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Abstract: Preeclampsia is a disease specific to pregnancy characterised by new-onset hypertension
with maternal organ dysfunction and/or fetal growth restriction. It remains a major cause of maternal
and perinatal morbidity and mortality. For sixty years, antihypertensives have been the mainstay of
treating preeclampsia and only recently have insights into the pathogenesis of the disease opened
new avenues for novel therapies. Melatonin is one such option, an endogenous and safe antioxidant,
that may improve the maternal condition in preeclampsia while protecting the fetus from a hostile
intrauterine environment. Here we review the evidence for melatonin as a possible adjuvant therapy
for preeclampsia, including in vitro evidence supporting a role for melatonin in protecting the human
placenta, preclinical models, vascular studies, and clinical studies in hypertension and pregnancy.
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1. Introduction

Preeclampsia is a systemic maternal-fetal disorder specific to human pregnancy. It
is characterised by new-onset hypertension after twenty weeks gestation and other end-
organ damage, such as renal or liver impairment, haematological involvement, neurological
excitability and/or fetal growth restriction. Preeclampsia is the leading cause of preterm de-
livery and is often accompanied by fetal compromise, in particular impaired fetal growth [1].
In addition to this, the knowledge that underlying preeclampsia is a dysfunctional placenta
is why fetal growth restriction is increasingly included in definitions of preeclampsia [1].

Regarding placental dysfunction, impaired placental perfusion causes chronic and
worsening hypoxic-reperfusion injury to the placenta across pregnancy. This injury under-
lies the excessive release of antiangiogenic factors into the maternal circulation [2,3]. In turn,
these factors cause widespread maternal endothelial dysfunction that leads progressively
to increased maternal systemic vascular resistance and activation of the maternal coagu-
lation and immune systems [4,5]. If left untreated, this progressive vascular dysfunction
leads to dangerously high blood pressures and stroke, systemic organ failure, and cerebral
oedema and seizures. While many women who develop preeclampsia, particularly in the
setting of late-onset disease, will have good outcomes, this condition remains the leading
cause of maternal death and morbidity and a major cause of preterm birth that accounts
for significant perinatal mortality and mortality worldwide [6–8]. Globally, preeclampsia
accounts for nearly 75,000 maternal deaths and 700,000 neonatal deaths annually. Even in
high-resource settings, preeclampsia accounts for upward of 15% of maternal deaths [6–8].
After delivery, the burden of disease for preeclamptic mothers continues. Women who
have suffered preeclampsia during their pregnancy have an increased chance of developing
cardiovascular compromise and ongoing related morbidity throughout their lives. This is
likely due to, at least in part, residual endothelial dysfunction from significant vascular
stress during the pregnancy period [9,10]. Similarly, the effects of preeclampsia on the fetus
may be much more pronounced than those attributed to preterm delivery and growth
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restriction. Epigenetic priming means that babies born to preeclamptic mothers are at an
increased risk of a host of metabolic conditions throughout their lives [11,12]. So, while
generally considered a maternal disease, preeclampsia at its core is a placental disease that
imposes disease burden on both mother and fetus. Therapies targeting preeclampsia need
to consider both patients.

In that regard, the management of preeclampsia depends on the gestation at onset, the
severity—both maternal and fetal—and the rate of progression [1]. However, the ultimate
treatment of preeclampsia is removal of the offending organ—the placenta. This is why
preeclampsia remains a leading cause of prematurity because delivery of the placenta
requires, of course, delivery of the fetus. Timing delivery is then a balance between
the interests of the mother and the interests of the fetus. The interests of the woman
with preeclampsia are always best served by delivery. Delivery prevents worsening
hypertension and thereby avoids related complications including stroke, liver failure and
kidney failure. However, early delivery may not best serve the baby, particularly if very
preterm. Beyond neonatal demise, preterm delivery is a risk factor for a host of conditions
that will affect a baby well into their adult life, including cerebral palsy, visual and hearing
problems, respiratory difficulties, cardiovascular compromise, renal impairment, and
learning and behavioural problems [13]. Even late preterm delivery (<37 weeks) increases
the risk of lifelong cardiovascular and renal complications [14,15]. In this way, iatrogenic
premature birth, though often necessary to save the life of the mother, also may come at
significant cost to the baby [13]. So, at very early gestations, to offset those fetal risks, the
maternal health risks are mitigated by controlling blood pressure with antihypertensives.
This allows safer (for the mother) prolongation of the pregnancy to improve fetal maturity
and reduce risks of neonatal mortality and morbidity [16].

Thus, antihypertensive treatment manages the high blood pressure to reduce maternal
risks, particularly of stroke. This has been very successful. The use of antihypertensives
in women with preeclampsia has greatly reduced rates of both maternal morbidity and
mortality worldwide. However, antihypertensive treatment does not treat the underlying
disease. Nor does it slow disease progression, although there is some debate about that.
Its effect is very much limited to managing high blood pressure to reduce attendant
maternal risks. That is not to say that antihypertensive treatment is without complication
for both mother and baby, and the antihypertensive of choice remains contentious. Indeed,
improvements over recent decades in maternal and perinatal outcomes in pregnancies
complicated by preeclampsia have come mostly from the ability to deliver earlier than was
previously possible, safe in the knowledge that better neonatal care has resulted in better
outcomes for the preterm infant. Antenatal corticosteroids aside, there have been no real
advances in the obstetric care of the woman with preeclampsia since the introduction of
antihypertensives in the 1950s. Pharmacologically, the management of preeclampsia has
been largely “treading water” [17].

