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Abstract

Sterol regulatory element-binding proteins (SREBPs)-1c and -2, which were initially discovered as master transcriptional
regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide
symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play
a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid
peroxidase (TPO) gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which
is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was
reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays
revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which
was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both,
SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin
immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping
SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter
gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present
findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.
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Introduction

The main function of the thyroid gland is to synthesize the

thyroid hormones (TH) thyroxine (T4) and triiodothyronine (T3).

TH synthesis occurs in the thyroid follicles which are the structural

units of the thyroid. The thyroid follicles are comprised of a

monolayer of follicular epithelial cells (thyrocytes) surrounding the

follicular lumen which is filled with colloid. For TH synthesis,

iodide is actively taken up across the basolateral membrane of the

thyrocyte by the sodium-iodide symporter (NIS) [1]. The iodide is

then transported transcellularly and exported through the apical

membrane of the thyrocyte. At the apical membrane-colloid

interface, thyroid peroxidase (TPO) catalyzes oxidation of iodide

by hydrogen peroxide, iodination of tyrosyl residues of thyroglob-

ulin (Tg), a glycoprotein secreted from thyrocytes, and subsequent

coupling of the iodotyrosyl residues to form T3 and T4 [2].

However, TH synthesis is more complex involving not only

thyrocytes, but also endothelial cells from adjacent capillaries, and

it is well known that TH synthesis is regulated by autocrine/

paracrine interactions between endothelial and follicular cells [3].

This complex interplay between thyroid follicles and the

microvasculature is best described by the previously developed

concept of the angiofollicular units [4], which are considered the

morphological-functional units of the thyroid. According to this

concept, TH synthesis is the result of a concerted communication

between all cellular compartments of the thyroid including those of

the microvasculature.

The primary regulator of thyroid growth, differentiation and

function is thyrotropin (TSH) which is secreted from a specific

subpopulation of pituitary cells, called thyrotropes [5]. The effect

of TSH on thyrocytes is mediated via binding to the TSH receptor

(TSHR) leading to an increase in intracellular cAMP and

stimulation of protein kinase A-mediated pathways. All genes

involved in TH synthesis, including NIS, Tg and TPO are

activated by TSH thereby stimulating the synthesis and release of

TH. Although the TSH/TSHR/cAMP pathway is the most

important signaling pathway regulating expression of genes

involved in TH synthesis [5–7], it was shown that key genes

involved in TH synthesis, like NIS and TPO, are also subject to

regulation by other signaling pathways, such as the NF-kB
pathway [8,9]. This suggests that TH synthesis is also critically

influenced by non-TSH signaling pathways. Noteworthy, the NIS

gene was recently reported to be up-regulated by the sterol

regulatory element-binding proteins (SREBPs)-1c and -2 [10].

SREBP-1c and SREBP-2 are known as master regulators of fatty

acid and triacylglycerol synthesis and cholesterol biosynthesis and
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uptake, respectively, [11]. Moreover, we have found that TSH

causes an up-regulation and activation of SREBPs in thyrocytes,

whereas SREBPs are markedly less expressed in thyroid epithe-

lium from TSHR-deficient mice compared to wild-type mice [10].

Our findings provide a plausible explanation for earlier observa-

tions that TSH stimulates expression of genes responsible for fatty

acid and cholesterol synthesis in thyrocytes [12–14], a mechanism

aiming to provide membrane lipids for growth and proliferation of

thyrocytes which is stimulated by TSH. The SREBPs are

synthesized as 120-kDa precursors (pSREBP) located in the

endoplasmic reticulum membrane and form a transcriptionally

inactive complex with the SREBP cleavage activating protein

(SCAP). In the case that the cholesterol content of the cell

decreases, the SREBPs are escorted by SCAP to the Golgi, where

the SREBPs become proteolytically processed resulting in the

release of the transcriptionally active N-terminal domain of the

SREBPs (nSREBP). The nSREBPs then translocate into the

nucleus where it binds to sterol regulatory element (SRE) binding

sites in the regulatory region of target genes, thereby, activating

their transcription [10,15,16]. Using reporter gene experiments,

gel shift assays and chromatin immunoprecipitation we recently

identified one functional SRE in the rat NIS gene which is

responsible for SREBP-induced activation of NIS gene expression

[10]. The importance of the SREBP-dependent regulatory

pathway for NIS expression and function in thyrocytes could be

evidenced by the finding that inhibition of SREBP maturation

results in a reduction of NIS expression and NIS-specific iodide

uptake by at least 20% [10]. Based on the observation that

SREBPs are novel transcriptional regulators of the NIS gene and

therefore play a role for TH synthesis, we hypothesized that

another gene involved in TH synthesis, the TPO gene, is also a

target of SREBPs. To test this hypothesis we analyzed the TPO 59-

flanking region for putative SREBP binding sites and tested their

functionality in reporter gene, gel shift, and chromatin immuno-

precipitation experiments. The results show that the rat TPO gene

is a SREBP target gene and that SREBP-dependent transactiva-

tion is mediated by an approximately 80 bp region within the first

intron of the TPO gene which contains two isolated and two

overlapping SREBP-binding elements.

