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Mammalian cells have the intrinsic capacity to detect viral

pathogens and to initiate an antiviral response that is

characterized by the induction of interferons (IFNs) and

proinflammatory cytokines. A delicate regulation of the

signaling pathways that lead to cytokine production is needed

to ensure effective clearance of the virus, while preventing

tissue damage caused by excessive cytokine release. Here, we

focus on the mechanisms that modulate the signal transduction

triggered by RIG-I-like receptors (RLRs) and their adaptor

protein MAVS, key components of the host machinery for

sensing foreign RNA. Specifically, we summarize recent

advances in understanding how RLR signaling is regulated by

posttranslational and posttranscriptional mechanisms,

microRNAs (miRNAs) and autophagy. We further discuss how

viruses target these regulatory mechanisms for immune

evasion.
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Introduction
Mammalian cells possess pattern-recognition receptors

(PRRs) that recognize foreign molecules, such as viral

replication products or structural components of the viri-

on, commonly known as pathogen-associated molecular

patterns (PAMPs). Upon non-self recognition, the

infected host cell rapidly mounts an innate immune

response characterized by the induction of type I and

III interferons (IFNs), interferon-stimulated genes

(ISGs) and proinflammatory cytokines, to restrict viral

replication and direct adaptive immune responses [1].

The RLR family, comprised of RIG-I, MDA5 and LGP2,

detects viral RNA in the cytosol of most cell types. The
www.sciencedirect.com 
RLRs possess a central DExD/H-box helicase domain

and a C-terminal domain (CTD), which are important for

binding viral RNA. RIG-I and MDA5 further harbor two

N-terminal caspase activation and recruitment domains

(CARDs), which are responsible for downstream signal-

ing. LGP2 lacks the CARDs and is generally thought to

play a regulatory role in RLR signaling (reviewed in [2]).

RIG-I and MDA5 recognize structurally-distinct viral

RNA species. RIG-I senses RNAs possessing both pan-

handle structures and a 50triphosphate moiety, while

MDA5 is thought to recognize long dsRNA or web-like

RNA aggregates (reviewed in [3]). In addition, a recent

study indicated that a 50diphosphate moiety in the viral

RNA can also be recognized by RIG-I [4]. Extensive

functional studies have demonstrated the importance of

RIG-I and MDA5 in sensing RNA virus infections, with

RIG-I playing a critical role in the detection of orthomyx-

oviruses, rhabdoviruses and arenaviruses, and MDA5

preferentially detecting picornaviruses. Moreover, many

viruses (flaviviruses, paramyxoviruses, reoviruses) are

sensed by both RIG-I and MDA5 [5]. Upon RNA ligand

binding, RIG-I and MDA5 bind to their common adaptor

MAVS/Cardif/IPS-1/VISA through CARD–CARD inter-

actions. This leads, via TRAF3 or TRAF6, to the activa-

tion of several well-studied kinases of the IKK family,

namely IKKe and TBK1 as well as IKKa/b/g. Through

phosphorylation steps, these kinases ultimately activate

the transcription factors IFN-regulatory factor 3 and 7

(IRF3/7), NF-kB, and ATF2/c-Jun, which then induce

the transcription of IFNs and proinflammatory cytokines

(reviewed in [6]). Subsequently, secreted IFNs bind to

their respective receptors and induce the expression of

hundreds of ISGs, leading to an antiviral state.

While antiviral and proinflammatory cytokines are key to

controlling viral infection, they can also lead to inflam-

mation and tissue damage and hence must be tightly

controlled. In the following sections we review the

molecular and cellular processes that regulate RLR sig-

naling, with emphasis given to recently published work.