However, this may be all set to change. Recent insights into the mechanisms underly-
ing the maternal aspects of preeclampsia have offered the long-awaited promise of new
treatments [17]. In particular, the recognition that maternal endothelial dysfunction due
to placental vasoactive peptides [2,18] is a central feature of the disease has offered the
promise of new, targeted therapies that might address the central causes of the hyperten-
sion rather than the hypertension per se [16,17]. Pathogenic mechanistic insights have led
to the recognition that we must look to therapeutic approaches beyond antihypertensives
if we wish to tackle the underlying disease processes that drive preeclampsia. Such de-
velopments have revolutionised research for preeclampsia and, for the first time in sixty
years, soon we may be able to offer novel medical management to pregnant women with
preeclampsia and their babies.

2. The Search for Novel Therapies

In 1989, Jim Roberts and colleagues suggested that preeclampsia might be due to
widespread maternal endothelial dysfunction [19]. For the first time, a mechanism that
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might explain the majority of the clinical features of the syndrome, not just the hyperten-
sion, had been proposed. In essence, Roberts suggested that disturbed vascular function,
including altered tone and permeability, was the cause of hypertension, peripheral and
cerebral oedema, and proteinuria [19,20]. The other features of preeclampsia such as
liver injury, renal injury, thrombocytopenia and, ultimately, eclampsia itself were also
thought to reflect progressive endothelial dysfunction across diverse target organs [19]
(Figure 1). While our understanding of preeclampsia has evolved somewhat since then,
Roberts’ hypothesis was important because the recognition that endothelial dysfunction
was a key mechanism underlying preeclampsia triggered the need to identify the cause(s)
of that endothelial disturbance. It gave rise to the concept that preeclampsia is a two-step
process: impaired placentation leading to progressive placental ischemia-reperfusion and
oxidative injury, in turn causing the excessive release of vasoactive factors into the maternal
circulation that induced endothelial dysfunction [4]. While not explaining all aspects of
preeclampsia, it remains generally accepted that the maternal syndrome of preeclampsia is
due, by and large, to widespread vascular endothelial dysfunction [20], and that the en-
dothelial dysfunction was caused by substances released by a chronically injured placenta.
The next significant advance was the identification of the candidate vasoactive substances
that were causing the dysfunction. Three antiangiogenic agents have been proposed as
major contributors—the soluble splice variant of the fms-like tyrosine kinase receptor-1
(sFlt1), the soluble cleavage product of the transforming growth factor (TGF-β1) coreceptor
endoglin (sEng) and the proinflammatory cytokine member of the TGF-β super family
activin A [2,5,21–23].

1 
 

 

Figure 1. Preeclampsia involves widespread vascular dysfunction resulting in peripheral vasoconstriction which manifests
as maternal hypertension. Capillary leakage results in oedema and impaired placental oxygenation results in placental
dysfunction and fetal distress with, or without, fetal growth restriction. Melatonin is an antioxidant that reduces oxidative
stress within the cells of the placenta and vasculature. Melatonin releases Nrf2 from intracellular binding by KEAP-1
allowing it to translocate to the nucleus of the cell. Here, Nrf2 activates the antioxidant response element of “safeguarding
genes” resulting in transcription and translation of a number of antioxidant proteins. These proteins induce redox reactions
to neutralise excessive intracellular reactive oxygen species that would otherwise cause damage to DNA and protein
production essential for cell function. This allows melatonin to improve vascular function reducing vasoconstriction, reduce
capillary leakage and improve placental function. Melatonin may also directly protect the developing fetal brain.

Circulating levels of both sFlt1 and sEng are many fold higher in women with
preeclampsia than in those with a healthy pregnancy and levels correlate with disease
severity [22,24]. Further, experimentally the administration of either, or both, sFlt1 and
sEng to rodents induces many features of human preeclampsia including maternal hy-
pertension, proteinuria, glomerular endotheliosis, thrombocytopenia, and elevated liver
enzymes [22,25–27], as does activin [23]. Removal of sFlt1 by plasmapheresis also tem-
porarily moderates the severity of hypertension in women with preeclampsia [28]. Hypoxic
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insult induces post-transcriptional alternate splicing of mRNA for the membrane receptor
Flt-1, to lose the transmembrane and intracellular signaling components of Flt-1 while
preserving the extracellular ligand binding site [29]. In contrast, hypoxia directly triggers
post-translational cleavage of the endoglin protein membrane receptor into its soluble
form [22], which competitively binds TGF-β1. It is thought that sFlt1 and sEng induce
endothelial dysfunction by either sequestering or antagonising pro-angiogenic factors that
are vital for normal endothelial health such as vascular endothelial growth factor (VEGF)
and placental growth factor (PlGF) and TGF-β respectively. These three key proangiogenic
compounds are essential for maintaining blood vessel integrity by inducing phosphoryla-
tion, and hence activation of nitric oxide (NO), a potent vasodilator essential in facilitating
endothelial relaxation [30]. When competitive binding by sFlt-1 and sEng makes VEGF,
PlGF and TGF-β1 unavailable, progressively worsening vascular dysfunction characteristic
of preeclampsia ensues.

