
fnins-12-00745 October 22, 2018 Time: 14:34 # 1

ORIGINAL RESEARCH
published: 24 October 2018

doi: 10.3389/fnins.2018.00745

Edited by:
Runchun Mark Wang,

Western Sydney University, Australia

Reviewed by:
Teresa Serrano-Gotarredona,

Consejo Superior de Investigaciones
Científicas (CSIC), Spain

Thierry Viéville,
Institut National de Recherche en

Informatique et en Automatique
(INRIA), France

*Correspondence:
Tayfun Gokmen

tgokmen@us.ibm.com

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 30 May 2018
Accepted: 28 September 2018

Published: 24 October 2018

Citation:
Gokmen T, Rasch MJ and Haensch
W (2018) Training LSTM Networks

With Resistive Cross-Point Devices.
Front. Neurosci. 12:745.

doi: 10.3389/fnins.2018.00745

Training LSTM Networks With
Resistive Cross-Point Devices
Tayfun Gokmen* , Malte J. Rasch and Wilfried Haensch

IBM Research AI, Yorktown Heights, NY, United States

In our previous work we have shown that resistive cross point devices, so called resistive
processing unit (RPU) devices, can provide significant power and speed benefits when
training deep fully connected networks as well as convolutional neural networks. In this
work, we further extend the RPU concept for training recurrent neural networks (RNNs)
namely LSTMs. We show that the mapping of recurrent layers is very similar to the
mapping of fully connected layers and therefore the RPU concept can potentially provide
large acceleration factors for RNNs as well. In addition, we study the effect of various
device imperfections and system parameters on training performance. Symmetry of
updates becomes even more crucial for RNNs; already a few percent asymmetry results
in an increase in the test error compared to the ideal case trained with floating point
numbers. Furthermore, the input signal resolution to the device arrays needs to be at
least 7 bits for successful training. However, we show that a stochastic rounding scheme
can reduce the input signal resolution back to 5 bits. Further, we find that RPU device
variations and hardware noise are enough to mitigate overfitting, so that there is less
need for using dropout. Here we attempt to study the validity of the RPU approach by
simulating large scale networks. For instance, the models studied here are roughly 1500
times larger than the more often studied multilayer perceptron models trained on the
MNIST dataset in terms of the total number of multiplication and summation operations
performed per epoch.

Keywords: LSTM training, resistive processing unit (RPU), analog hardware, resistive device, resistive switching,
DNN training, memristive device

INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 2015) have made tremendous improvements in
the past few years tackling challenging problems such as speech recognition (Hinton et al.,
2012; Ravanelli et al., 2017), natural language processing (Collobert et al., 2012; Jozefowicz et al.,
2016), image classification (Krizhevsky et al., 2012; Chen et al., 2017), and machine translation
(Wu, 2016). These accomplishments became possible thanks to advances in computing resources,
availability of large amounts of data, and clever choices of neural network architectures. For
instance, spatial correlations in the data are exploited by convolutional neural networks (CNNs)
(LeCun et al., 1988; Krizhevsky et al., 2012; He et al., 2015) whereas temporal correlations can
be handled by recurrent networks (Lipton et al., 2015). One of the most common recurrent
architectures is long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997; Karpathy
et al., 2016). LSTMs in combination with CNNs provide end-to-end trainable building blocks
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for composing complex neural network architectures, that are
used for challenging tasks such as image captioning (Karpathy
and Fei-Fei, 2015). Training these large complex DNNs are
extremely computational intensive tasks and today most of these
workloads run on general purpose digital hardware such as CPUs
and GPUs in a massively parallel fashion (Dean et al., 2012;
Coates et al., 2013; Chilimbi et al., 2014; Gupta et al., 2017).
There are many attempts to accelerate training of large scale
DNNs by designing and using specialized digital hardware (Emer
et al., 2016), such as Google’s TPU (Jouppi et al., 2017) or Intel’s
KNL (Sodani, 2015), relying on optimized multiplication and
summation operations. In addition to the digital approaches,
resistive cross-point device arrays are also promising candidates
that perform the multiplication and summation operations in
the analog domain which can provide massive acceleration and
power benefits (Gokmen and Vlasov, 2016).