Materials and Methods

Cell Culture
HepG2 cells (DSMZ, Braunschweig, Germany) and FRTL-5

cells (Cell Lines Service, Eppelheim, Germany) were cultured as

described recently [10].

RNA Isolation and Real-time RT-PCR
For qPCR analysis, FRTL-5 cells were seeded in 24 well plates

and incubated as indicated. Total RNA extraction, cDNA

synthesis and qPCR were performed as described recently [10].

Gene specific primer pairs and their features are listed in Table 1.

RNA Interference
For RNAi-mediated gene knockdown of SREBP-1 and SREBP-

2, FRTL-5 cells were transiently transfected in 6 well plates with

gene-specific Stealth RNAi molecules (‘‘SREBP-1/22 KO

siRNA’’) or BLOCK-iT Alexa Fluor Red Fluorescent Control

(‘‘Control siRNA’’) using LipofectAMINE 2000 (all from Invitro-

gen) as described recently [10]. 48 h post transfection, total RNA

and protein extracts were prepared as described recently [10].

Protein Extraction and Immunoblotting
Cells were harvested and cytosolic fractions were obtained using

the Nuclear Extract Kit from Active Motif (La Hulpe, Belgium).

To prevent degradation of SREBPs, FRTL-5 cells were treated

with 25 mg/mL of the calpain inhibitor N-acetyl-Leu-Leu-

Norleucinal (ALLN) 3 h before cell lysis. Protein concentrations

of cytosolic and nuclear extracts were determined by the

bicinchoninic acid protein assay kit (Interchim, Montluçon,

France) with BSA as standard. 20 mg protein, each from cytosolic

and nuclear extracts, were separated by SDS-PAGE (7.5%) and

electrotransferred onto nitrocellulose membranes (Pall Corpora-

tion, Pensacola, FL, USA). Blotted membranes were incubated

with anti-SREBP-1, anti-SREBP-2 and anti-b-Actin (Abcam,

Cambridge, UK), followed by a horseradish peroxidase conjugat-

ed secondary antibody as reported recently [10]. The signal

intensities of specific bands were visualized with ECL Plus (GE

Healthcare, München, Germany) and a Bio-Imaging system

(Syngene, Cambridge, UK).

Bioinformatics
For the identification of putative SREBP-binding sites, in silico

analysis was performed using the MatInspector software [17]

(http://www.genomatix.de/matinspector.html).

Generation of Plasmids
The 59-upstream region of the rat TPO gene, using cDNA and

genomic DNA sequences from NCBI GenBank (accession no.

NM_019353 and AABR06043226), was PCR amplified from rat

BAC clone CH230-23A19 (accession no. AC121061, BACPAC

Resources, Oakland, USA). The parental reporter gene construct

rTPO21310/+697, corresponding to nucleotide 21310 to +697

Table 1. Characteristics of gene-specific primers used for qPCR analysis.

Gene (NCBI Gene Bank)
Oligonucleotide sequence
Forward (59–39) Reverse (59–39) PCR product size (bp)

rat SREBP-1c (AF286470.2) GGAGCCATGGATTGCACATT 191

AGGAAGGCTTCCAGAGAGGA

rat SREBP-2 (NM_001033694.1) CTGACCACAATGCCGGTAAT 204

CTTGTGCATCTTGGCATCTG

rat TPO (NM_019353.1) CAGGTGTTGAGAAGCAGTTG 255

CTTTGAAAGCTGTAGCCAGG

rat b-Actin (NM_031144.2) GACCTCTATGCCAACACAGT 154

CACCAATCCACACAGAGTAC

doi:10.1371/journal.pone.0091265.t001

TPO Is Regulated by SREBPs
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relative to the transcription start site, and the 59-serially deleted

reporter gene constructs were generated using different 59-primers

and a common 39-primer (Table 2), except for the reporter gene

construct rTPO+676/+697, which was generated by annealing the

oligonucleotides BglII-GATCTCTGGGGTTGCAGTGGG-

GAAGA and XhoI-TCGATCTTCCCCACTGCAACCCCAGA

as described recently [10]. All DNA fragments were subcloned

into BglII and XhoI sites of pGL4.10 [luc2] vector (Promega,

Mannheim, Germany) upstream of the luciferase reporter gene.

Seven additional luciferase reporter vectors, containing two

copies of human LDLR-SRE (positive control) [10] or two copies

of wild-type and mutated rat TPO 2xSRE+640 or rat TPO

2xInvSRE-like+654 or rat TPO 2xSRE/InvSRE, were generated

by annealing the oligonucleotides (Table 3).

Generation of rat nuclear SREBP-1c (amino acids 1–448) and

rat nuclear SREBP-2 (amino acids 1–460) expression plasmids has

been described recently [10].

Transient Transfection
Transient transfections of HepG2 cells were performed as

described recently [10] with minor modifications. In brief, cells

were seeded in 96 well plates and transiently transfected with

50 ng of the generated reporter gene constructs and co-transfected

with 50 ng of either rat nuclear SREBP-1c or rat nuclear SREBP-

2 expression plasmids or 50 ng of the empty vector (pcDNA3.1)

using FuGENE 6 transfection reagent (Roche Diagnostics,

Mannheim, Germany) according to the manufacturer’s protocol.

