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Abstract

Background: Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the
scope and predictive capabilities of constraint-based modeling. ME models present considerable computational
challenges: they are much (> 30 times) larger than corresponding metabolic reconstructions (M models), are
multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule
dilution constraints.

Results: Here, we address these computational challenges. We develop a fast and numerically reliable solution
method for growth maximization in ME models using a quad-precision NLP solver (Quad MINOS). Our method was up
to 45 % faster than binary search for six significant digits in growth rate. We also develop a fast, quad-precision flux
variability analysis that is accelerated (up to 60× speedup) via solver warm-starts. Finally, we employ the tools
developed to investigate growth-coupled succinate overproduction, accounting for proteome constraints.

Conclusions: Just as genome-scale metabolic reconstructions have become an invaluable tool for computational
and systems biologists, we anticipate that these fast and numerically reliable ME solution methods will accelerate the
wide-spread adoption of ME models for researchers in these fields.
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Background
Constraint-based reconstruction and analysis (COBRA)
methods enable systems level computation of cellular
functions using genome-scale biochemical reaction net-
works, including metabolism [1]. Metabolic network
reconstructions are used to compute reaction fluxes at
pseudo steady-state by solving the linear program,

max
v

cTv

s.t. Sv = 0,
vL ≤ v ≤ vU ,
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where v is the vector of fluxes, vL and vU are lower and
upper flux bounds, S is the stoichiometric matrix, and c
is the vector of objective coefficients (e.g., to maximize
growth rate). We refer to [2] for details on COBRA for
metabolic networks.
Recently, Lerman et al. [3] developed the first inte-

grated genome-scale reconstruction of Metabolism and
macromolecular Expression (ME) for the microorgan-
ism Thermotoga maritima. This ME model described the
transcription and translation machinery associated with
651 genes and the metabolic network catalyzed by the
enzymes synthesized in themodel. Thereafter, Thiele et al.
[4] developed the first ME model for Escherichia coli,
which was followed by additional ME models for E. coli
by [5] and [6]. The latest ME models for E. coli account
for 80 % of the proteome by mass [5], enable computation
of proteome allocation shifts between conditions [7], and
predict the macromolecular composition of the cell [8].
While ME models are a significant advancement for

COBRA modeling, they pose challenging mathemati-
cal optimization problems because of their size and
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multiscale nature. In particular, the vastly different mag-
nitudes of metabolic and expression machinery fluxes
lead to ill-conditioned problems that cause difficulties for
standard optimization solvers: feasible problems can be
reported as infeasible, or solutions may contain numerical
errors. Methods have been developed to enable off-the-
shelf linear programming (LP) solvers to be used for
solving ME models [9]. Additionally, quad-precision LP
solvers have been recently applied to ME models [10].
They present an attractive balance between reliability and
speed for practical solution of ME models.
The growth rate maximization problem for ME mod-

els is actually a nonlinear program (NLP) but it becomes
an LP when the growth rate μ is fixed. So far, the
NLP has been solved using binary search on μ [5],
with high-precision LP solvers [11] solving a sequence of
LP subproblems. Thus, a remaining question has been
whether NLP solvers could solve the NLP more expedi-
ently. The solution of NLPs in quad-precision has only
recently become possible due to the development of quad-
precisionMINOS (QuadMINOS) [10]. However, the NLP
capabilities of Quad MINOS have not yet been tested
for multiscale ME models (only the LP capabilities have
been reported in [10]). We thus report the first study
for solving the nonlinear growth maximization problem
for ME models using NLP methods in quad precision.
With a suitable initial estimate of μ, the quad-precision
NLP approach proves to be both fast and numerically
reliable.

Results
We developed several solution methods for solving lin-
ear and nonlinear programs involving ME models. These
methods are listed in Table 1, and are discussed in detail
in subsequent sections.