The concept of using resistive cross-point device arrays
(Burr et al., 2015, 2017; Chen et al., 2015; Prezioso et al.,
2015; Agrawal et al., 2016b; Gokmen and Vlasov, 2016; Fuller
et al., 2017) as DNN accelerators has been tested, to some
extent, by performing simulations for the specific cases of
fully connected (Gokmen and Vlasov, 2016) and convolutional
neural networks (CNNs) (Gokmen et al., 2017). The effect of
various device properties and system parameters on training
performance has been evaluated to find the required device
and system level specifications for a successful implementation
of an accelerator chip that efficiently trains DNNs (Agrawal
et al., 2016a; Gokmen and Vlasov, 2016). As shown empirically
by simulations (Agrawal et al., 2016a; Gokmen and Vlasov,
2016; Gokmen et al., 2017), a key requirement is that these
analog resistive devices must change conductance symmetrically
when subjected to positive or negative pulse stimuli. Indeed,
this requirement differs significantly from those needed for
memory elements and therefore require either an additional
circuit overhead (Ambrogio et al., 2018) or systematic search
for new physical mechanisms, materials and device designs to
realize such an ideal resistive element for DNN training. In
addition to these critical device properties, the peripheral circuits
and the whole system needs to be designed carefully within
the specifications for successful DNN training. For instance,
noise and signal saturation inherent to the analog nature of the
computations performed on the arrays limit the training accuracy
of CNNs on MNIST dataset (Gokmen et al., 2017). As a solution
number normalization and signal bound detection techniques are
proposed (Gokmen et al., 2017) and these techniques may be
incorporated into the system design.

It is clear that resistive cross-point devices, so called resistive
processing unit (RPU) (Gokmen and Vlasov, 2016) device arrays
that can simultaneously store and process data locally and
in parallel, are promising candidates for intensive DNN tasks
computations; however, any future hardware that is targeting
DNN applications needs to be able to offer solutions for handling
a range of network architectures including fully connected,
convolutional as well as recurrent layers. Here, we extend
the application space of RPUs to recurrent neural networks
(RNNs). We show how to map the complex recurrent LSTM
blocks to RPU arrays and test the effect of various device level

imperfections and peripheral circuit constraints, such as input
signal resolution, to the training accuracy of LSTM networks
on a character based language model. We also study the effect
of dropout during training LSTMs in the presence of device
imperfections and system level constraints. Although, dropout
is critical when training large LSTMs with floating point (FP)
numbers to mitigate overfitting, it turns out that for RPU
simulations training is not significantly affected by dropout. This
suggests that some of the device imperfections and noise in
the hardware may act as a regularization term during training.
However, we also show that among all device variations the
requirement for having a very accurate match in the average
minimal up and down update step sizes throughout the training
process for each cross-point device (symmetric updates) become
increasingly more important and any mismatch needs to be
minimized for successful training. Our results further emphasize
the importance of device symmetry when realizing a resistive
element suitable for DNN training.

MATERIALS AND METHODS

LSTM Block
The dynamics of an LSTM block (Hochreiter and Schmidhuber,
1997) is described using deterministic transitions from previous
state to current state are given by the equations below (see also
the corresponding computational graph in Figure 1):

ft = sigmoid (Wf xt + Uf ht−1 + bf ) (1)

it = sigmoid (Wixt + Uiht−1 + bi) (2)

ot = sigmoid (Woxt + Uoht−1 + bo) (3)

gt = tanh (Wgxt + Ught−1 + bg) (4)

ct = ft × ct−1 + it × gt (5)

ht = ot × tanh (ct ) (6)

where xt is the input vector of length n for the current
time step t, ht−1 and ht are the hidden state vectors, ct−1
and ct are the memory state vectors of length m from the
previous and current time steps, respectively. The trainable
parameters for the LSTM block are stored in Wf ,Wi,Wo,Wc
matrixes of sizes m× n, Uf ,Ui,Uo,Uc matrixes of sizes m×
m and bias terms bf , bi, bo, bc of sizes m× 1. ft, it, ot and gt
respectively, correspond to the forget gate, input gate, output
gate, and new candidate memory state, all of which are vectors
of length m. In these equations sigmoid and tanh functions are
applied element-wise and × is an element-wise multiplication
(Hadamard product).