RLR regulation by posttranslational
modifications (PTMs)
In the past several years, it has become evident that the

activation of RIG-I and MDA5 is a multi-step process

consisting of viral RNA binding, conformational changes,

and a series of PTMs. Furthermore, regulatory PTMs

ensure that aberrant RLR signal transduction does not

occur in the absence of a viral infection (Figure 1). In
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uninfected cells, RIG-I is kept in an auto-repressed state

due to the masking of its CARDs by the helicase domain

[7]. To prevent aberrant downstream signaling, RIG-I

and MDA5 also undergo phosphorylation at multiple

residues: S8 and T170 as well as T770 and S854/S855

in the RIG-I CARDs and CTD, respectively; and S88 in

the MDA5 CARDs [8]. RIG-I is kept phosphorylated at

these CARD and CTD sites by protein kinase C a/b

(PKCa/b) and casein kinase II (CKII), respectively, while

the kinase(s) for MDA5 phosphorylation is still unknown

[9,10]. An RNAi screen against the human phosphatome

recently revealed that two highly homologous isoenzymes

of phosphoprotein phosphatase 1 (PP1a and PP1g) are

responsible for RIG-I and MDA5 dephosphorylation,

thereby triggering their activation [11�]. In response to

viral RNA binding, PP1a/g binds and dephosphorylates

both RIG-I (S8 and T170) and MDA5 (S88) in the

CARDs, allowing for MAVS binding, likely through a

rearrangement of the tandem CARD after dephosphory-

lation. The phosphatase(s) for the removal of the phos-

phorylation marks in the RIG-I CTD is currently

unknown. As PP1a and PP1g dephosphorylate numerous

substrates in the cell, current studies are focused on

elucidating the mechanism of PP1’s substrate specificity

towards RLRs in infected cells.

Recent data demonstrated that, in the case of RIG-I,

there is crosstalk between phosphorylation and K63-

linked ubiquitination, a polyubiquitin linkage that does

not trigger proteasomal degradation but facilities signal

transduction events. Biochemical studies demonstrated

that in uninfected cells, RIG-I is robustly phosphorylated

but minimally ubiquitinated in its CARDs and CTD.

However, upon stimulation of RIG-I by viral RNA bind-

ing, dephosphorylation occurs, and this triggers robust

K63-ubiquitination of RIG-I by two critical ubiquitin E3

ligases, TRIM25 and Riplet. Mechanistically, Riplet first

induces K63-linked ubiquitination of K788 in the CTD of

RIG-I [12]. This appears to trigger a conformational

change that exposes the CARDs, enabling TRIM25 to

bind and to attach K63-linked ubiquitin chains to K172 in

RIG-I CARD2, ultimately leading to RIG-I oligomeriza-

tion and MAVS binding [13]. K63-linked ubiquitination

of CARD2 by TRIM25 is critical for RIG-I activation, as

loss of TRIM25 severely hampers RIG-I signaling. Fur-

thermore, K63-linked ubiquitin chains have also been

shown to bind to the CARDs non-covalently to promote

RIG-I oligomerization and activation [14]. Thus, it has

been unclear for quite some time how both covalent and

non-covalent K63-polyubiquitin mediate RIG-I activa-

tion. This question was recently addressed by structural

analysis of the RIG-I CARDs, which showed that the

CARDs form a helical tetramer adopting a ‘lock-washer

configuration’, in which three K63-diubiquitins are

wrapped around the outer rim of the CARD tetramer

[15��]. This study further showed that K172 is within the

covalent linkage distance to ubiquitin (<20 Å), strongly
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indicating that this residue is indeed covalently ubiqui-

tinated. Biochemical studies comparing the activation

capacity of covalent versus non-covalent K63-diubiquitin

showed that, while both induced RIG-I tetramerization

and MAVS activation, covalent K63-diubiquitin had a

stronger RIG-I activation capacity than unanchored

K63-diubiquitin [15��]. It has been recently shown that

RIG-I can also be activated in a ubiquitin-independent

manner. Specifically, the IFN-inducible oligoadenylate

synthetase-like (OASL) protein, which contains two

ubiquitin-like domains, binds to RIG-I and mimics

K63-linked polyubiquitin, thereby enhancing RIG-I

activation [16�]. This study proposed a model in which

TRIM25 and Riplet-mediated K63-linked ubiquitination

is essential for RIG-I activation early during infection,

while OASL activates RIG-I at later time points.