NLP formulation and its global optimum
The growth rate maximization problem in a ME model
is typically a nonlinear program because macromolecule

Table 1 Glossary of solution methods

Method Description

bisectME Maximizes growth rate μ via binary or golden section
search [15]. Uses QuadMINOS to solve LP subproblems in
quad precision [10]. Every LP after the first is warm-started
using the previous solution.

solveME Combined solution procedure for the nonlinear growth-
rate maximization problem Eq. (1). Uses bisectME to find
a feasible estimate μ0, which is used to compute μ (and
all fluxes) to high precision using the Quad MINOS NLP
solver.

varyME Flux variability analysis [16] in quad precision with solver
warm-starts [17].

dilution is modeled using the product of growth rate with
a continuous reaction flux [5]. Specifically, the ME prob-
lem of maximizing growth rate is formulated as follows:

max
μ, v

μ

s.t. Sv = 0, vL ≤ v ≤ vU

vdilution,ribo ≥
∑

i∈Peptide

( lp,i
criboκτ

(μ + r0κτ ) · vtranslation,i
)

vdilution,RNAP ≥
∑

i∈TU

(
lTU,i

3criboκτ

(μ + r0κτ) · vtranscription,i
)

vdilution,j ≥ 1
κτ ctRNA,j

(μ + κτ r0) vcharging,j, ∀j ∈ tRNA

vdilution,j ≥ μ
∑

i

(
1
keffij

vusage,i

)
, ∀j ∈ Enzyme

additional μ-dependent constraints,

where μ is the growth rate and v is the vector of all fluxes;
lp,i is the length of peptide i and lTU,i is the length of
transcription unit i; cribo, κτ , r0, keffij , cmRNA,j, ctRNA,j are
constants; and Peptide, TU , tRNA, Enzyme are index sets
of v representing peptides, transcription units, tRNA, and
enzymes, respectively.
Collecting all linear and nonlinear constraints, we for-

mulate the nonlinear ME problem in the following gener-
alized form (Eq. 1):

max
μ, v

μ (1)

s.t. μAv + Bv = 0
Sv = 0, vL ≤ v ≤ vU ,

where the constraints μAv + Bv = 0 are quasiconvex
(quasilinear, in fact—see “Methods”).
An optimal solution μ∗ can be found using binary

search (bisection) as in [5]. Dattorro [12] proves that μ∗
is a global optimum. With a < μ∗ < b and initial esti-
mateμ0 ∈[ a, b], bisection converges to specified accuracy
ε in log2((b− a)/ε) iterations. We implemented bisection
as Algorithm bisectME using the simplex method in quad
precision (Quad MINOS [10]).
Faster convergence to the global optimum is possi-

ble with an appropriate NLP solver. Specifically, Quad
MINOS is a quad-precision implementation of MINOS
[13]. For problem Eq. (1), MINOS solves a sequence of
linearly constrained subproblems defined by linearizing
the constraints at a sequence of approximate solutions
{μk , k = 0, 1, 2, . . . }. (The objective function for each
subproblem is an augmented Lagrangian.) If MINOS con-
verges, it will be to a global optimum μ∗. Furthermore,
the subproblems converge quadratically when μk is close
enough to μ∗ (Robinson [14]).



Yang et al. BMC Bioinformatics  (2016) 17:391 Page 3 of 10

We tested the effect of μ0 and the MINOS scaling
option on the computation time and final solution. Empir-
ical tests showed that μ0 = 0.0 should be avoided, as
should μ0 > μ∗ (Fig. 1).
The latter is understandable in terms of the algorithm

used by MINOS to handle nonlinear constraints [13]. By
definition, the constraints are infeasible when μ > μ∗.
Hence, if the constraints are linearized at μ0 > μ∗,
they will be infeasible. The MINOS algorithm is not well-
defined in this circumstance. As expected, the solution
time was generally shorter when μ0 was closer to μ∗.

solveME: Combined solution procedure for growth
maximization NLP
Because Quad MINOS converges faster when μ0 is closer
to the optimum, we developed a combined solution pro-
cedure that uses a coarse bisection via bisectME to iden-
tify μ0 < μ∗, then provides the corresponding basis to
warm-start Quad MINOS on the NLP. This procedure is
described in Algorithm 1.
For the bisectME phase, we implemented golden section

search (GSS) [15] for improved efficiency (fewer quad-
LP evaluations). Specifically, we found that for 3-decimal
precision in growth rate, GSS required 81 seconds,
while binary search required 98 seconds, representing a
17 % speedup. Whether using golden section or binary,
bisectME produces a basis compatible with the NLP
solver, enabling warm-start of the NLP. Hence we used
GSS to find a low-precision estimate μ0 for the NLP. The

Optimal mu

0

200

400

600

800

0.00 0.25 0.50 0.75 1.00 1.25
Initial growth rate, mu0

T
im

e 
(s

)

scale_opt No solver scaling With solver scaling (2)