Just like regular feed forward networks, LSTM networks are
trained using the backpropagation algorithm (Rumelhart et al.,
1986). However, the concept of time in the case of an LSTM is
simply expressed by a well-defined ordered series of calculations
linking one time step to the next one and therefore error
signals are backpropagated through time (BPTT) (Hochreiter
and Schmidhuber, 1997). The number of unrolling steps through
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FIGURE 1 | Computational graph of a LSTM block.

time used for backpropagation, nBPTT, is a hyperparameter of the
LSTM training. During training, all activations calculated during
the forward pass for each time step need to be stored for the
backward pass (for the calculation of the derivatives). Once the
backward pass is completed for all nBPTT time steps, the total
weight change, which is the sum of the gradients from each
time step, can be calculated and applied to update the weights.
Similar to the weight sharing concept for convolutional layers at
different spatial locations, for an LSTM block, the weights are
shared between different time steps and the amount of sharing
is controlled by the choice of nBPTT during training.

Mapping of an LSTM Block to Resistive
Device Arrays
Figure 2 illustrates all the calculations that need to be performed
for an LSTM block during a forward pass and their mapping onto
an RPU array. All trainable parameters of an LSTM block can
be organized into a single matrix W of size 4m× (m+ n+ 1)
which is then mapped onto a single RPU array of the same size.
We denote the temporary input vector to the RPU array, that is
used for each time step, as x̃, which is the concatenated vector
of the input vector from current time step xt , the hidden state
vector from the previous time step ht−1 and a single bias value of
unity. Performing a single vector-matrix multiplication ỹ =Wx̃
yields a vector ỹ of length 4m where different portions can be
used to calculate activations given by Eqs (1–4) for a single time
step. We note that the single ỹ =Wx̃ operation completes all the
linear transformations that are needed and has the computational
complexity of O(4m× (m+ n+ 1)). It can be performed with
O(1) time complexity once mapped to RPU arrays thanks to the
array parallelism. All other computations shown above are point
wise operations and therefore have the computational complexity
of O(m)+ O(n). We assume this part of the computations
are performed outside of the RPU array by a digital block,
the so-called non-linear function unit (NLF) (Gokmen and
Vlasov, 2016). We note that all steps shown by Eqs (1)-(6)
are repeated nBPTT times before error backpropagation starts;
and similar computation steps are performed during the error
backpropagation starting from the last time step. For instance,
in the backward pass the computations that are performed on the
array can be written as z̃ =WT δ̃ , where δ̃ is the temporary error

signal generated at each time step and WT is the transpose of the
original weight matrix used during the forward pass. The z̃ vector
is further processed by the NLF units so that the error signal for
the previous time step can be generated. Once the backward steps
are repeated nBPTT times, the weight update can be written as a
series of updates W ←W + η(δ̃x̃T). These are again performed
nBPTT times for the nBPTT x̃ and δ̃ vectors corresponding to each
iteration step during the forward and backward pass. Therefore,
a LSTM block can be viewed as a fully connected layer but with
parameter sharing that happens between time steps by reusing
the same weight matrix for each step of the calculation. We
emphasize that all other non-linear operations of the LSTM block
are performed by the NLF units outside of the array; and these
NLF units require an access to a local or an external storage
(memory) in order to save the intermediate results computed
during the forward (and backward) pass that are also needed
during the error calculation at backward pass (and update cycle).

System Level Simulation Details
In a real system, all computations that are needed to train a
neural network have to be handled by some sort of underlying
hardware. Here, we assume a system that is composed of analog
arrays and digital NLF blocks. Each operation necessary for the
training of a multilayer LSTM network is mapped to either the
analog or digital parts of the system. If an operation is handled
by the analog unit, we simulate the corresponding operation
using the limitations of the underlying analog hardware. For
instance, all of the vector-matrix operations involving the weights
during forward, backward, and update cycles are mapped onto
analog arrays. Therefore, these computations are performed
using various hardware defined constraints as described in more
detail in Section “Results.” All other operations such as sigmoid,
tanh, Hadamard product, point-wise summation and softmax
are mapped to the digital NLF blocks. We assume that these
digital units perform the operations using 32-bit FP numbers
and do not introduce any additional non-idealities, such as noise
and quantization errors, beyond the ones introduced by analog
units. We also assume that the results computed by the digital
NLF blocks during forward (or backward) cycle are stored in a
standard memory in 32-bit FP format and that these results are
accessed later during backward (or update) cycle without any
loss of information. In order to estimate the training accuracy
achievable by such a system, we developed a simulation tool
(written in C++) that trains the neural network based on these
described constraints, and in particular, simulates the hardware
defined limitations of the analog units at every stage of the neural
network training.