For normalization of transfection efficiency, cells were co-

transfected with 5 ng of pGL4.74 [luc2] vector (Promega), which

encodes for the Renilla luciferase, as an internal control. In

addition, cells were transfected with 50 ng of either pGL4.10

[luc2] vector or pGL4.23 [luc2/minP] vector (both from Promega)

or the 2x hLDLR-SRE luciferase reporter vector, containing two

copies of the SRE-1 from human LDL receptor, as negative and

positive controls. 24 h post transfection, cells were harvested and

luciferase activities were measured using Beetle-Juice and Renilla-

Juice Kits from PJK (Kleinblittersdorf, Germany). Normalized

luciferase activities were calculated by dividing the luciferase

activity of each construct by that of the corresponding empty

vectors, pGL4.10 or pGL4.23 [18]. Results are shown relative to

cells transfected with the empty vector pcDNA3.1 which were set

to 1.

Electrophoretic Mobility Shift Assay (EMSA)
EMSA experiments have been described in detail by Wen et al.

[19]. In brief, recombinant rat nuclear SREBP-1c and SREBP-2

proteins were in vitro translated from the corresponding expression

vectors using the TNT T7 Quick Coupled Transcription/

Translation System (Promega) according to the manufacturer’s

protocol. Annealed oligonucleotides, spanning the 59-upstream

region of the rat TPO gene from nucleotide +598 to +697, were
end-labeled with Digoxigenin (DIG) using the DIG Gel Shift Kit,

2nd Generation from Roche. In addition, annealed and DIG-

labeled wild-type and mutated human LDLR-SRE oligonucleo-

Table 2. Oligonucleotides used for PCR amplification of reporter gene constructs from rat TPO.

Oligonucleotide Oligonucleotide sequence (59–39) PCR product size (bp)

rTPO-BglII_F TCAAGATCTTCTGGGGTTGCAGTGGGGA –

rTPO21310/+697-XhoI_R ATCCTCGAGGCAAGTGTTAAAGAGGTTAGT 2007

rTPO21110/+697-XhoI_R AATCTCGAGGATGTCAATCTGCCTTGGCA 1807

rTPO2719/+697-XhoI_R AATCTCGAGCGTCTGCTGGGTGAAGTCTC 1416

rTPO+1/+697-XhoI_R ATTCTCGAGGCACAGCCTGCTTCTTCAGT 697

rTPO+598/+697-XhoI_R ATTCTCGAGACTTGGGAGGACCCACCTGA 100

doi:10.1371/journal.pone.0091265.t002

Table 3. Oligonucleotides used for Annealing of reporter gene constructs from rat TPO.

Oligonucleotide Oligonucleotide sequence (59–39)

rTPO 2xSRE+640-HindIII_F AGCTCAGCAGAATACTGTGGGATGTACCATAAAATACTGTGGGATGTACCATAAATACCC

rTPO 2xSRE+640-XhoI_R TCGAGGGTATTTATGGTACATCCCACAGTATTTTATGGTACATCCCACAGTATTCTGCTG

rTPO 2xSRE+640mut-HindIII_F AGCTCAGCAGAATACTGTGTTACTTACCATAAAATACTGTGTTACTTACCATAAATACCC

rTPO 2xSRE+640mut-XhoI_R TCGAGGGTATTTATGGTAAGTAACACAGTATTTTATGGTAAGTAACACAGTATTCTGCTG

rTPO 2xInvSRE-like+654-HindIII_F AGCTGAGATAATCAGAAAGTCAGCAGAATACTGATCAGAAAGTCAGCAGAATACTGTGGGAT

rTPO 2xInvSRE-like+654-XhoI_R TCGAATCCCACAGTATTCTGCTGACTTTCTGATCAGTATTCTGCTGACTTTCTGATTATCTC

rTPO 2xInvSRE-like+654mut-HindIII_F AGCTGAGATAATCAGAAAGTCGTATTAATACTGATCAGAAAGTCGTATTAATACTGTGGGAT

rTPO 2xInvSRE-like+654mut-XhoI_R TCGAATCCCACAGTATTAATACGACTTTCTGATCAGTATTAATACGACTTTCTGATTATCTC

rTPO 2xSRE/InvSRE-HindIII_F AGCTAAATACCCAGGCCTCTCCTCAGGTGGGTCCCAGGCCTCTCCTCAGGTGGGTCCTCCCA

rTPO 2xSRE/InvSRE-XhoI_R TCGATGGGAGGACCCACCTGAGGAGAGGCCTGGGACCCACCTGAGGAGAGGCCTGGGTATTT

rTPO 2xSRE/InvSREmut-HindIII_F AGCTAAATACCCAGGCCTCTCAGATAGTGGGTCCCAGGCCTCTCAGATAGTGGGTCCTCCCA

rTPO 2xSRE/InvSREmut-XhoI_R TCGATGGGAGGACCCACTATCTGAGAGGCCTGGGACCCACTATCTGAGAGGCCTGGGTATTT

Mutated nucleotides are underlined.
doi:10.1371/journal.pone.0091265.t003

TPO Is Regulated by SREBPs
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tides [10] were used as specific and non-specific control. All

sequences of synthetic oligonucleotides are listed in Table 4. For

competition experiments, recombinant proteins were incubated

with DIG-labeled probes and fold excess of unlabeled specific

probes (human LDLR-SRE) as indicated in Figure legends.