The importance of K63-linked ubiquitination for RIG-I

activation was further strengthened by the identification

of several deubiquitinating (DUB) enzymes that remove

this ubiquitin mark from RIG-I to inhibit its signaling.

CYLD (cylindromatosis) deubiquitinates RIG-I and

several downstream molecules to prevent premature

RIG-I activation in uninfected cells [17], while USP3

deubiquitinates RIG-I specifically after viral infection,

likely serving as a negative feedback regulator [18]. In

contrast, USP21 has been shown to bind and deubiqui-

tinate RIG-I independent of viral infection [19]. Togeth-

er, these studies establish K63-linked ubiquitination as a

crucial activation mark for RIG-I. In contrast, the role of

K63-linked ubiquitin polymers in MDA5 activation is still

a subject of debate. In general, our knowledge of PTMs

that regulate the signaling activity of MDA5 lags signifi-

cantly. As described above, dephosphorylation by PP1a/g

has been shown to be critical for MDA5 activation [11�].
In addition, SUMOylation of the MDA5 CTD by the

E3 ligase PIAS2b facilitates MDA5-mediated antiviral

signaling; however, the precise mechanism of this

activation mode remains unknown [20].

In contrast to K63-linked ubiquitination, which serves as

an activation mark, K48-linked ubiquitination triggers

proteasomal degradation to regulate the turnover of

cellular proteins, including key molecules in the RLR

pathway. The RING-finger protein 125 (RNF125)

induces K48-linked ubiquitination and proteasomal

degradation of RIG-I, MDA5 and MAVS, thereby

preventing excessive RLR signaling [21]. Conversely,

USP4 stabilizes RIG-I by removing K48-linked ubiqui-

tination [22]. The stability of TRIM25 is tightly regulat-

ed by K48-linked ubiquitination mediated by the linear

ubiquitin assembly complex (LUBAC), consisting of the

two E3 ligases HOIL-1L and HOIP [23]. Conversely,

USP15 has been recently identified as a DUB enzyme

that stabilizes TRIM25, thereby ensuring effective viral

clearance through sustained IFN-b production [24]. The

abundance of MAVS is also delicately controlled by
www.sciencedirect.com
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Regulation of RLR signaling, as exemplified by RIG-I. RIG-I is kept in an inactive phosphorylated state in resting cells by PKCa/b and CKII. Upon

engagement of viral RNA, RIG-I undergoes a conformational change and is dephosphorylated by PP1a/g. Subsequently, activation of RIG-I is

mediated by K63-linked ubiquitination of the CTD and CARD domains by Riplet and TRIM25, respectively, promoting RIG-I tetramerization. OASL

can mimic K63-linked ubiquitination to promote RIG-I activation. The adaptor protein 14-3-3e mediates translocation of the active RIG-I-TRIM25

complex to mitochondrion/MAM-localized MAVS, leading to downstream signal transduction that results in type I IFN gene expression (not

illustrated). The deubiquitinating enzymes CYLD, USP21 and USP3 remove K63-linked polyubiquitin chains from RIG-I as a form of homeostatic

regulation to prevent aberrant IFN induction. The expression of CYLD is suppressed by miR-526a. TRIM25, RIG-I and MAVS are further regulated

by degradative K48-linked ubiquitination mediated by LUBAC, RNF125, and AIP4, Smurf1, and RNF5, respectively. Conversely, USP15 and USP4

deubiquitinate TRIM25 and RIG-I, respectively, to stabilize the proteins. The Atg5–Atg12 conjugate and Sec14L1 block RIG-I–MAVS interaction to

prevent antiviral signaling. A RIG-I splice variant (RIG-I SV), MAVS splice variant (MAVS1a) and miniMAVS also contribute to prevent excessive

signaling.
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degradative K48-linked ubiquitination mediated by the

E3 ligases AIP4 (also called ITCH), Smurf1 (SMAD

ubiquitin regulatory factor 1), and RNF5 [25–27]. How-

ever, it is currently unknown how MAVS stability is

dynamically regulated by these three E3 ligases, and

whether they act in a temporal or cell type-specific

manner.