RESULTS

In order to test the validity our approach to map LSTMs to
RPUs, we train LSTM networks similar to those described in
Karpathy et al. (2016), composed of 1 or 2 stacked LSTM blocks,
with different numbers of hidden vector sizes of 64, 128, 256, or
512 on two datasets: Leo Tolstoy’s War and Peace (WP) novel
and Linux Kernel (LK) consisting of 3,258,246 and 6,448,461
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FIGURE 2 | Schematics of an LSTM block mapped to an RPU array. The input vectors to the RPU array and the output vectors from the array are shown for the
forward pass only. All activations are calculated and stored outside the array by digital NLF circuits. We note that each step of the computation happens sequentially
in time, but results are also stored spatially at different locations in the memory.

characters, respectively. We split the data into training and test
sets as 2,933,246 and 325,000 characters for WP and 6,111,421
and 337,040 characters for LK where each dataset, respectively,
have a total vocabulary of 87 and 101 characters. Throughout
the paper we use the following naming convention consisting
of the network block, stacking, hidden vector length and the
dataset. For instance LSTM2-512-WP is a 2 stacked LSTM
network with a hidden vector size of 512 trained on the WP
dataset. Following the mapping described above for LSTM2-512-
WP, we use three different arrays with sizes 2048× (512+87+1)
and 2048× (512+ 512+ 1) for the two LSTM blocks and a
third array of size 87× (512+ 1) for the last fully connect
layer before the softmax activation (softmax layer as a whole).
We note that the total number of trainable parameters for the
largest networks trained here is about 3.4M and the total number
of multiplication and summation operations that needs to be
performed during a single training epoch is about 1014. These
large number of operations makes these simulations about 1500x
more challenging than training a fully connected network on the
MNIST dataset (Gokmen and Vlasov, 2016).

Optimization Approach
It is critical to perform training simulations that can be supported
by real RPU array hardware. Although operations performed
on the RPU array during the update cycle are all computed in
parallel, RPU arrays only support operations of the form

W ←W + η(δ̃x̃T) (7)

which is an outer product of two vectors and a weight update
combined into a single operation. This form is consistent with
the simple SGD rank-1 update but any variant of a SGD such as
RMSProp, Adagard, momentum, etc., all require the calculation
of the gradient values first and then updating the weight value
using some history dependent parameter per weight that is a
function of previous weight values and/or gradients. In its most
general form these operations can be written as a two-step
process.

1W = δ̃x̃T (8)

W ←W + η(Wpre,1Wpre)1W (9)

where the first operation is the gradient calculation and the
second is the weight update. On a digital hardware, the
computation overhead of these additional calculations may be
insignificant and can easily be implemented by storing and
updating one additional parameter per weight and do not
increase the computational complexity. However, for RPU arrays
such an extra operation will break the array parallelism as the
update cannot be performed at constant time anymore. While
the calculations of the gradients given by Eq. (8) can still be
performed on a separate array with O(1) time complexity, Eq. (9)
can only be implemented column-wise serially with O(m) time
complexity and therefore violates the array parallelism.

In order not to violate parallel array operations, in our
simulations training is performed using only simple SGD.
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Additionally, mini-batch size of unity, fixed learning rate, and
time unrolling steps nBPTT of 100 is used. Since these settings are
slightly different from what is used in Karpathy et al. (2016) (such
as RMSProp with mini-batch size of 100), we first validated our
training by performing simulations using standard cross-entropy
loss function and high precision FP numbers/operations and
tried various learning rates, η, with different amount of dropout
rates, p, for each model individually to reach the performance
levels reported by Karpathy et al. (2016). We note that the
dropout term is only introduced for non-recurrent connections
following the guidelines from (Zaremba et al., 2014) and is
consistent with (Karpathy et al., 2016). Figure 3 shows the
best baseline-FP results for various LSTM2-WP models with
different hidden vector sizes at the corresponding learning rate
and dropout rates. For each model the test cross-entropy loss is
on par or slightly better than the value reported by Karpathy et al.
(2016) and therefore validates our simple SGD training approach.

RPU Baseline Model
The various RPU device imperfections and their effect on the
training accuracy were tested previously for a fully connected
(Gokmen and Vlasov, 2016) and a convolutional (Gokmen et al.,
2017) neural network on the MNIST dataset. Although the
same device specifications were sufficient to train both networks
successfully, input/output signal normalization/renormalizations
were needed for successful training of CNNs. Here in our
simulations we start with a baseline model that has identical
device parameters and signal normalization techniques as
described for CNNs (Gokmen et al., 2017).