Chromatin Immunoprecipitation (ChIP) Assay
ChIP was performed using the Magna ChIP G from Millipore

(Schwalbach/Taunus, Germany). PCR amplification of eluted and

purified DNA has been described recently [10]. The 270 bp

fragment corresponding to the 59-upstream region of the rat TPO

gene, which contains the potential SREBP-binding sites, and a

168 bp fragment corresponding to a random DNA fragment of rat

genomic DNA (control) were amplified by using the following

primer pairs: rTPO-ChIP_F: TCTGGGGTTGCAGTGGGGA,

rTPO-ChIP_R: CCTGAATGTTAGCCATTCACT; control-

ChIP_F: TGCTTGCATAGCACCAGGAA, control-ChIP_R:

GGAGAAAGCAGAGGACATCA.

Statistical Analysis
Numerical data were analyzed by one-way ANOVA using the

Minitab Statistical Software Rel. 13.0 (Minitab, State College, PA,

USA). Differences of P,0.05 were considered to be significant.

Table 4. Oligonucleotides used for EMSA.

Oligonucleotide Oligonucleotide sequence (59–39)

rTPO I_F GATCTCTGGGGTTGCAGTGGGGAAGA

rTPO I_R TCGATCTTCCCCACTGCAACCCCAGA

rTPO II_F AGCTTTGCAGTGGGGAAGAGATAA

rTPO II_R TCGATTATCTCTTCCCCACTGCAA

rTPO III_F AGCTGATAATCAGAAAGTCAGCAGAATACT

rTPO III_R TCGAAGTATTCTGCTGACTTTCTGATTATC

rTPO IIImut1_F AGCTGATAATCAGAAAGTCAGCAGTTCTAG

rTPO IIImut1_R TCGACTAGAACTGCTGACTTTCTGATTATC

rTPO IIImut2_F AGCTGATAATCAGAAAGTCGTATTAATACT

rTPO IIImut2_R TCGAAGTATTAATACGACTTTCTGATTATC

rTPO IIImut3_F AGCTGATAATCAGATTCGAAGCAGAATACT

rTPO IIImut3_R TCGAAGTATTCTGCTTCGAATCTGATTATC

rTPO IIImut4_F AGCTGATAAGATTCAAGTCAGCAGAATACT

rTPO IIImut4_R TCGAAGTATTCTGCTGACTTGAATCTTATC

rTPO IIImut5_F AGCTTCGTTTCAGAAAGTCAGCAGAATACT

rTPO IIImut5_R TCGAAGTATTCTGCTGACTTTCTGAAACGA

rTPO IV_F AGCTATACTGTGGGATGTACCATA

rTPO IV_R TCGATATGGTACATCCCACAGTAT

rTPO IVmut_F AGCTATACTGTGTTACTTACCATA

rTPO IVmut_R TCGATATGGTAAGTAACACAGTAT

rTPO V_F AGCTGTGGGATGTACCATAAATACCCAGG

rTPO V_R TCGACCTGGGTATTTATGGTACATCCCAC

rTPO VI_F AGCTCAGGCCTCTCCTCAGGTGGGTCCTCCCAAGT

rTPO VI_R TCGAACTTGGGAGGACCCACCTGAGGAGAGGCCTG

rTPO VImut1_F AGCTCAGGCCTCTCCTCAGGTGGGTCCTCATGGCT

rTPO VImut1_R TCGAAGCCATGAGGACCCACCTGAGGAGAGGCCTG

rTPO VImut2_F AGCTCAGGCCTCTCCTCAGGTGGGGTTGACCAAGT

rTPO VImut2_R TCGAACTTGGTCAACCCCACCTGAGGAGAGGCCTG

rTPO VImut3_F AGCTCAGGCCTCTCCTCAGACTAATCCTCCCAAGT

rTPO VImut3_R TCGAACTTGGGAGGATTAGTCTGAGGAGAGGCCTG

rTPO VImut4_F AGCTCAGGCCTCTCAGATAGTGGGTCCTCCCAAGT

rTPO VImut4_R TCGAACTTGGGAGGACCCACTATCTGAGAGGCCTG

rTPO VImut5_F AGCTCAGGCGGAAACTCAGGTGGGTCCTCCCAAGT

rTPO VImut5_R TCGAACTTGGGAGGACCCACCTGAGTTTCCGCCTG

rTPO VImut6_F AGCTTGTAACTCTCCTCAGGTGGGTCCTCCCAAGT

rTPO VImut6_R TCGAACTTGGGAGGACCCACCTGAGGAGAGTTACA

Mutated nucleotides are underlined.
doi:10.1371/journal.pone.0091265.t004

TPO Is Regulated by SREBPs
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Results and Discussion

Expression of the Rat TPO Gene is Regulated by SREBPs
in FRTL-5 Cells
To explore whether SREBPs influence the expression of TPO,