Similarly, circulating maternal levels of activin are 10–20-fold higher in women with
preeclampsia compared to those with a healthy pregnancy, secondary to increased pla-
cental production driven by oxidative stress [31–33]. Much like sFlt and sEng, activin is
antiangiogenic [34] and has been shown to inhibit endothelial proliferation and disrupt
endothelial integrity in vitro [35,36]. Activin A binds to activin receptor II (ARII), which
combines with type-1 activin receptor like kinase-4 (ALK-4) resulting in phosphorylation
and nuclear translocation of post-receptor transcription factor Smad2/3 [23,36,37]. Excess
activation of this pathway induces NADPH Oxidase 2 (Nox2) signaling and results in
cellular accumulation of superoxide species and adhesive molecules. As with sFlt and
sEng, the increased levels of activin in a preeclamptic woman lead to further vascular
dysfunction, permeability and oedema, exacerbating the clinical syndrome of preeclamp-
sia [23,31,38,39]. Activin also stimulates the release of endothelin, a potent vasoconstrictor,
from the endothelium [40], consistent with it being able to cause hypertension. As would be
required for activin to have direct effects on the endothelium, endothelial cells express both
type I and II activin receptors and in late pregnancy activin itself can be immunolocalized
to both the maternal and fetal vascular endothelium [41,42]. The likely cause of these
increased activin levels in preeclampsia is placental oxidative stress, a key feature of the
disease [23,32]. Of course, increased levels of activin in women with preeclampsia and
possible placental mechanisms underlying those increased levels do not, by themselves,
tease apart cause and effect. However, circumstantial evidence that excess circulating
activin may indeed have a causative role is offered by the observation that in women who
subsequently develop preeclampsia levels of activin are significantly increased as early as
8–13 weeks of pregnancy, many months before the clinical onset of hypertension [43]. It
is also intriguing that levels of activin are increased in women with gestational diabetes,
a condition with an increased incidence of preeclampsia [44]. In short, the result of the
imbalance between these three antiangiogenic and pro-angiogenic factors such as PlGF and
follistatin is increased endothelial oxidative stress—the likely final pathway underlying
the systemic maternal endothelial dysfunction.

Not surprisingly, attention has now turned to therapies that might prevent the release
of sFlt1, sEng or activin A, or perhaps more importantly, antagonize their antiangiogenic
effects. Given that oxidative stress both increases the release of these antiangiogenic
factors [32,40,45,46] and is a major mechanism by which they exert their damaging effects
on vascular endothelium suggests that targeting oxidative stress, both within the placenta
and in the maternal endothelium, may be an effective therapeutic approach [47–49]. In
this regard, melatonin, an endogenous hormone, known to be safe in pregnancy and with
potent antioxidant capacity is a promising agent [50].

3. Melatonin in Normal Pregnancy and Preeclampsia

Melatonin (5-methoxy-N-acetyltryptamine) is produced primarily by the pineal gland,
providing circadian and seasonal timing cues. It is synthesized from serotonin through
sequential acetyl transferase, to form N-acetylserotonin, and methylation to form mela-
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tonin [51]. In addition to cueing the body clock, melatonin is also a powerful antioxidant,
acting both directly as a highly effective scavenger of reactive oxygen and nitrogen species
itself [52] and indirectly by stimulating a cassette of endogenous antioxidant enzymes
including, but not limited to, glutathione peroxidase, glutathione reductase, superoxide
dismutase, and catalase [52,53].

In human pregnancy, night time, but not daytime, maternal melatonin levels increase
with advancing gestation, falling again postpartum [52]. The increasing levels at the end
of pregnancy are thought to be important in the diurnal “training” of fetal physiology
and behaviour. This sequential rise in melatonin across pregnancy may also play a role
in stimulating labour, and melatonin has been proposed as a therapeutic adjuvant for
induction of labour [54]. Intriguingly, night time levels of melatonin are lower in women
with severe preeclampsia than in those with a healthy pregnancy [55]. In fact, the degree
of night time melatonin deficiency correlates with preeclampsia disease severity [56]. The
majority of circulating melatonin in pregnancy is thought to be of maternal pineal ori-
gin [51], much as it is outside of pregnancy. However, recent studies have identified that the
expression of the two melatonin-synthesizing enzymes, aralkylamine N-acetyltransferase
and hydroxyindole O-methyltransferase, and the two melatonin receptors, MT1 and MT2,
are reduced in the preeclamptic placenta compared to healthy placentae from normotensive
women [51]. As such, impaired placental production may underlie the reduced mater-
nal levels of melatonin in women with preeclampsia and the normal biological effects
of melatonin within the placenta may be reduced in preeclampsia. It is plausible that
impaired melatonin activity, and therefore impaired endogenous antioxidant defenses, in
the preeclamptic placenta contributes to the oxidative stress central to this disease. As such
administration of melatonin to women with preeclampsia may reduce placental oxidative
stress, reduce the production of sFlt1, sEng and activin, and improve placental function.
Melatonin may also improve maternal endothelial function both directly, via endothelial
melatonin receptors [57], and indirectly by reducing circulating levels of sFlt1, sEng, and
activin A.