Final_mu_correct FALSE TRUE

Fig. 1 Effect of initial solution and scaling. Shading represents 90 %
confidence intervals for a loess fit of the data points computed using
ggplot2 in R. When scaling was used, this solver option was set to a
value of 2 (series of alternating row and column scaling with
additional scaling)

Algorithm 1: solveME
Data: ME model; required decimal points, d, for

bisectME
Result: Optimal growth rate, μ∗, and flux vector, x∗
check feasibility at μ = 0.0
if infeasible then

stop
else

run bisectME to d decimal points for μ to
determine growth rate μbs ≤ μ∗, solution vector
xbs, and basis hbs

μ0 ← μbs

x0 ← xbs

h0 ← hbs
max μ using Quad MINOS(μ0, x0, h0) to
determine μ∗ and x∗

end

resulting basis and approximate μ were used to warm-
start Eq. (1) reliably and efficiently at a μ0 < μ∗.
The combined solveME procedure took 68 to 85 s

(Fig. 2), depending on the accuracy requested in bisectME.
Empirically, zero decimals led to the longest solve time,
while the fastest solve was achieved when one decimal
was requested (two decimals when protein-per-RNA ratio
was μ-dependent) (Fig. 2). For more decimals, the time
spent in bisectME offset the advantages of starting the
NLP closer to the optimum.

P/R: constant P/R: mu−dependent
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Fig. 2 Performance of the combined solveME procedure. Colored
bands represent the range of solution times (3 replicate runs) for the
binary or golden section search methods with growth rate
convergence to 3 or 6 decimal points. Points show solution time for
the combined solveME procedure (3 replicate runs each) for varying
decimal points required at the bisectME phase. The protein-per-RNA
ratio (P/R) in the ME model was either constant (left) or growth-rate
dependent as in [5] (right). Uptake rates were free in both cases, such
that proteome limitation eventually constrained uptake rates
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Compared to the combined solveME, bisectME (with
golden section search) took an average of 75 and 103 s for
3 and 6 decimal points respectively, while binary search
(not GSS) required an average of 93 and 124 s for 3- and
6-digit precision in growth rate. All runs were performed
in quad-precision using Quad MINOS.
In summary, the combined solveME was up to 10 and

34 % faster than golden section search, or 27 and 45 %
faster than binary search, for 3- and 6-digit accuracy in
growth rate. Another advantage of the combined solveME
over bisection methods was that the growth rate was
always returned to about 15 digits because of the tol-
erances set for Quad MINOS; therefore solution time
was not a function of final solution precision. To reach
the same precision, bisection would require about 50
iterations, or over 400 s. Furthermore, double-precision
solvers would have difficulty achieving even 6 or 7 digits.
In particular, commercial double-precision solvers such

as CPLEX and Gurobi handle feasibility and optimality
tolerances as small as 10−9 but are not certain to achieve
them. Using quad-precision, we achieved feasibility and
optimality tolerances below 10−15, and often less than
10−20.

varyME: quad-precision ME variability analysis
In addition to growth rate maximization, we developed
quad-precision flux variability analysis (FVA) [16] for
ME models, referred to as varyME. As with the fastFVA
method [17] for metabolic reconstructions, we decreased
the computation time by warm-starting Quad MINOS
using the basis from previous LP solutions.

Improved solution reliability via quad-precision
Empirical tests demonstrated the importance of quad-
precision when FVA is applied to ME models. Specifi-
cally, without quad-precision, errors such as maximum
flux being less than the minimum flux were observed
(Table 2). Another example is the varyME result for trans-
lation of b0071 and b0072, encoding for LeuC and LeuD,
respectively. LeuC and LeuD are the two subunits for the
isopropylmalate isomerase complex. The formation of this
complex is the only sink for the two translation prod-
ucts, other than dilution; therefore, FVA should return

equal values for the two translation fluxes. Indeed, Quad
MINOS correctly determined equivalent FVA solutions
for b0071 and b0072, while double-precision runs using
CPLEX led to different FVA solutions (Table 2). Addi-
tionally, at maximum growth rate, the ME model showed
essentially zero variability in the translation rates because
of the tendency of ME models to choose only the
most efficient proteins. This phenomenon was accurately
captured in quad-precision but not in double-precision
(Table 2).
When varyME was performed at growth rates below the