RLR regulation by posttranscriptional
mechanisms
Several posttranscriptional mechanisms modulating RLR

signaling have been identified, including alternative

splicing and translation, as well as regulation by micro-

RNAs (miRNAs), small noncoding RNAs that lead to the

degradation or translational repression of target mRNAs

by binding to complementary sequences in their 30

untranslated region (UTR). In most cases, posttranscrip-

tional mechanisms are part of a negative feedback loop to

dampen RLR signaling, thereby preventing excessive

or sustained production of antiviral and inflammation-

inducing proteins (Figure 1).

Alternative splicing has been shown to play an important

role in modulating the activities of RIG-I and MAVS. A

splice variant of RIG-I (RIG-I SV) is specifically induced

upon viral infection or IFN stimulation [28]. RIG-I SV

carries a short deletion (amino acids 36–80) in CARD1

and is therefore unable to bind TRIM25 for downstream

activation. RIG-I SV suppresses antiviral signaling in a

dominant-negative manner by hetero-oligomerizing with

full-length RIG-I, which prevents MAVS binding. Simi-

larly, a splice variant of MAVS (MAVS1a) strongly binds

to RIG-I and inhibits its interaction with full-length

MAVS for signal transduction [29]. Furthermore, it has

been recently reported that the MAVS mRNA is bicis-

tronic, and that alternative translation gives rise to a

smaller MAVS protein termed ‘miniMAVS’ [30��]. Mini-

MAVS dampens IFN induction, but its ability to promote

cell death is comparable to that of full-length MAVS. The

precise mechanism of how miniMAVS acts, however, is

unknown.

Innate immune signaling triggered by virus infection also

leads to the upregulation of several miRNAs, which in

turn modulate RIG-I activity and IFN induction. For

example, miR-526a is induced in monocytes upon vesic-

ular stomatitis virus (VSV) infection and directly sup-

presses the expression of CYLD, thereby enhancing

K63-linked ubiquitination of RIG-I and its activation

[31]. VSV infection also induces the expression of miR-

146a in macrophages in a RIG-I-dependent manner.

MiR-146a then acts as a negative-feedback regulator of

the RLR pathway by targeting several important down-

stream signaling molecules, including TRAF6 [32].

Furthermore, miR-466l directly binds to the 30UTR of

IFN-a mRNAs and reduces their expression during

VSV infection [33].
Current Opinion in Virology 2015, 12:7–14 
Regulation of RLR–MAVS signal transduction
by subcellular localization and autophagy
Apart from molecular regulatory mechanisms, cellular

processes control and shape the signaling activities of

RLRs and MAVS. RLRs are traditionally thought to be

‘free floating’ cytosolic molecules, though recent studies

indicated that RLRs are localized to cytoplasmic bodies

induced by protein kinase R (PKR) and DHX36, known

as antiviral stress granules (avSGs) [34]. It has been

proposed that avSGs provide a platform for RLRs, other

antiviral proteins (PKR, RNAseL, and OAS1), and viral

RNA to interact, thereby augmenting RLR signaling.

Further studies are required to determine the contribu-

tion of soluble versus avSG-associated RLRs to antiviral

immunity, and whether other subcellular compartments

are used by RLRs for initiating signal transduction.