The RPU-baseline model uses a stochastic update scheme
(Gokmen and Vlasov, 2016), where the length of the stochastic
stream is BL = 10. The gain factors Cx and Cδ used for
determining the pulse probability during the stochastic
translation for the columns and the rows are scaled properly
(Cx = Cδ =

√
η/(BL1wmin)) to give the desired learning

rate, η, used for training the model; and 1wmin is the average
incremental change in the weight value due to a single
coincidence event. Although the average value for 1wmin is set
to 0.001, in order to capture device imperfections, 1wmin is
assumed to have cycle-to-cycle and device-to-device variations
of 30%. Possible asymmetry in the weight updates are taken into
account by using separate 1w+min for the positive updates and
1w−min for the negative updates for each RPU device. The average
value of the ratio 1w+min/1w−min among all devices is assumed
to be unity but with a 2% device-to-device variation. The
bounds on the weights values, |wij|, are set to be 0.6 on average
with a 30% device-to-device variation. For any real hardware
implementations of RPU arrays the results of the vector matrix
multiplications will be noisy and this noise is considered by
introducing an additive Gaussian noise, with zero mean and
standard deviation of σ = 0.06. Furthermore, the results of the
vector-matrix multiplications are bounded to a value of |α| = 12
to account for signal saturation. The input signals are assumed
to be between [−1, 1] with a 5-bit input resolution, whereas the
outputs are quantized assuming a 9-bit ADC. Although the input
signals going into the array and the output signals coming from
the arrays are bounded, we use noise management and bound

management techniques described in Gokmen et al. (2017).
In particular, the inputs/outputs are normalized/renormalized
using to the absolute maximum value of the elements of vectors
x̃ or δ̃ during the forward and backward passes, respectively.
These normalizations are crucial not only because of small
backpropagating error signals as discussed in Gokmen et al.
(2017) but also during forward propagation, because values in
x̃ can go beyond unity due to the dropout term used: note that
during training time when dropping a random fraction p of
activations, the remaining are scaled with 1/1− p and therefore
the input signals might become larger than 1.

The test error of this RPU-baseline on various LSTM2-WP
models with different hidden vector sizes are shown in Figure 3
as black curves. Each model uses the same learning and dropout
rates as for the corresponding floating point reference model (FP-
model). In contrast to the behavior observed for the FP-models,
test errors of the RPU-baseline models increase and become
noisier when the size of the network is enlarged. This is a very
disappointing scaling result and if not addressed properly, may
limit the application space of analog device arrays to only a very
small network sizes.

In order to identify the main cause of this problem, we
performed training at various training conditions. For the models
that are trained with a larger input signal resolution of 7-bits (but
otherwise identical device and system properties), as shown by
red curves in Figure 3, the test error follows a trend much more
similar to the FP-model. Although, there remain some offsets
between the FP-models and the RPU-models trained with 7-bit
input resolution, offsets tend to get smaller and RPU-models
improve in performance as the number hidden vector size (or
parameters) increases. These results show that the undesired
behavior observed for the black curves (RPU baseline) are solely
due to the limited input signal resolution of 5-bits.

Stochastic Rounding of Input Signals
It is clear that the limited input signal resolution needs to be
addressed for successful application of the RPU approach on
large networks, however, increasing the input signal resolution
comes with a cost of increased peripheral circuit complexity
or computation time. For instance, for time encoded signals,
increasing the input resolution from 5 to 7-bits increases signal
duration by a factor 4 for the largest input, and therefore increases
the computation (integration) time during forward and backward
passes. Alternatively, for a fixed integration time, 7-bit inputs
require four times faster clock rates during signal generation and
therefore it may not be possible given the limitations due to
signal filtering and clock rates. Using voltage height controlled
inputs also comes with a cost, as more voltage levels need to be
generated by the peripheral circuits which again increases the
circuit complexity.

Here, we propose to use a stochastic rounding scheme (instead
of rounding to nearest neighbor) as a cost effective solution for
recovering the test accuracies while still keeping signal resolution
at 5-bits. It is already shown that stochastic rounding helps during
DNN training when used at different stages of approximate
computing with reduced precision in the digital space (Gupta
et al., 2015). However, to prove the effectiveness of stochastic
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FIGURE 3 | Test cross-entropy loss of two stacked LSTM networks (with different hidden vector sizes) trained on the WP dataset. Open white circles correspond to
the model where the training is performed using floating point (FP) numbers. Lines with different colors correspond to RPU-baseline models using different input
signal resolutions and rounding schemes as given by the legend. Same dropout probability, p, and the learning rate, η, are used for the FP and RPU models for each
network size. For the sake of comparison we did not optimize these parameters with respect to the RPU model.