FRTL-5 cells were treated with 25-HC (1 and 5 mmol/L), because

the activities of all three SREBP isoforms are regulated by cell’s

sterol content [20], albeit in a different manner. SREBP-1c, but

not SREBP-2, is transcriptionally activated through the activation

of liver X receptor by the binding of oxysterols like 25-HC [21–

23]. However, oxysterols like 25-HC inhibit SREBP-1 and -2

proteolytic processing by blocking the SCAP-mediated movement

of SREBPs to the Golgi leading to decreased levels of active

nSREBPs [20,22,24]. In line with this, we found that the mRNA

level of SREBP-1c was elevated by 25-HC, whereas that of

SREBP-2 was reduced by 25-HC in FRTL-5 cells (Figure 1A). In

addition, we observed that the mRNA level of the SREBP-1a

isoform, which is an activator of both, the cholesterol and fatty

acid biosynthetic pathway, but is present in much lower amounts

in tissues in vivo than the other two forms [25], was markedly

increased by 25-HC. Using a SREBP-1 antibody, which does not

allow to distinguish between the 1a- and 1c-isoform, we

demonstrated that the protein level of pSREBP-1 was markedly

elevated by 25-HC and that of pSREBP-2 was slightly increased

(Figure 1B). In contrast, protein levels of the mature nSREBP-1

and nSREBP-2 were strongly reduced by 25-HC (Figure 1B)

indicating that 25-HC inhibits proteolytic processing of SREBP-1

and -2 in FRTL-5 cells, like in McA-RH7777 cells [22]. These

experiments were carried out in both, the presence and absence of

TSH (10 U/L), because TSH was recently shown to markedly

increase mRNA and protein levels of SREBPs in FRTL-5 cells

[10]. In agreement with this, mRNA and protein levels of p/

nSREBPs were higher in FRTL-5 cells treated with TSH than

without (Figure 1A and B). The 25-HC-induced reduction in

nSREBP-1 and nSREBP-2 levels was accompanied by a reduction

in the mRNA levels of known SREBP-2/21a target genes

(HMGCR, LDLR), but not of the SREBP-1c target gene FAS

(Figure 1C) suggesting that 25-HC preferentially inhibits SREBP-

2/21a-dependent gene transcription in FRTL-5 cells. As expect-

ed, mRNA levels of TPO were elevated by 24 h treatment with

TSH (Figure 1D). However, when FRTL-5 cells were treated with

25-HC, mRNA levels of TPO were dose-dependently reduced by

25-HC both, in the presence and absence of TSH (Figure 1D).

This finding provided indication that both, basal and TSH-

stimulated expression of TPO is regulated by SREBPs.

Figure 1. Sterol-mediated inhibition of SREBP maturation reduces expression of rat TPO. FRTL-5 cells were grown in 6H medium until
70–80% confluent, and subsequently treated with 25-HC (1 and/or 5 mmol/L) in the presence and absence of TSH (10 U/L) for 24 h, and analyzed for
relative mRNA levels of SREBPs (A), relative protein levels of precursor (p) and nuclear (n) SREBPs (B), and relative mRNA levels of SREBP target genes
(HMGCD, LDLR, FAS) (C), and TPO (D). Relative protein levels of pSREBPs and nSREBPs were determined in cytosolic and nuclear extracts, respectively.
(B) One representative immunoblot is shown at the top and results from densitometric analysis are given below. (A, C, D) Bars represent means 6 SD
from three independent experiments and are expressed as fold of control (‘‘2TSH 225HC’’). Bars with different lower-case letters differ, P,0.05.
doi:10.1371/journal.pone.0091265.g001

TPO Is Regulated by SREBPs
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To confirm the importance of SREBPs in regulating TPO

expression, we studied the expression of TPO in FRTL-5 cells with

a targeted knockdown of either SREBP-1 or SREBP-2. Transfec-

tion of FRTL-5 cells with knockdown siRNAs targeting SREBP-1

caused a reduction in the mRNA level of SREBP-1c and protein

levels of pSREBP-1 and nSREBP-1 by about 60% after 48 h

compared to cells transfected with control siRNAs (Figure 2A and

B). Likewise, transfection of FRTL-5 cells with knockdown siRNAs

targeting SREBP-2 resulted in a decrease in the mRNA level of

SREBP-2 by about 45% and in the protein levels of pSREBP-2

and nSREBP-2 by about 70–80% after 48 h compared to cells

transfected with control siRNAs (Figure 2A and B). The siRNA-

mediated knockdown of SREBP-2 also resulted in a reduction of

SREBP-1c mRNA and pSREBP-1 by about 50% in FRTL-5 cells.