In contrast to that of RLRs, the regulation of MAVS by

subcellular localization is better characterized due to its

membrane-bound nature. MAVS resides in multiple sub-

cellular regions, including the outer mitochondrial mem-

brane, mitochondrial-associated membranes (MAMs, a

specialized subdomain of the ER located adjacent to

mitochondria), and peroxisomes [35–37]. Functionally,

while cytosolic MAVS is unable to signal, mitochondrial

and MAM-associated MAVS are responsible for type I

IFN induction. Furthermore, recent work has indicated

that peroxisomal MAVS preferentially induces type III

IFNs [38].

Upon PAMP recognition, cytosolic RLRs must interact

with membrane-bound MAVS. How this translocation

event occurs, however, was not known until recently. It

has been shown that the activated RIG-I-TRIM25 com-

plex requires binding to the adaptor protein 14-3-3e to

translocate to mitochondria/MAMs for MAVS interaction

and downstream activation [39�]. It is unclear if MDA5

also requires 14-3-3e for mitochondrial translocation, and

if other adaptor proteins control RLR translocation to

other MAVS locations such as the peroxisomes.

Autophagy, a degradation process well-known for its role

in the removal of protein aggregates and organelles, also

plays a critical role in innate immunity by either degrad-

ing intracellular pathogens or by homeostatically regulat-

ing innate immune signaling (reviewed in [40]). It has

been reported that cells deficient in Atg5, a key regulatory

protein of autophagy, are defective in autophagosome

formation and accumulate damaged mitochondria, lead-

ing to increased RLR stimulation, likely due to increased

release of reactive oxygen species (ROS) [41]. Another

line of evidence also supports the negative regulation of

RLR signaling by Atg5; however, this study suggested a

different mechanism, specifically that Atg5–Atg12 conju-

gate suppresses IFN induction by directly interacting

with the CARDs of RIG-I and MAVS [42]. Similarly,

Sec14L1, a protein that is not implicated in autophagy,
www.sciencedirect.com
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inhibits the CARD–CARD interaction of RIG-I and

MAVS [43].

Pathogenic viruses target RLR regulation for
immune evasion
Viruses and their hosts are in an active ‘arms race’ that

drives continuous co-evolution. Given the importance of

RLRs for an effective innate immune response, viral patho-

gens have evolved means to manipulate various RLR

regulatory mechanisms for immune evasion (Figure 2).

Many viruses have been shown to dysregulate the PTMs

of RLRs. For example, measles and Nipah viruses, both

members of the paramyxovirus family, antagonize the
Figure 2
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phosphatases PP1a/g to prevent RLR dephosphorylation

and hence activation. Mechanistically, their V protein, a

well-known IFN antagonist, interacts with PP1a/g and

sequesters these phosphatases away from MDA5, thereby

keeping it in the CARD-phosphorylated, inactive state

[44]. Furthermore, in dendritic cells, measles virus targets

PP1a/g through a V-independent mechanism by inducing

DC-SIGN signaling and formation of a negative-regulatory

PP1 complex, inhibiting both RIG-I and MDA5 [45].

Previously, multiple studies have demonstrated that the

V proteins of several paramyxoviruses, including parain-

fluenza virus 5 (PIV5), antagonize MDA5 through a direct

interaction with its helicase domain, thereby blocking its
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 general strategies used by viruses to target RLR–MAVS signaling: (1)

) sequestration of RLRs, (4) modulation of RLR localization, and (5)

details of the viral antagonistic mechanisms are described in the text.

Current Opinion in Virology 2015, 12:7–14
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ATPase activity [46,47�]. VP35 of Ebola virus (EboV) and

NS1 of influenza A virus (IAV) specifically inhibit the

ATPase activity of RIG-I that is stimulated by PACT

(PKR activator) [48,49].