rounding for training RPU arrays, we performed simulations
using the same RPU-baseline model with 5-bit input resolution
but instead with the stochastic rounding scheme. As shown
by the blue curves in Figure 3, stochastic rounding at 5-bit
input resolution almost completely recovers the results of a
round-to-nearest-neighbor scheme at 7-bits and therefore it can
be a viable approach for real hardware implementations. The
overhead of using stochastic rounding instead of rounding to
nearest neighbor is very small (Gupta et al., 2015) and it can be
realized by specifically designing additional hardware residing in
the digital blocks that moves data between RPU arrays and NLF
units. Although our simulations do not guarantee that the 5-bit
input resolution is sufficient for even larger networks, our results
nevertheless suggest that using stochastic rounding saves a couple
of bits during input signaling and hence improves the overall
performance of the RPU arrays.

Effect of Dropout
It is known that successful applications of large neural networks
require good regularization and dropout (Srivastava et al., 2014)
is one of the most powerful regularization methods. Indeed,
we also use dropout in our training and larger dropout rates
are needed for the best performance as the network size gets
larger as shown by the FP-models in Figure 3. To highlight
the importance of dropout, we show the test results of LSTM2-
512-WP, the largest network of interest, trained at different
dropout probabilities in Figure 4A. It is clear that small dropout
rates (p < 0.4) cause the networks to overfit since the test
errors start to increase after a certain amount training. Only

FIGURE 4 | Test cross-entropy loss of two stacked LSTM networks with a
hidden vector size of 512 trained on WP dataset. Lines with different colors
correspond to (A) the model trained using FP numbers (B) the RPU-baseline
models using 7-bit input signal resolution, at different dropout probabilities, p.

the cases with a 40% dropout rate or higher show a consistent
downward trend in the test errors and hence do not suffer
from the overfitting problem. However, increasing the dropout
rate arbitrarily beyond 40% is not beneficial either (data not
shown) and the best generalization results are observed at about
40% dropout rates for LSTM2-512-WP when trained with FP
numbers.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 745

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00745 October 22, 2018 Time: 14:34 # 7

Gokmen et al. Training LSTMs With Analog Devices

In order to test the effect of dropout for a realistic hardware
implementations of RPU arrays, we performed training using
the RPU-baseline model at 7-bit input resolution and varied
the dropout rates, as shown in Figure 4B. In contrast to the
results obtained by the FP-models, even when dropout is not
used at all, we did not observe overfitting to be a problem. In
addition, the best performance is obtained for dropout rates at
around 10–20%, which is smaller than the optimal value used
for FP-models at 40%. These results suggest that for a realistic
implementation of RPU arrays the training may not require such
a strong regularization term or the same amount may be non-
optimal as there exists many sources of noise and stochasticity
coming from the hardware. However, it is also important to
realize that the effect of the dropout is much smaller for all RPU
models; and even with the optimal dropout rates we consistently
observe an offset between the RPU-models and FP-models for all
LSTM sizes (data for smaller networks are not shown).

Effect of Device Variations, Asymmetry,
and Number of States
To understand the main cause of the offset observed between the
FP and RPU models we performed training using a range of RPU
models. In each we selectively eliminated device imperfections to
evaluate their influence on training performance. The summary
of these training results on LSTM2-WP with different hidden
vectors sizes are shown in Figure 5. The green curves in
Figure 5 correspond to the models where device-to-device and
cycle-to-cycle variations in the parameters 1wmin and |wij|

are completely eliminated from their original values at 30%.
Interestingly, eliminating of all this variability from the model
does not improve the network performance compared to the
RPU-baseline models as shown by red curves. Similarly, the
cyan curves corresponding to RPU models with a larger number
of states (4x more compared to baseline) also show test errors
that are almost indistinguishable from the RPU-baseline model.
Only the blue curves corresponding to RPU models without
any device-to-device variation in the asymmetry parameter
(1w+min/1w−min) show an improvement and test errors get closer
to the value achieved by the FP models (shown by open circles).
These results suggest that the most important factor limiting the
performance of the RPU models is the asymmetry parameter and
even a slight asymmetry term with only a 2% device-to-device
variation is sufficient to be harmful. Only after the elimination
of the asymmetry term, increasing the number of states further
enhances the network performance as shown by magenta curves.
We note that all RPU models shown in Figure 5 are simulated
using a 7-bit input resolution in order not to introduce additional
artifacts due to limited input resolution; and each model used the
same dropout and learning rate that the FP-model is trained with.