The antioxidant effects of melatonin have historically been attributed to activation of
nuclear factor erythroid-like factor-2 (Nrf2), an endogenous inducer of cellular antioxidants.
During homeostatic conditions the Nrf2 protein is bound to Kelch-like ECH associated
protein 1 (KEAP-1) within the cytosol of the cell [58]. This process prevents proteoso-
mal degradation of Nrf2 to ensure abundant Nrf2 remains ready to translocate to the
nucleus of the cell during times of increased cellular oxidative stress. Oxidative stress
triggers ubiquitination of KEAP-1 through directly modifying cysteine components of
the protein structure, releasing Nrf2 into the cytosol of the cell [59]. In the nucleus Nrf2
binds small maf-proteins in the promotor region of the antioxidant response element of
so-called safeguarding genes within the cell nucleus [59]. This stimulates increased tran-
scription and translation of a host of antioxidant enzymes and phase two enzymes, namely
NADPH dehydrogenase (quinone) 1 and glutathione S-transferase and the antioxidant
heme oxygenase-1 [59]. These enzymes then undergo a series of redox reactions within
the cytosol of the cell to neutralise, or “scavenge”, damaging oxygen free radicals [60].
When the amount of damaging reactive oxidative species (ROS) overwhelm the capacity
of this inbuilt antioxidant rescue mechanism, oxygen free radicals directly alter protein
structure and damage cellular DNA, producing abnormal spliced proteins such as sEng
and sFlt-1 and triggering inflammatory cascades to release cytokines such as activin A [60].
For good reason, stimulators of the Nrf2 pathway, such as resveratrol and sulforaphane,
have received much attention for their impressive antioxidant capacity, and ability to both
maintain endothelial health [49,61–63] and protect the placenta [48,49,64]. In fact, further
evidence supports a role for the KEAP-1-Nrf2 pathway in protecting the fetus against com-
plications from epigenetic priming that arise from a pregnancy overwhelmed by oxidative
stress [11,12,65].

Not surprisingly given its antioxidant properties, melatonin has been shown to reduce
placental production of antiangiogenic compounds from term placentae in vitro [47,66,67].
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Melatonin also reduces trophoblastic debris from early trimester placentae exposed to
preeclamptic serum [68]. In placental explants, melatonin reduced markers of oxidative
stress induced by the superoxide generator xanthine/xanthine oxidase and increased
production of Nrf2 and the downstream antioxidant enzyme heme oxygenase-1, suggesting
the Nrf2 pathway was, at least in part, responsible for this effect [47]. Although melatonin
did not alter cell production of markers of endothelial activation in endothelial cells, it did
prevent disruption to the cell monolayer [47]. In isolated trophoblast cells, melatonin
significantly decreased secretion of sFlt-1 [67]. While these studies did not identify a
reduction in antiangiogenic compounds from placental explant tissue, the dose of melatonin
used was equivalent to that in cell culture experiments. It is likely that higher doses are
needed to penetrate explant tissue and induce a measurable effect. Further evidence of the
endothelial protective capacity of melatonin was identified when melatonin prevented a
rise in intracellular cell adhesion molecule-1 (ICAM-1) from endothelial cells exposed to
trophoblast debris serum [66]. Melatonin also prevented a rise in nitrotyrosine in these
placental explants exposed to preeclamptic serum [66].

An additional pathway by which melatonin mitigates placental oxidative stress may
well begin in the organelles most reliant on oxygen supply and thus most affected by
hypoxia: the mitochondria [69,70]. A role for disturbed mitochondrial dysfunction in
preeclampsia was first recognised in the 1990s [71]. Mitochondrial dysfunction after
hypoxic reperfusion injury is now accepted as the driver for ROS build-up in severe dis-
ease [72–76]. Mitochondria are responsible for multiple functions, including respiration
and production of cellular energy, homeostatic regulation of ROS and the intrinsic pathway
of apoptosis. Mitochondria form a dynamic network within the cell and constantly undergo
repeated fission and fusion events whereby multiple mitochondria fuse to a large single
mitochondria (fusion) or split into multiple smaller mitochondria (fission) [77–79]. The
balance of this process is essential for cellular homeostasis and ensures maintenance of
healthy mitochondrial structure with stability of the matrix membrane which hosts the five
complexes of the electron transport chain [78]. Low oxygen tensions, as in preeclampsia,
induce abnormal fission and fusion dynamics, generating small mitochondria with low
motility [80]. Hypoxic insult induces mitochondrial permeabilization and breakdown and,
when extensive, can initiate pathways of mitophagy and intrinsic cellular apoptosis [75].
The mitochondrial electron transport chain, essential for production of ATP for cellular
energy, is reliant on the presence of oxygen for oxidative phosphorylation of ADP into
ATP [81]. During respiration, electrons move through a series of complexes, allowing the
formation of a proton gradient in the intermembrane space which then allows passive
diffusion of hydrogen ions through the final complex ATP synthase where ADP is phos-
phorylated into ATP [80,81]. Without oxygen to act as an electron accepter, as occurs in an
oxygen starved-preeclamptic placenta, electrons are unable to flow along the electron trans-
port chain and instead leak into the matrix space [82]. Here, electrons react with oxygen to
form charged superoxide species: the damaging ROS of preeclampsia. To a degree, this
process occurs even in the presence of oxygen to allow homeostatic regulation of the ROS
necessary for physiological cellular processes [82]. However, when ROS formation exceeds
antioxidant enzyme production, the electron transport chain becomes a source of the very
ROS that drive placental antiangiogenic protein formation in preeclampsia [82]. Indeed,
mitochondrial function is disturbed in preeclampsia [71,72,83] suggesting that targeting
the mitochondria offers an attractive therapeutic option to reduce oxidative stress in this
disease. Again, melatonin appears a suitable candidate for that therapy [70,84,85].