maximum, non-zero flux variability was observed (Fig. 3).
Again, double-precision ran into numerical difficulties.
For example, at lower growth rates, the flux variability of
most reactions should be wider, as correctly predicted by
Quad MINOS; however, double-precision (CPLEX) runs
sporadically predicted narrower ranges at lower growth
rates, presumably due to the numerical difficulties asso-
ciated with the multiscale ME model. Collectively, these
results emphasize the importance and practical utility of
quad-precision for ME models.
Finally, we tested the speedup of flux variability analy-

sis when each LP was warm-started (as in [17]) using the
basis of the previous LP instead of “cold-starting” every
LP. We observed 60× and 25× speedup for the E. coli
and T. maritima ME models, respectively (Table 3). This
result confirmed the effectiveness of warm-starting LPs as
observed by [17] and is the default mode for varyME.

Case study: Proteome-accounting for growth-coupled
biochemical overproduction
ME models have imminent utility for systems metabolic
engineering. In particular, biochemical overproduction
strain design often involves gene knockouts and modulat-
ing the expression of production pathways. These genetic
manipulations impact host fitness in part by forcing real-
location of the host proteome away from growth and
stress response functions. ME models now allow genome-
wide accounting of proteome reallocation for engineered
strains.
To demonstrate, we analyzed the overproduction of

succinate using growth-coupled designs that had been
found using a metabolic reconstruction [18, 19]. In

Table 2 Comparison of FVA in quad- and double-precision at maximum growth rate

Quad-precision Double-precision

Reaction Protein vmin (nmol/gDW/h) vmax (nmol/gDW/h) vmin (nmol/gDW/h) vmax (nmol/gDW/h)

translation_b0169 RpsB 30.719225 30.719225 30.715011 30.712581

translation_b0025 RibF 0.210161 0.210161 0.212807 0.211712

translation_b0071 LeuD 0.303634 0.303634 0.303304 0.765585

translation_b0072 LeuC 0.303634 0.303634 0.303304 0.681146

Note that the flux units are in nanomoles/gDW/h
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Fig. 3 Comparison of FVA in quad- and double-precision. Growth
rates were varied from 10 to 100 % of the maximum). Lines span the
minimum and maximum fluxes, while points show the mid-point
between these ranges. The y-axis is in log-scale

particular, the designs involved succinate dehyrogenase
(sdhCDAB) knockout, together with overexpression of
fumarate reductase (frdABCD), isocitrate lyase (aceA), or
both.
To delete sdhCDAB, we set zero upper bounds for the

translation reactions of the four sdhCDAB subunit genes.
Overexpression of frdABCD and aceA was performed in
three steps. First, we determined the maximum growth
rate with sdhCDAB deleted. We then used varyME to
determine the feasible flux ranges for the complex forma-
tion fluxes of the overexpressed enzymes with growth rate
fixed to a small fraction (i.e., 0.05) of the maximum. We
then set the lower bound of complex formation fluxes to
linearly spaced fractions of the maximum expression flux,
from 0.05 to 0.95. Since we were investigating two pro-
duction pathways, we sampled a grid of 11 by 11 samples
for a total of 121 combinations of pathway expression lev-
els. For each expression combination, we solved Eq. (1)
for maximum growth rate. Because the strain designs
were growth-coupled, we observed varying amounts of
succinate production (Fig. 4).

Table 3 Running time (seconds) for warm-start versus
cold-started FVA in quad-precision using Quad MINOS (two LPs
are run for each reaction)

Model Reactions Warm-start Cold-start Speed-up

E. coliME (reduced) 16126 11.2 h > 670 h 60×
T. maritimaME [3] 17535 ∼ 78 h > 1940 h 25×

The ME model revealed trends in proteome re-
allocation with increasing product yield. Specifically,
we traced the relative mass fraction of five pro-
teome sectors, by summing the product of translation
rate (mmol/gDW/h) with the protein molecular weight
(g/mol) over all proteins in each sector. The core proteome
and glucose-niche proteome sector definitions were based
on [20]. The core proteomemass fraction, which is critical
for cell growth under all conditions, decreased steadily
with increasing product yield (Fig. 4a). The niche pro-
teome, which is required for growth on specific environ-
mental niches (in this case, glucose minimal medium),
showed more variation with increasing product yield. The
two production pathway protein sectors (frdABCD and
aceA) increased with product yield, as expected. Interest-
ingly, the remaining (Other) proteome increased in mass
fraction up to four-fold, from 1.6 to 6.7 %, as product yield
increased. Therefore, production pathway overexpression
entailed a significant proteomic cost.
At lower product yields, the molar ratio of frdABCD