This is likely explained by the observation that the SREBP-1c

promoter is activated by nSREBP-2 [26]. The mRNA levels of

known SREBP-2 target genes (HMGCR, LDLR) were reduced by

about 40–50% in FRTL-5 cells transfected with knockdown

siRNAs targeting SREBP-2, whereas the knockdown of SREBP-1

did not result in a reduction of the mRNA level of the SREBP-1c

target gene FAS (Figure 1C). This again indicated that SREBP-1c-

dependent gene transcription may be less important in FRTL-5

cells. However, we have recently observed that the temporal

pattern of induction of LDLR and HMGCR by TSH, which

causes activation of SREBP-1 and -2, was clearly different from

that of SREBP-1c target genes [FAS and glycerolphosphate-

acyltransferase (GPAT)]. Namely, the mRNA levels of FAS and

GPAT were elevated only at 6 h but not at later time points of

TSH treatment, while the mRNA levels of LDLR and HMGCR

remained increased from 6 to 24 h of TSH treatment. This

Figure 2. SREBP knockdown reduces expression of rat TPO. FRTL-5 cells were grown in 6H medium until 70–80% confluent, and
subsequently transfected with knockdown siRNAs targeting either SREBP-1 or SREBP-2 for 24 h. After transfection, medium was changed to 6H
medium for additional 48 h. Relative mRNA levels of SREBP-1c and SREBP-2 (A), relative protein levels of precursor (p) and nuclear (n) SREBPs (B), and
relative mRNA levels of SREBP target genes (FAS, HMGCR, LDLR) (C), and TPO (D). Relative protein levels of pSREBPs and nSREBPs were determined in
cytosolic and nuclear extracts, respectively. (B) One representative immunoblot is shown at the top and results from densitometric analysis are given
below. (A, C, D) Bars represent means 6 SD from at least two independent experiments and are expressed as fold of control (‘‘Control siRNA’’).
*Different from control (‘‘Control siRNA’’, P,0.05).
doi:10.1371/journal.pone.0091265.g002
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indicates that regulation of FAS and GPAT by SREBP-1c in

thyrocytes occurs very rapidly and the SREBP-1c-mediated

induction of FAS is not observable at later time points. It is

therefore possible that the 25-HC-mediated or the SREBP-1

siRNA-mediated inhibition of SREBP-1 maturation led to a

reduction of FAS mRNA level at 6 h, but not at 24 or 48 h, which

were the incubation periods applied in Figure 1C and 2C,

respectively. Future studies are necessary to explain the mecha-

nisms underlying the different response of SREBP-1c and -2 target

genes in thyrocytes. Similar as observed in response to inhibition of

SREBP maturation by 25-HC, mRNA level of TPO was reduced

by about 50% after 48 h, respectively, in response to siRNA

mediated knockdown of both, SREBP-1 and SREBP-2

(Figure 2D). These findings again indicated that TPO expression

is regulated by SREBPs.

Nuclear SREBPs Stimulate Transcriptional Activity of the
Rat TPO Gene
To examine the SREBP responsiveness of the rat TPO gene we

screened an approximately 2000 nt sequence upstream of the

translation start site of the TPO gene for the existence of putative

SREBP binding sites using MatInspector software (Genomatix).

According to this search, one putative SRE (59-CTCACCTCAC-

39, core similarity = 0.9, matrix similarity = 1.0) could be identified

at 21170/21161 relative to the transcription start site. To

evaluate, whether the 2000 bp sequence of the TPO 59-flanking

region is responsive to nSREBPs, we cloned this sequence (from 2

1310/+697) in front of a firefly luciferase reporter gene, and

measured the luciferase activity of this construct rTPO21310/+
697 in response to rat nSREBPs in transient transfection

experiments with HepG2 cells. We have recently demonstrated

that FRTL-5 cells can be also transiently transfected with SREBP

expression plasmids and be successfully used to study activation of

SREBP-dependent reporter gene constructs [10]. Despite this and

the fact that using a non-thyroidal and non-rat cell model for

Figure 3. Nuclear SREBP-1c and SREBP-2 stimulate the 59-flanking region of the rat TPO gene. HepG2 cells were transiently transfected
with reporter gene constructs rTPO21310/+697, rTPO21110/+697, rTPO2719/+697, rTPO+1/+697, rTPO+598/+697, rTPO+676/+697 or 2x hLDLR-SRE
(positive control) and co-transfected with either pcDNA3.1 (empty vector) or plasmids expressing nuclear forms of rat SREBP-1c and rat SREBP-2 for
12 h. After transfection, medium was changed to RPMI1640 medium supplemented with 10% FBS for 24 h. Afterwards, cells were lysed, and
luciferase activities were measured. Bars represent means 6 SD from at least three independent experiments each performed in quadruplicate. The
upper scheme represents the 59-flanking region of the rat TPO gene from 21310 to +697. Positions of exon 1 (E1), exon 2 (E2) and intron 1 are
indicated relative to the transcription start site (+1), which is marked by an arrow. The putative SRE from MatInspector (21170/21161) is also
indicated.
doi:10.1371/journal.pone.0091265.g003
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studying regulation of the rat TPO gene weakens the physiological