Melatonin is highly expressed in the mitochondria of placental trophoblasts [86,87]
and is responsible for the production of key antioxidant enzymes in this organelle [70].
Indeed, melatonin is known to protect mitochondrial function [88], reduce electron leakage
and ameliorate ROS production of the electron transport chain [89,90], particularly in the
face of hypoxic-reperfusion injury [84,91,92]. In the placenta of obese women, placentae
characterised by trophoblastic ROS production similar to that of preeclampsia, melatonin
significantly improves the function of the electron transport chain [93]. Specifically, in the
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term placental syncytiotrophoblast of obese women, melatonin improves the spare respira-
tory capacity, a marker of cellular reserve, an important feature for placentae exposed to
oxygen deficient environments [93]. Melatonin also increases the maximal respiration and
correspondingly reduces the placental production of superoxides. These findings indicate
that melatonin may act as a protective buffer for the placental mitochondrial electron trans-
port chain against the damaging effects of hypoxic-ischaemic reperfusion injury and the
resultant superoxides. Whether melatonin exerts this action via antioxidant effects, such as
activation of the Nrf2 antioxidant response element pathway, or by directly modulating
the components of the electron transport chain remains unclear. This is certainly worthy
of study. However, a similar compound to melatonin, sulforaphane, has action at the
level of the mitochondria and this appears to be via potent Nrf2 antioxidant activity as
well as by modulating mitochondrial fission and fusion and the complexes of the electron
transport chain [94]. It would be worth investigating the capacity and mechanisms of
action of melatonin in improving mitochondrial function in preeclamptic placentae or
suitable in vitro hypoxic-reperfusion models of injury.

In addition to its beneficial effects in the placenta, melatonin also has reparative actions
on the endothelium. Studies of melatonin on vascular cells have primarily focussed on
human umbilical vein endothelial cells (HUVECs). In these cells, a microarray analysis
demonstrated that melatonin significantly modulates expression of genes involved in
apoptosis, cell differentiation and proliferation [95]. In an in vitro hypoxia-reoxygenation
model in endothelial cells, melatonin treatment prevented hypoxic—reperfusion injury by
preventing a rise in ROS and corresponding impaired cell migration and proliferation in
a dose-dependent manner, without negatively affecting cell viability [96]. More recently,
melatonin has been shown to have anti-ROS activity in toxic environments of oxidative
stress and hypoxia, with reduced endothelial cell proliferation and tube formation [97].
These studies provide supporting evidence that melatonin displays antiangiogenic effects
by suppressing the proliferation of endothelial cells, an effect achieved by the downregula-
tion of hypoxia inducible factor 1α (HIF-1α), ROS and vascular endothelial growth factor.
Suppressing these pathways is an important step in ameliorating the excessive production
of the sEng and sFlt-1 seen in the preeclamptic placenta.

Though melatonin certainly freely crosses the placenta, this is not a concern. In fact,
melatonin has also showed promise for the management of fetal growth restriction (FGR),
a condition that goes hand in hand with preeclampsia and can be, broadly, viewed as
the fetal manifestation of placental insufficiency, much as preeclampsia is the maternal
manifestation. Evidence from animal models of impaired placentation and FGR support
a role for melatonin in improving placental function and fetal outcomes. For example,
following early pregnancy nutritional restriction in the sheep, oral maternal administration
of melatonin improved uteroplacental blood flow—both uterine and umbilical—and fetal
weight [98]. Melatonin is also able to protect the fetal brain and normalize early neurodevel-
opment in a fetal sheep model of FGR using umbilical cord occlusion [99]. Improved fetal
growth was also afforded by maternal melatonin in both a nutritionally restricted rat model
of FGR [100] and in a rat model where FGR was imposed by transient occlusion of the
utero-ovarian arteries in mid-pregnancy [92]. In each of these models the administration of
melatonin was associated with decreased placental oxidative stress and increased antioxi-
dant enzymes [65,98,100]. Studies of melatonin for FGR have shown that oral melatonin
taken by women during pregnancy crosses the placenta into the fetal circulation where it
may protect the fetal brain from the harmful effects of oxidative stress [101]. In a pilot FGR
trial where 8 mg melatonin per day was given to 12 women with severe FGR, a 200-fold
increase in both maternal and fetal melatonin levels without maternal or fetal adverse
effects was seen [102]. The clinical utility of melatonin as a neuroprotective therapy to
improve neonatal outcomes in the setting of FGR is under ongoing investigation [103]. This
neuroprotective feature is an appealing feature of melatonin for conditions of placental
oxidative stress such as FGR and preeclampsia, killing two birds with one stone as it were.
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In summary, melatonin has beneficial effects both within the placenta and on the
maternal endothelium. It improves endothelial cell health by reducing inflammatory
activation and antiangiogenic factor secretion [66], most likely through improved mito-
chondrial function, and increases expression of antioxidant enzymes in trophoblasts [67].
So what is the evidence for melatonin as an antihypertensive?