vs. aceA translation rates varied strongly, such that only
one pathway was expressed at varying expression lev-
els. However, higher succinate yields were achieved when
both pathways were expressed simultaneously at a rela-
tively constant ratio (Fig. 4). This prediction is consistent
with experiments showing that simultaneous expression
of these two pathways (reductive TCA and glyoxylate
shunt) led to higher yields [21]. This ME prediction is also
distinct from metabolic reconstructions, which predict
the highest yields from utilizing only the most metabol-
ically efficient pathway (i.e., reductive TCA) [19]. The
ME model also predicted that product yield experiences
diminishing returns with increased product flux, and with
decreasing growth rate (Fig. 4b, c). Therefore, the ME
model suggests that simultaneous expression of multiple
pathways may improve yield over a single metabolically
efficient pathway when we account for pathway expres-
sion and proteome reallocation requirements.

Simulation of growth on diverse media and gene deletions
Our solution methods were tested on additional case
studies involving large numbers of simulations. First,
we performed growth simulations for 1423 single gene
knockouts on glucose minimal medium. These essential-
ity predictions were 89.9 % accurate (73.5 % precision,
50.5 % recall, 96.8 % specificity) (Additional file 2: Table
S1), similar to the referencemodel (iOL1650) accuracy [5].
As with varyME, we tested the speedup of warm-starting
the LPs for single gene deletion analysis over cold-starting
every LP. We observed 19× and 12× speedup for E. coli
and T. maritimaMEmodels, respectively (Table 4).
We also predicted relative growth rates across car-

bon sources accurately. In particular, using a growth
rate-dependent protein-per-RNA (P/R) ratio [5] led to the
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highest accuracy: Spearman rank correlation of 0.94 (p =
0.017), and Pearson correlation of 0.87 (p = 0.025) (Fig. 5).
Using a constant P/R ratio without hard uptake rate con-
straints, or artificially constraining uptake rates, led to
lower accuracy (Fig. 5). We also observed that the growth
rate on L-proline was predicted better when proteome
limitation became the active constraint, rather than arbi-
trary uptake rate constraints. Additionally, biomass yield
(grams dry weight per mmol substrate) was predicted
accurately across eight carbon sources (Pearson correla-
tion: 0.94, p = 4.8 × 10−4) (Additional file 1: Figure S1,
Additional file 2: Table S2).
We also simulated growth on 333 different media, each

differing in a carbon, nitrogen, phosphorus, or sulfur
source as in [20]. We then compared the predicted emass
fractions of the 1423 proteins common between our simu-
lations and similar simulations performed on the iOL1650
ME model in [20]. Overall, we observed Pearson correla-
tion of 0.68 (p < 10−15) and Spearman rank correlation
of 0.68 (p < 10−15). When considering only the core pro-
teome [20], we observed higher correlation between the
two models: Pearson correlation of 0.80 (p < 10−15) and
Spearman rank correlation of 0.63 (p < 10−15) (Fig. 6).

Table 4 Running time (seconds) for warm-start versus cold-
started gene essentiality analysis in quad-precision using Quad
MINOS (one LP is run for each reaction at a single growth rate)

Model Genes Warm-start Cold-start Speed-up

E. coliME (reduced) 1424 3130.8 58967.4 19×
T. maritimaME [3] 613a 5.26 h > 60 h 12×
aOnly the 613 genes coding for proteins forming functional complexes were tested
for essentiality

These results re-confirmed thatMEmodels (even reduced
ones) accurately represent the core proteome [20], which
is critical for host cell fitness in natural and engineered
contexts.
Finally, throughout these simulations we found that

ME fluxes could span 15 orders of magnitude (Table 5)
and possibly more depending on the growth condition,
emphasizing the need for quad-precision.