and the molecular significance of the experimental data, we

decided to use HepG2 cells because the reporter response to

SREBPs in FRTL-5 cells was clearly less than in HepG2 cells [10],

making HepG2 cells a more sensitive model to study SREBP-

dependent gene activation, in particular when the response to

SREBPs is expected to be lower than for a classical SREBP target

gene, like the LDLR. To study activation of the rat TPO gene by

SREBPs, we used expression vectors for nSREBP-1c and

nSREBP-2, but not nSREBP-1a. Using immunohistochemistry,

we have recently shown that SREBP-1 and SREBP-2 are

expressed in thyroid follicles of mice [10]. The SREBP-1 antibody

used for immunohistochemistry did not enable us to distinguish

between the SREBP-1a and -1c isoform, but we assume that the

dominant SREBP-1 isoform in the thyroid is SREBP-1c, because

it has been reported that SREBP-1c is the predominant SREBP-1

isoform in tissues of animals and humans [25]. In addition,

SREBP-1c and SREBP-2 have distinct functions on cholestero-

genic and lipogenic genes, respectively, whereas SREBP-1a

regulates genes of both pathways. As shown in Figure 3, there

was an increase in luciferase activity in response to both, nSREBP-

1c and nSREBP-2 in HepG2 cells transfected with rTPO2

1310/+697 indicating that the rat TPO 59-flanking region is

responsive to SREBPs, and that this activation is not SREBP

isoform-specific. To further find out whether the putative SRE at

21170 or other yet unidentified SREs are responsible for the

SREBP responsiveness of the TPO 59-flanking region, we studied

the reporter response to nSREBP-1c and nSREBP-2 of several 59-

deletion TPO constructs, namely rTPO21110/+697, rTPO2

719/+697, rTPO+1/+697, TPO+598/+697, and rTPO+676/+
697. We found that the constructs rTPO21110/+697, rTPO2

719/+697, rTPO+1/+697, TPO+598/+697 showed a 3–20 fold

increase in reporter response to both, nSREBP-1c and nSREBP-2,

whereas construct rTPO+676/+697 was completely unresponsive

to SREBPs (Figure 3). These findings indicated that the putative

SRE at 21170 is not a functional SREBP binding site and that at

least one functional SREBP binding and activation site is present

between +598 and +675 of the TPO 59-flanking region. The

finding that the reporter response of the constructs rTPO+1/+697
and TPO+598/+697, which contained only intron 1 sequences

Figure 4. In vitro-binding of nuclear SREBP-1c and SREBP-2 to the first intron of the rat TPO gene. (A) Schematic representation of the
overlapping oligonucleotide fragments corresponding to the intronic nucleotide sequence of the rat TPO gene between +598 to +697. Positions are
indicated relative to the transcription start site. (B, C) In vitro-binding of rat nuclear SREBP-1c (B) and rat nuclear SREBP-2 (C) to different sequences of
the first intron of the rat TPO gene (rTPO I–VI). EMSA was performed using in vitro-translated rat nuclear SREBP-1c or rat nuclear SREBP-2 and DIG-
labeled oligonucleotide spanning the intronic nucleotide sequence of the rat TPO gene from +598 to +697. The use of DIG-labeled specific probe
(human LDLR-SRE) and non-specific probe (mutated human LDLR-SRE) is also indicated. For illustrating unspecific bands, in vitro-translated pcDNA3.1
was incubated with DIG-labeled oligonucleotide corresponding to rTPO III (lane 10).
doi:10.1371/journal.pone.0091265.g004
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downstream of the transcription start site, was markedly greater

than that of rTPO21310/+697, rTPO21110/+697, and rTPO2

719/+697 suggested that the region upstream of the transcription

start site of the TPO gene contains binding sites for SREBP co-

factors acting as repressors of SREBP transactivation.

Binding of Nuclear SREBPs to the Rat TPO Gene in vitro
and in vivo
To further explore whether SREBPs bind to not yet identified

binding sites in the SREBP responsive region of the TPO 59-

flanking region, EMSA was performed using labeled double-

stranded 20–30 bp oligonucleotides corresponding to different

sequences of the TPO 59-flanking region between +598 and +697
and in vitro-translated rat nSREBP-1c and nSREBP-2 (Figure 4A).

As shown in Figure 4B and C, a shifted complex could be found

between the oligonucleotides rTPO III (+650/+675), and rTPO

VI (+598/+628), respectively, and nSREBP-1c and nSREBP-2

(lane 6 and 9, Figure 4B and C). In addition, a shifted complex was

observed between rTPO IV (+635/+654) and nSREBP-1c (lane 7,

Figure 4B), but not nSREBP-2 (lane 7, Figure 4C). No shifted

complex was observed between the other oligonucleotides (rTPO

I, rTPO II and rTPO V) and nSREBP-1c and nSREBP-2 (lane 4,

5 and 8, Figure 4B and C). Reliability of the EMSA was tested

using oligonucleotides corresponding to the wild-type (positive

control) or the mutant human LDLR-SRE (negative control).