4. Melatonin as an Antihypertensive

Melatonin is an antihypertensive, reducing blood pressure in experimental animal
models of hypertension, in healthy individuals, and in patients with established hyperten-
sion [7,57,104–106]. In fact in early animal studies, removal of the pineal gland, responsible
for endogenous melatonin production, resulted in hypertension [107,108] with exogenous
administration of melatonin reversing this vasoactive effect [109]. These initial studies pro-
vided evidence that melatonin was involved in cardiovascular regulation and prompted
further investigation. Since then, a number of studies have identified that exogenous
melatonin modifies blood flow, with effects varying depending on the vasculature.

The mechanisms underlying melatonin’s antihypertensive actions remain to be fully
elucidated [57], but are likely to involve some or all of: central effects, systemic anti-
inflammatory, antioxidant, and lipid lowering effects, direct effects on the myocardium and
direct effects on the vascular endothelium [57]. In pregnancy melatonin increases umbilical
blood flow in sheep [110], uterine artery blood flow in cows [111] and decreases cerebral
blood flow in young rats [112]. These observations are consistent with improved placental
function. Interestingly, in a chronic nitric oxide (NO) inhibited rat model of hypertension,
melatonin treatment for 5 days significantly reduced basal mean arterial pressure [113].
A chronic intermittent hypoxic rat model induced endothelial dysfunction in the aorta
by decreasing relaxation when exposed to the endothelium-dependent vasodilator acetyl-
choline [114]. This was mitigated by melatonin. Such findings were attributed to an
increase in NO availability and increased protein expression of endothelial NO synthase
(eNOS) in the aorta [114]. In this study, melatonin also decreased mRNA expression in
the aorta of endothelial dysfunction markers including vascular cell adhesion molecule-1
(VCAM-1), ICAM-1 and E-selectin. While useful in understanding the effect of melatonin
on the cardiovascular system, none of these animal models were models of preeclampsia.
Melatonin is believed to directly activate receptors located on endothelial and vascular
smooth muscle cells, and through its antioxidant properties, indirectly modulate vascular
tone [57]. In the vasculature, melatonin receptors have conflicting effects, inducing vasocon-
striction via the receptor MT1 and vasodilation via MT2, as first demonstrated in isolated
rat caudal arteries [115]. It is the relative distribution differences of the melatonin receptors
that elicits differential vascular responses in different blood vessels, and often selectively
potentiates the vasoconstrictor response to serotonin. For example, in pigs, melatonin
appears to reduce vasoconstriction in the coronary artery and increase vasoconstriction
in the pulmonary artery, while vasoconstricting the rat coronary artery [116]. In contrast,
melatonin induces vasodilation in rabbit aorta, iliac and renal vasculature [117,118] and the
rat aorta [119]. Conversely, melatonin increases vasoconstriction in the coronary artery of
pigs, but only if serotonin is present [120]. With such variability, the studies of the vascular
actions of melatonin have revealed a substantial heterogeneity of effects.

Only recently were the mechanisms behind melatonin-induced vasodilation explored.
Now, we understand that melatonin can affect arterial blood pressure and blood flow to tis-
sues and organs by modulating the diameter of the vasculature [57,121,122]. This function
likely occurs via directly activating the MT1 and MT2 receptors located on endothelial and
vascular smooth muscle cells, and indirectly by its antioxidant properties to effect vascular
tone. MT1 and MT2 receptors have been localized to a variety of arterial beds in humans,
including the aorta, and coronary and cerebral arteries. Interestingly, melatonin receptors
MT1 and MT2 are not expressed in all blood vessels so melatonin only exerts these potent
vasoactive effects in specific regions of the vasculature [57]. The role of melatonin in the
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cardiovascular system at large has been summarized elsewhere and will not be covered in
detail in this review [123].

Evidence that melatonin modifies production of NO is, unsurprisingly, vascular bed
specific. In porcine coronary vascular smooth muscle, melatonin inhibited NO-induced
increases in cGMP and artery relaxation via the MT2 receptor [124]. Interestingly, conflict-
ing findings also revealed that melatonin exerts neuroprotective effects by suppressing
NO production and enhancing activity of the endogenous antioxidant superoxide dis-
mutase following oxidative injury [125,126]. Melatonin also increases NO availability,
thereby inducing vasodilation of the mesenteric artery of healthy [127,128] and hyperten-
sive rats [129].