With regards to K63-linked ubiquitination of RIG-I, the

NS1 protein of IAV binds to the ubiquitin E3 ligase

TRIM25 to block ubiquitination of the RIG-I CARDs

[50]. Furthermore, the NS1 proteins of some IAV strains

were shown to also bind human Riplet to inhibit ubiqui-

tination of the RIG-I CTD [51]. A recent study indicated

that the NS3/4A protease complex of Hepatitis C virus

(HCV) cleaves not only MAVS but also Riplet to prevent

RIG-I activation [12,37,52]. Viruses also act directly on

RIG-I ubiquitination by encoding enzymes that deubi-

quitinate RIG-I and hence inactivate it. Orf64, a viral

DUB of Kaposi’s sarcoma-associated herpesvirus

(KSHV), removes K63-ubiquitin chains from the RIG-I

CARDs [53]. The papain-like protease (PLP) of severe

acute respiratory syndrome coronavirus (SARS-CoV) and

the leader proteinase (Lpro) of foot-and-mouth disease

virus (FMDV) also deubiquitinate RIG-I and other innate

immune signaling molecules [54,55]. Finally, arteri-

viruses and nairoviruses encode proteins with ovarian

tumor (OTU)-type DUB enzymatic activities to remove

K63-polyubiquitin from RIG-I [56].

Another viral strategy to escape the RLR response is

modulating the expression of specific miRNAs that target

critical regulatory proteins in the RLR pathway. For

example, the 3C protein of Enterovirus 71 blocks the

upregulation of miR-526a in infected cells, which leads to

increased expression of CYLD and hence RIG-I inhibi-

tion via deubiquitination [31].

Viruses are also equipped with proteins that modulate

the subcellular localization of RLRs or actively degrade

components of the RLR pathway. For example, poliovi-

rus and encephalomyocarditis virus (EMCV) use their 3C

proteases to prevent the formation of RLR-containing

avSGs through cleavage of the Ras-Gap SH3 domain

binding protein 1 (G3BP1) [57,58]. Other proteins

sequester RLRs from MAVS. The M protein of SARS-

CoV, the Z protein of New World (NW) arenaviruses, and

the glycoprotein G of human metapneumovirus (hMPV)

bind to RIG-I to sequester it from MAVS. Furthermore,

the N protein of respiratory syncytial virus (RSV) binds

specifically to MDA5, relocalizing it to large inclusion

bodies [59–62]. In addition, the NSs protein of severe

fever with thrombocytopenia syndrome virus (SFTSV)

has been recently shown to interact with RIG-I, TRIM25

and TBK1 and to relocalize them into cytoplasmic

endosome-like structures for sequestration [63]. More-

over, PB1-F2 of IAV reduces the inner membrane

potential of mitochondria, leading to fragmentation of

these organelles and inhibition of innate immune

signaling [64,65�].
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Another important evasion strategy employed by several

viruses is cleavage of RIG-I, MDA5 and/or MAVS. For

example, enteroviruses cleave both MDA5 and MAVS

using their protease 2Apro, thereby blunting IFN-b in-

duction [66,67]. Measles virus infection triggers selective

autophagy to degrade mitochondria (a process termed

‘mitophagy’), resulting in decreased MAVS abundance

and disruption of RLR signaling [68]. Finally, the NS1

and NS2 proteins of RSV have been recently shown to

trigger the degradation of RIG-I, IRF3 and many other

molecules in the IFN induction pathway by assembling a

large degradative complex on the mitochondria [69].

Conclusions
The past 10 years have provided new fundamental

insights into the molecular mechanisms that stimulate

RLR signaling, such as K63-ubiquitin-mediated assem-

bly of CARD signaling platforms, and the diversification

of RLR function due to specific subcellular localizations

of MAVS. However, while many regulatory mechanisms

have been unveiled for RIG-I, significantly less is known

about the molecular details of how the activities of MDA5

and LGP2 are controlled during infection. Likewise,

whereas the role of miRNAs in other cellular processes

is well-characterized, the regulation of RLR signaling by

miRNAs has just begun to be elucidated.
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