DISCUSSION AND CONCLUSION

In this study, we explored the applicability of the RPU device
concept to training LSTMs. We found that training LSTM blocks
is very similar to the training of fully connected layers, because
a single vector operation can be used to perform all linear

transformations needed for a single time step in the LSTM
training.

The operations performed on the arrays are identical
for different network architectures including fully connected,
convolutional or recurrent networks. However, it is not obvious
that the same device constraints derived from a small fully
connected network can be generalized to give competitive
training accuracies for larger and more complex networks on
larger datasets. Studying LSTM networks here is an attempt to
generalize the insights regarding the effect of different hardware
noise and device variations on the training performance gained
previously by investigating relatively small learning tasks to a
much more challenging learning task. The array sizes used for
the LSTM2-512-WP model are (2048× 600), (2048× 1029) and
(87× 513) and these arrays are much larger than the ones used
for the fully connected network studied in Gokmen and Vlasov
(2016) with sizes of (256× 785), (128× 257), and (10× 129). In
addition, the training sequence consists of about 3M characters
for the WP dataset compared to 60K training images in the case
of the MNIST dataset. The combination of larger array sizes
and more training examples makes the training of these LSTM
networks about 1000x (1500x for LK dataset) more challenging
than training the MNIST dataset on the aforementioned fully
connected network. Interestingly, the 2% variation in the
asymmetry term that was sufficient to train the fully connected
network at the level of FP model accuracy is shown to be not
sufficient for these LSTM networks. This result suggests that
the asymmetry parameter becomes increasingly more critical for
larger scale networks and it may require special attention during
hardware design and development.

The performance benefits of the RPU approach for LSTM
networks can be calculated using the design considerations
described in Gokmen and Vlasov (2016). For an LSTM block,
computation steps depend on the computations in previous
time steps and, if stacked LSTM networks are used, additionally
on computations in the previous LSTM blocks. Therefore,
a pipelined microarchitecture design is required to utilize
multiple RPU arrays that can compute concurrently on multiple
overlapping time steps or data. Assuming a fully pipelined
architecture and the LSTM2-512-WP model, there would be a
total of 3.4M RPU devices active at any given time residing
on three different arrays. Using a measurement (cycle) time
of roughly tmeas = 80ns (Gokmen and Vlasov, 2016) for each
forward, backward and update cycles, we can estimate the
total RPU accelerator chip performance using the below simple
formula

Throughput =
2× Total_RPU_Count

tmeas
Ops/s (10)

where the factor of two comes from the multiplication and
the summation operations performed on each RPU device.
This yields a throughput of 85TeraOps/s for the LSTM2-512-
WP model. This is already significantly higher than the peak
single precision throughput of an NVIDIA Tesla P100 at
about 10TeraOps/s. Thus the performance benefits of the RPU
approach becomes already apparent for the sizes of the LSTMs
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FIGURE 5 | Test cross-entropy loss of two stacked LSTM networks (at different hidden vector sizes) trained on WP dataset. Open white circles correspond to the
model where training is performed using FP numbers. Simulation of RPU-baseline models are shown by red curves. Lines with different colors correspond to RPU
models but for each model a set of device imperfections are selectively eliminated compared to the RPU-baseline model. Green curves: device-to-device and
cycle-to-cycle variations in the parameters 1wmin and |wij| are completely eliminated. Cyan curves: the total number of states is increased by 4x. Blue curves:
device-to-device variation in the asymmetry parameter is eliminated. Magenta curves: as for blue curves, but additionally the number of states are increased by 4x.
All RPU models are trained with 7-bit input signal resolution using round-to-nearest-neighbor scheme. Since the simulation run times were limited to 7 days, some
curves stop early before reaching 50+ epochs.

investigated here, and once it is applied to much larger problems
with a total number of RPU devices reaching billions, throughput
of an RPU accelerator chip exceeds the throughput of todays’
advanced GPUs and accelerators by more than 1000x.