These findings also translated to studies in human blood flow and vascular distribu-
tion. After human ingestion, melatonin reduced renal blood flow velocity and vascular
conductance, enhanced forearm blood flow and vascular conductance, while not chang-
ing middle cerebral artery blood flow [121]. The decrease in renal blood flow could be
eliminated by α-adrenergic receptor antagonism, indicating that melatonin is augmenting
sympathetic outflow to the kidney. The effect on forearm blood flow, and lack of effect on
middle cerebral artery blood flow was hypothesised to be due to a difference in melatonin
receptor expression. An earlier study also demonstrated a lack of effect after a bolus injec-
tion of melatonin on cerebral blood flow, as measured in the basilar artery [130]. Once again,
these studies support the concept that the relative distribution of the melatonin receptors
influences the vascular effects of melatonin. Furthermore, in patients with three-vessel
coronary disease, one month of oral melatonin treatment resulted in decreased plasma
levels of VCAM and ICAM, while increasing plasma NO levels, providing further evidence
that melatonin can protect against endothelial dysfunction [131].

In addition to increasing NO availability via MT1/MT2 receptors in endothelial cells,
melatonin activates large conductance Ca2+-activated K+ (BKCa) channels of smooth mus-
cle cells, the role of which is in relaxation [128]. However, as the effects of melatonin are
highly variable depending on the vasculature, the mechanisms explored in the mesenteric
artery may not be translated to other vascular beds. It is hypothesised that melatonin, via
its receptors, changes calcium and potassium channel regulation, and may also directly
activate guanylate cyclase [132]. This is supported by an in vitro study that demonstrated
melatonin-induced relaxation was only partially inhibited when NOS, the enzyme respon-
sible for NO production, and guanylate cyclase were blocked [133]. In this chronic NO
inhibited rat model of hypertension, melatonin treatment for 5 days significantly reduced
basal mean arterial pressure. These rats had been administered the NO synthase (NOS)
blocker L-NAME for 14 days, indicating that a mechanism beyond NO must be respon-
sible for the observed antihypertensive effect of melatonin [113]. Though the conflicting
nature of data regarding vasoactive effects of melatonin in animal vasculature limits the
applicability to human populations, it certainly offers proof of concept that melatonin has
the potential to directly modulate the vasculature. These mechanistic explorations may
explain the hypotensive effect observed in humans [47,57,104–106].

Recently, a small open-label study sought to assess whether melatonin may allow safe
prolongation of pregnancy in women with early-onset (<34 weeks gestation) preeclampsia
by improving maternal endothelial dysfunction [47]. The administration of 30 mg daily
of melatonin to 20 women with early-onset preeclampsia was associated with a six day
increase in diagnosis to delivery interval and a reduced need for escalation of antihyper-
tensive therapy. Consistent with those clinical outcomes, melatonin reduced placental
and endothelial dysfunction [47]. Certainly this small study was open to bias, with small
numbers, lack of blinding and use of historical controls. However, it was the first report
of the use of melatonin therapeutically in preeclampsia. The correlation between both
clinical and biochemical outcomes also supports a possible role for melatonin in restraining
the otherwise unbridled placental and vascular oxidative stress of preeclampsia. While
promising, these findings now require confirmation by a large randomised controlled trial
before melatonin can be recommended for clinical use [134].
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Pending further clinical trial assessment, melatonin has a number of attributes that
would make it a particularly attractive therapy for preeclampsia (Figure 1). The safety of
melatonin in pregnancy is well documented. It readily crosses the human placenta [135]
and, even in high doses it has few, if any, adverse effects. Numerous animal studies
have shown no maternal or fetal adverse effects from exogenous administration of mela-
tonin [99,113,136]. Pilot studies of melatonin for women with growth restricted pregnancies
(8 mg daily) [137], preeclampsia (30 mg daily) [47], and in 160 women undergoing in vitro
fertilisation (8–16 mg daily) did not identify adverse outcomes from melatonin [138]. In a
long-term contraceptive trial, women who took 75 mg melatonin a day for months reported
no adverse effects [139] further supporting the safety profile of melatonin. The beneficial
effects of melatonin for preeclampsia may extend beyond the mother. Current trials are
investigating the potential for melatonin to protect the fetus in hostile intrauterine environ-
ments such as intra uterine growth restriction [103]. Research is underway to assess whether
melatonin may offer benefit in augmenting induction of labour [54], preventing blood
loss after caesarean section [140] and post-partum haemorrhage (IRCT2015050919037N9).
In humans, melatonin also has anticonvulsant activity [141], which may be useful in the
primary prevention of eclampsia.

