacitance in the three networks. On
the other hand, some of the indispensable (respectively excluded)
reactions in the original network become no longer indispensable
(respectively excluded). Consequently, the flux of these reactions
may vary dramatically and so affect the optimal biomass yield,
which corresponds to the relaxation of the constraints imposed
on the feasible flux distributions when adding the stoichiometric
capacitance. However, we point out that by far most reactions remain
indispensable or excluded (red/orange and blue/green intersections),
which demonstrates that the stoichiometric capacitance may still
strongly rely on the fluxes of reactions from the original network,
while allowing for a significant increase in biomass yield (Table 1).
On one hand, this suggests that the identified stoichiometric
capacitance allows for improving the performance of the original
network without strongly redirecting the activity of the commonly
used pathways, thus yielding a realistic scenario for metabolic
engineering approaches. Nevertheless, since the changes happen
across inspected types of reactions with and without stoichiometric
capacitance, we conclude that the inclusion of the corresponding
stoichiometric capacitance in each of the considered models may
result in dramatic system’s changes.

Fig. 2. Venn diagram of reaction types in the metabolic networks of
E. coli, iJO1366, S. cerevisiae, iND750 and M. tuberculosis, iNJ 661. The
reaction types are determined by flux variability analysis using either the
corresponding original FBA model (without stoi. cap.) or the altered FBA
model (with stoi. cap.) which includes the corresponding stoichiometric
capacitance given in Table 1. Excluded reactions are those which are
not involved in any optimal FBA pathway, whereas reactions termed
indispensable for growth carry non-zero flux in all optimal FBA pathways

4 CONCLUSION
Our novel concept of stoichiometric capacitance allows not only
for quantifying the theoretical capacity of metabolic networks with
respect to a given objective but also suggests verifiable interventions
(i.e. feasible chemical reactions) which provide this capacity, thus

i506



Copyedited by: S.K. MANUSCRIPT CATEGORY: ECCB

[15:38 7/8/2012 Bioinformatics-bts381.tex] Page: i507 i502–i508

Stoichiometric capacitance of metabolic networks

facilitating the design of metabolic engineering strategies. The used
optimization-based formulation takes into account physico-chemical
constraints to restrict the search space in a biochemically meaningful
manner. To this end, we used a mixed integer linear program that
can be efficiently resolved with existing optimization software. It
becomes apparent that the proposed approach can easily be extended
to consider non-linear objective functions discussed in Schuetz
et al. (2007). Further constraints can be included to determine a
stoichiometric capacitance corresponding to a net conversion of only
reactions that are more likely to occur in nature. Our theoretical
framework was used in addressing a concrete question that has
long been debated in biochemistry, and concerns the possibility
to produce sugars from fatty acids. The identified stoichiometric
capacitance nicely confirms existing experimental results. This
example also illustrates how the stoichiometric capacitance, taken
as an overall reaction, can be decomposed into single enzymatic
reactions. We also provided a linear program that addresses the issue
of determining whether the proposed stoichiometric capacitance can
be expressed as an overall conversion of a given set of enzymatic
reactions. Furthermore, the analysis of genome-scale metabolic
networks from various organisms showed that the stoichiometric
capacitance could dramatically increase biomass production. Taken
together, we believe that the presented approach will prove
valuable not only in evaluating and classifying different metabolic
networks according to their theoretical efficiency but also as a
method of choice for designing synthetic metabolic engineering
strategies.
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