Discussion
Genome-scale models of metabolism and macromolec-
ular expression (ME models) [5, 6] have significantly
expanded the biological scope and predictive capabili-
ties of constraint-based modeling [8]. While predicting
microbial growth using genome-scale metabolic recon-
structions is now a computationally mature procedure
[2, 22, 23], growth maximization for ME models is
a more difficult nonlinear program. Furthermore, ME
models are inherently multiscale, as metabolic and pro-
tein expression processes operate at rates differing by
15 orders of magnitude. Thus, a major obstacle to the
widespread adoption of ME models has been the com-
plexity, speed and numerical reliability of simulation [9].
In this paper, we developed a quad-precision nonlinear
programming (NLP)-based solution method exhibiting
significant improvements in computational speed and
numerical reliability. The quad-precision LP/NLP solver
Quad MINOS [10] was used for this purpose. In addi-
tion, we developed quad-precision flux variability analysis
[16] for ME models (varyME) using computationally effi-
cient solver warm-start techniques [17]. We also showed
that our solution methods were applicable to large-scale
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corresponds to whether a constant or growth rate-dependent P/R
ratio was used, and whether uptake rates were left unconstrained
(proteome-limited growth) or constrained to −10 mmol/gDW/h. The
lines correspond to perfect agreement between measured and
simulated growth rates. Colored shadings represent 95 % confidence
intervals for a linear model fit of the data points computed using
ggplot2 in R

studies, including growth simulation on over 300 different
media, and over 1400 gene deletion simulations.
With advances in ME solution methods enabling rapid

prototyping, we anticipate the acceleration of ME model
development for additional organisms, such as pho-
totrophs [24]. Development may be further facilitated by
possible extension of model reduction techniques [25] to

Fig. 6 Proteome mass fraction comparision with iOL1650 from [5].
The Pearson (r) and Spearman (rho) correlation coefficients are shown
for core and non-core proteome sectors, as defined in [20]. Growth
maximization simulations were performed for 333 media conditions,
each with a different C, N, P, or S source. Protein mass fractions from
the reference model (iOL1650) were obtained from [20]

ME models. Additionally, ME models will become more
accessible to metabolic engineers and systems biologists,
who have already stated the importance of proteome-
accounting for improving strain design and optimization
[26, 27].
To demonstrate possible application of our solution

methodology in an engineering context, we analyzed
growth-coupled succinate overproduction by E. coli.
Unlike metabolic reconstructions that predict maximal
product yield when the most metabolically efficient pro-
duction pathway is used, the ME model predicted that
simultaneous expression of multiple pathways led to
the highest yields when proteome reallocation require-
ments were considered. These predictions were consis-
tent with literature, where simultaneous expression of
two succinate-producing pathways led to increased yield
[21]. As shown here, ME models now enable genome-
wide proteome-accounting for the simulation and design
of microbes. Moving forward, it will be of interest to
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Table 5 Orders of magnitude of ME reaction fluxes (in mmol/gDW/h). Based on aerobic glucose minimal medium simulation with
feasibility and optimality tolerances of 10−20. Metabolic processes are categorized by subsystem [37]

Biological process log10(v) min log10(v) max Median flux Mean flux

Transcription –14 –4 2.33E-6 6.46E-6

Complex formation –14 –4 4.92E-6 1.67E-5

Translation –14 –4 1.01E-5 2.18E-5

Cell Wall/Membrane/Envelope Metabolism –7 –7 1.78E-7 1.78E-7

tRNA charging –7 –1 0.0437 0.0559

Cofactor, Prosthetic Group and Folate Metabolism –7 0 2.48E-5 0.0915

Amino Acid Metabolism –6 1 0.159 0.679

Carbohydrate Metabolism –5 1 2.48 2.74

Energy Production and Conversion –1 1 5.82 11.5

extend the theory and algorithms developed for metabolic
models [28–30] to ME models.

Conclusions
We developed an efficient methodology for solving non-
linear, multiscale models of metabolism and macro-
molecule expression (ME models). In particular, we
showed that the growth rate maximization problem for
ME models is a quasiconcave maximization problem in
general and quasilinear for special cases as demonstrated
here. In both cases, the global optimum is found effi-
ciently using the projected Lagrangian method. Using
the quad-precision LP/NLP solver Quad MINOS, we
obtained up to 45 % speedup over conventional bisection.
Currently, a phylogeny of in silico methods has emerged
around metabolic reconstructions [31]. Our new insights
into the quasiconvexity of nonlinear constraints in ME
models and the reliability gained with quad-precision
NLP solvers should help accelerate similar expansion
of algorithms and applications using ME models in the
near future.

Methods
Serial computations were performed on 2.70 GHz
Intel(R) Core(TM) i7-4800MQ processors with 8 GB
of RAM and the Arch Linux operating system. Paral-
lel computations were performed using resources of the
National Energy Research Scientific Computing Center
(NERSC).