5. Beyond Melatonin: Other Antioxidants for Preeclampsia

Melatonin is not alone in holding potential therapeutic utility as an antioxidant for the
management of preeclampsia. Indeed, much excitement surrounded antioxidants upon
the discovery that oxidative stress is likely a key player in the pathogenesis of the disease.
This abated somewhat when the results from large clinical trials of Vitamin C and E were
negative [142,143]. However, these therapies act only to directly scavenge ROS so do not
carry the same potency as Nrf2-activators which upregulate a plethora of antioxidant
enzymes and utilise innate cellular processes of signal amplification. Promising in vitro
data [144,145] for esomeprazole saw it was rapidly evaluated in a clinical trial to delay
delivery in women with preeclampsia [146]. That the clinical trial did not confirm any
benefit of esomeprazole in diagnosed preeclampsia, despite preclinical observations, is
a timely reminder of the need for thorough clinical trial assessments of new therapies.
Potential benefit for high-risk women when given esomeprazole in the first trimester is
under investigation. Resveratrol, found in red wine, is an inducer of the Nrf2 antioxi-
dant pathway and has been shown to improve the health of trophoblasts and vascular
cells in vitro [49,64,147]. Clinically, resveratrol improves the antihypertensive efficacy of
nifedipine in managing preeclampsia [148]. A formal clinical trial of resveratrol would
certainly be worthwhile. Another promising therapeutic candidate that addresses oxidative
stress pathways is sulforaphane, a naturally occurring Nrf2 inducer found in cruciferous
vegetables, particularly broccoli seed. Sulforaphane has been shown to have similar actions
to melatonin in syncytiotrophoblast mitochondria, improving the resilience of the electron
transport chain to both the hypoxic and oxidative mechanisms of injury of preeclamp-
sia [94]. Sulforaphane directly reduces placental production of antiangiogenic proteins
that trigger vascular dysfunction in preeclampsia [48]. As well as reducing inflammation
and oxidative stress in vascular cells [20], sulforaphane protects omental blood vessels
taken from pregnant women at the time of caesarean section against “preeclamptic-like”
injury [63]. Not only does sulforaphane reduce sensitivity to vasoconstrictors, it also
improves vasorelaxation in these injured blood vessels and, in supraphysiologic doses,
can act as a direct vasodilator [63]. Clinical investigations of sulforaphane, as a broccoli
extract formula, to treat established preeclampsia are underway and the results of that are
eagerly awaited [149]. If the dose-finding studies are any indicator, sulforaphane looks very
promising indeed. Even as a single dose, sulforaphane transiently reduced diastolic blood
pressure and circulating sFlt1 levels in women with pregnancy hypertension at term [150].
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6. Conclusions

Though essential in reducing stroke risk, antihypertensive therapy has reached the
limit of its utility in the management of preeclampsia. Instead, we must now put to use our
increased understanding of the pathogenesis of the disease to guide rational drug therapy.
Specifically, antioxidants to mitigate the oxidative stress that underpins preeclampsia are
likely an appropriate solution to protect the placenta and maternal endothelium. Melatonin
is a safe, endogenous hormone with impressive antioxidant and antihypertensive effects
that may make it a useful adjuvant for the management of preeclampsia. These antioxidant
effects have been elucidated in placenta cells, in mitochondria, and in vascular cells, all
key contributors to the pathogenesis of preeclampsia. The vasoactive effects of melatonin
appear to be vessel specific in animals, though in humans it appears hypotensive and
may reduce maternal blood pressure such that the inevitable delivery of the fetus can
be safely delayed. Perhaps most excitingly, melatonin may offer benefits that extend
beyond maternal care to protect the fetal brain in hostile intrauterine environments, such
as FGR. Melatonin has been investigated for a host of other disorders related to pregnancy
(summarized in Table 1). None of these studies raised safety concerns, even in high doses.
Collectively, these findings highlight that melatonin is an exciting candidate for an adjuvant
therapy for preeclampsia. Preliminary clinical trial evidence is promising and further, more
fulsome, clinical evaluation is certainly warranted. An abundance of in vitro, animal-based
and clinical evidence supports a role for melatonin in the management of preeclampsia,
and indeed other disorders of pregnancy. Only through ongoing investigation of naturally
occurring antioxidants, such as melatonin, can we hope to safely prolong pregnancy in
severe preeclampsia and perhaps, for the first time in fifty years, offer a way to improve,
and save, the lives of pregnant women with preeclampsia and their babies.

Table 1. Summary of clinical trials investigating melatonin for pregnancy outcomes.

Number of
Participants Intervention Primary Outcome Study Type

Swarnamani, K. et al.,
2020 [54]

774 women undergoing
induction of labour

Four doses of 10 mg of
melatonin or placebo

Requirement for
caesarean section

Double-blind
randomised

placebo-controlled trial

Palmer K. R. et al.,
2019 [103]

336 women with FGR
pregnancy between

23 + 0 and 31 + 6 weeks

30 mg per day
or placebo

Neurodevelopment
(difference of 5 points

in the cognitive domain
of the Bayley-III)

Triple-blind, parallel,
randomised

placebo-controlled trial

Khezri, M. et al.,
2019 [140]

One hundred and
twenty women

undergoing caesarean
section

3 or 6 mg of melatonin
or placebo 20 min
before caesarean

section

Change in
haemoglobin level

Double-blind
randomised trial

Fernando, S. et al.,
2018 [138]

One hundred and sixty
women undergoing

their first cycle of IVF
or ICSI

2, 4 or 8 mg of
melatonin or placebo

twice daily
Clinical pregnancy rate

Double-blind
randomised

placebo-controlled trial

Hobson S.R. et al.,
2016 [47]

Twenty women with
preeclampsia

10 mg of melatonin
three times daily

Diagnosis to delivery
interval

Single-arm,
open-label study

Alers N.O. et al.,
2013 [137]

12 women with FGR
pregnancies < 34 wks

4 mg melatonin
twice daily

Biomarkers placental
and circulating
oxidative stress

Single-arm,
open-label study
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