The concepts described in this study can also be applied
to more complex neural networks including a mixture of
recurrent, convolutional and fully connected layers by simply
reprogramming digital blocks that compute the non-linear
functions and control the signal flow. Note that we assume
that all other non-linear operations are performed outside of
the RPU arrays by using programmable digital circuits and that
the results are sent back to the same RPU array for the next
step of the calculations. For LSTMs, this realizes the weight
sharing that happens between different time steps, but this makes
the architecture also flexible to implement other heterogeneous
network architectures. Since these programmable digital blocks
control the signal flow and can perform any type of computation,
it becomes also very easy to implement other kinds of recurrent
networks on the same hardware. For instance gated recurrent
units (GRUs) (Cho et al., 2014), dilated RNNs (Chang et al., 2017)
or other more complex RNN architectures (Chung et al., 2015)
can be mapped to RPU arrays in a similar fashion by simply
changing the computations performed on the digital circuits.

In order for RPUs to be a competitive technology,
however, the symmetry requirement of the weight update

needs to be addressed. Accomplishing such symmetrically
switching analog devices as needed is a difficult task. Besides
material engineering, circuit assisted solutions combined with
algorithmic modifications might, conceivably, relax the material
requirements. One example of an almost perfectly symmetric
RPU is demonstrated by designing analog CMOS (Kim et al.,
2017; Li et al., 2018) (so called CMOS-RPU) that performs the
updates using a current source and sink circuitry and stores the
weight as charge on a capacitor. In this design, it is shown that
symmetry is achieved by properly balancing the current source
and sink that incrementally change the stored charge on the
capacitor. Device leakage, device mismatch and charge retention
on the capacitor are critical components for the scalability
to larger networks. Functionality of this RPU concept comes
at the cost of significant circuit overhead. In contrast to the
CMOS-RPU approach, there are device options available that
may be used to realize the RPU concept. One noteworthy device
concept is the so called LISTA device (Fuller et al., 2017) that
shows significantly more symmetric behavior if a current pulsing
scheme is used. However, this current pulsing scheme would
also require a current source and sink circuitry similar to the
ones used in the CMOS-RPU design. A simple constant voltage
pulsing scheme is difficult to realize for the demonstrated LISTA
devices in an array configuration due to the built-in voltage
which depends on the individual weight state of each node.
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By properly selecting the materials used in the device stack
this built-in voltage problem can be mitigated and it is an
interesting research direction for realizing a symmetric RPU
concept. Finally, we note that PCM devices (Burr et al.,
2015, 2017) are promising candidates to realize the RPU
concept. PCM elements change their conductance gradually
at one polarity (SET) and very abruptly at the opposite
polarity (RESET). Therefore, the weight is encoded in a pair
of PCM elements that operate in SET mode in a differential
configuration. Non-linearities and conductance saturation are
detractors for optimal performance. However, using appropriate
CMOS circuit elements these detractors can be overcome and
provide a possible solution for deep learning (Ambrogio et al.,
2018).

It is clear that a global asymmetry term, uniform among
all devices, can be fixed easily by the supporting peripheral
circuits using different voltage pulses for up and down changes
for the whole array without requiring a serial access to each
device. However, if there is a slight device-to-device variation
that causes a local asymmetry term such a compensation is
not possible without breaking the parallel nature of the array
operation. Given that these arrays would be fully utilized and
always busy in a pipelined design to get the most performance
benefits, any kind of interruption to the parallel operations may
become too costly no matter how infrequent the interruption
is. Therefore, the area, power and especially the time cost of
these engineering solutions need to be sized properly as it may
significantly reduce the benefits of using analog arrays for DNN
training.

In summary, we believe that the RPU concept is a very
promising candidate to accelerate the training of a range of
complex deep neural networks, and our results indicate that
the huge investment of putting machine learning algorithms
into such hardware is warranted. However, its success strongly
depends on realizing a cross-point that can change its state in a
symmetrical fashion. Once the symmetry problem is overcome,
the RPU concept can provide unprecedented acceleration factors
reaching 10,000x compared to the digital counterparts (Gokmen
and Vlasov, 2016). For a highly optimized digital hardware
one can think of fitting 10s of 1000s of multiplication and
summation units on a single chip. However, even these numbers
look miniscule when compared to an RPU approach, as a single
RPU array consisting of 4096× 4096 cross-points can perform 16
million multiplication and summation operations all in parallel in
the analog domain by using only a fraction of the chip area. Using
multiple arrays simultaneously would make the throughput of
analog accelerator chip even more impressive reaching 3–4 orders
of magnitude larger than the digital only solutions. Therefore,
large problems of interest for business applications that currently
require days of training on multiple digital hardware can take
only minutes using a single RPU based analog accelerators.
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