Quasiconvex and quasilinear optimization
For our reduced ME model, the dilution and growth
rate-dependent protein-per-RNA constraints are gath-
ered into the general form, μAv + Bv = Bv − μCv = 0
(where C = −A). Here, we show that these constraints
are quasilinear. First, recall that a quasilinear function
is both quasiconvex and quasiconcave [12]. A quasicon-
vex function is a function whose μ-sublevel sets are
all convex while a quasiconcave function has convex

μ-superlevel sets. Accordingly, a quasilinear function has
all convex μ-level sets. The μ-level set of constraint
i ∈ DIL is

Lμ =
{
v

∣∣∣∣∣
bTi v
cTi v

= μ

}

=
{
v
∣∣∣bTi v − μcTi v = 0

}
,

which is a 0-level set of the sum of linear functions,
i.e., a convex function (recall μ is fixed in the level set).
Therefore, every μ-level set is convex; hence the dilution
constraints are quasilinear.
ME models in [5, 6] have also implemented dilution

constraints as inequalities: Bv − μCv ≥ 0. In this case,
the constraints are quasiconcave because theμ-superlevel
sets are all convex:

L+
μ =

{
v

∣∣∣∣∣
bTi v
cTi v

≥ μ

}

=
{
v
∣∣∣bTi v − μcTi v ≥ 0

}
.

In this case, growth-rate maximization is a quasicon-
cave maximization (or quasiconvex minimization) prob-
lem whose global optimum is again found readily [12].

Solution of LP and NLP problems
Quad MINOS 5.6 [10] was used to solve the LP and
NLP problems in quad-precision. All Quad MINOS runs
were performed with feasibility and optimality toler-
ances of 10−15. To determine orders of magnitude of ME
fluxes (Table 5), we used feasibility and optimality tol-
erances of 10−20. To interface the Fortran-based Quad
MINOS shared library and custom Fortran source code
to the cobrapy [32] Python package, we used the f2py
[33] function in Numpy 1.8.1. Solution of ME models in
double-precision was performed using IBM ILOGCPLEX
12.6.0. Bisection was performed with the initial interval
[ a, b]=[ 0, 2].
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Biological conditions for ME simulations
ME simulations were performed with an uptake rate of –
1000mmol/gDW/h for substrates available in themedium
(carbon, nitrogen, phosphorus, sulfur sources) and for
oxygen uptake. Unlike metabolic models that require
physiologically determined uptake rate bounds, ME mod-
els predict a limit to maximum uptake. This maximum
uptake occurs at the max growth rate where additional
RNA and protein machinery cannot be produced to meet
growth demands [5].

Orders of magnitude spanned by ME fluxes
To estimate the orders of magnitude spanned by ME
fluxes, we first found the smallest transcription flux
for genes determined to be essential experimentally
and by the ME simulation. Because multiple transcrip-
tion units (TUs) can encode a gene, and multiple
genes can be encoded by a TU, we found the small-
est transcription flux greater than the solver feasibil-
ity tolerance (10−20) encoding an essential gene. On
glucose minimal medium, this flux was 9.35 × 10−14

mmol/gDW/h. Note that the smallest translation flux was
9.13 × 10−13 mmol/gDW/h. The maximum flux was 45.4
mmol/gDW/h, for H2O exchange. Thus, on glucose min-
imal medium, fluxes spanned nearly 15 (14.7) orders of
magnitude.

Reduced MEmodel of E. coli
The reduced ME model of E. coli was developed sep-
arately [34] and was used to facilitate rapid algorithm
testing throughout this study. The stoichiometric matrix
consists of 8757 rows and 16,126 columns. Compared
to the ME model of T. maritima (18,209 rows × 17,535
columns), the reduced ME model of E. coli has a similar
number of reactions but considerably fewer constraints.
The reduced ME model has a number of simplifications
compared to the full ME models of E. coli: iOL1650 [5]
(68,726 rows × 76,413 columns) and iJL1678 [6] (70,751
rows × 79,871 columns). The model includes the majority
of metabolic and expression machinery processes, as well
as core and niche proteome genes needed for growth in
diverse environments [20]. The full ME model by O’Brien
et al. [5] included growth rate-dependent cell wall dilu-
tion, which added a nonlinear constraint that was more
complicated than the bilinear constraints arising from
macromolecule dilution. This constraint is excluded in
the reduced model. Also excluded are explicit degradation
reactions for mRNA.
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