Using the human LDLR-SRE as specific probe and nSREBPs, we

also observed a shifted DNA-protein complex (lane 2 in both,

Figure 4B and C), which was not formed between the non-specific

probe of the mutant human LDLR-SRE and nSREBPs (lane 3,

Figure 4B and C). These results indicated that the first intron of

rTPO contains several yet unidentified binding sites for nSREBPs

between +598/+628, +635/+654 and +650/+675.
To clarify whether SREBP-1c and SREBP-2 is bound to the rat

TPO intron 1 sequence containing the yet unidentified SREBP

binding sites in vivo, ChIP was performed using antibodies against

rat SREBP-1 and SREBP-2. Chromatin was isolated from FRTL-

5 cells treated for 24 h either without TSH, with TSH (10 U/L)

Figure 5. In vivo-binding of nuclear SREBP-1c and SREBP-2 to the first intron of the rat TPO gene. Chromatin immunoprecipitation of rat
TPO first intron using antibodies against rat SREBP-1 and SREBP-2. A 270 bp fragment from the rat TPO first intron, including the potential SREBP
binding sites (A), and a random control sequence were analyzed by conventional PCR (B) and qPCR (C) in the immunoprecipitated chromatin of FRTL-
5 cells. FRTL-5 cells were grown in 6H medium in 150 mm dishes until 70–80% confluent, then switched to 5H medium (without TSH) for 5 d, and
subsequently treated with 25-HC (5 mmol/L) in the absence or presence of TSH (10 U/L) for 24 h. Rabbit IgG was used as control. The image from
agarose gel electrophoresis is representative for one out of three independent ChIP experiments each providing similar results. Data from qPCR
analysis represent means 6 SD for the three independent experiments. M, DNA fragment size marker.
doi:10.1371/journal.pone.0091265.g005
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alone or with TSH (10 U/L) and 25-HC (5 mmol/L) in parallel.

As illustrated in Figure 5, a 270-bp fragment of TPO intron 1

sequence spanning the +598/+675 sequence (Figure 5A) could be

amplified from TSH treated cells when immunoprecipitation was

performed with antibodies against SREBP-1 and SREBP-2, but

not with non-specific rabbit IgG (Figure 5B and C). In contrast,

only negligible amplification of the 270-bp fragment was able from

cells treated without TSH or co-treated with TSH and 25-HC

(Figure 5B and C). As expected, no amplification of a random

control sequence (168 bp) occurred when immunoprecipitation

was carried out with SREBP-specific antibodies (not shown).

These data suggested that SREBP-1c and SREBP-2 binds in vivo to

the TPO intron 1 sequence +598/+675 containing the yet

unidentified SREBP binding elements.

Identification of SREBP-responsive cis-elements in the Rat
TPO Gene
Since sequence alignment with the classic SRE-1 from human

LDL receptor (59-ATCACCCCAC-39; [27]) revealed one cis-

element (59-TACATCCCAC-39) with relatively high sequence

homology (70%) within rTPO IV (+635/+654) at +640/+649
(Figure 6A), we studied the specificity of SREBP-1c binding to this

sequence using EMSA. Figure 6B shows that a shifted complex

was formed between nSREBP-1c and the wild-type rTPO IV (+
635/+654) (lane 4), but not with a mutant rTPO IV (lane 5), in

which four nucleotides within the cis-element at +640/+649 were

mutated. Competition experiments revealed that complex forma-

tion was successively reduced with increasing molar excess of

unlabeled specific probe (wild-type human LDLR-SRE) (lane 6–8).

This result indicated that SREBP-1c binds specifically to the cis-

element at +640/+649, designated as SRE+640.
To identify the SREBP-responsive cis-element within position +

650/+675, also EMSA experiments were performed with a set of

oligonucleotides bearing 5 to 6 bp successive mutations and either

nSREBP-1c or nSREBP-2 (Figure 7A). Whereas a shifted protein/

DNA complex was observed between both nSREBP isoforms and

the wild-type rTPO III wt (lane 6) and the mutant rTPO III mut1

(lane 1), rTPO III mut4 (lane 4) and rTPO III mut5 (lane 5), the

mutant rTPO III mut2 (lane 2) and rTPO III mut3 (lane 3) lost the

ability to form a shifted complex with nSREBP-1c (Figure 7B) and

nSREBP-2 (Figure 7C). This indicated that the putative cis-

element for both, SREBP-1c and SREBP-2, is located between +
656 and +665. To confirm the binding specificity of both SREBP

isoforms to the +650/+675 sequence, competition experiments

were performed using the wild-type rTPO III wt and increasing

molar excess of unlabeled specific probes (wild-type human

Figure 6. In vitro-binding of rat nuclear SREBP-1c to rTPO IV. (A) Nucleotide sequence of rTPO IV, containing the SRE+640, is underlined. The
wild-type (upper strand) and mutated (lower strand) sequences of the SRE+640 are in shaded boxes. The lower-case letters represents the substituted
nucleotides. (B) In vitro-binding of rat nuclear SREBP-1c to the SRE+640 in the rat TPO first intron. EMSA was performed using in vitro-translated rat
nuclear SREBP-1c and DIG-labeled oligonucleotide corresponding to either wild-type or mutated SRE+640. For competition, 10-, 20- and 50-fold
molar excess of unlabeled specific probe (human LDLR-SRE) was used. DIG-labeled specific probe (human LDLR-SRE) and non-specific probe
(mutated human LDLR-SRE) is also indicated.
doi:10.1371/journal.pone.0091265.g006
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LDLR-SRE) (Figure 7B and 7C). These experiments revealed that

complex formation was successively reduced with increasing molar

excess of unlabeled specific probe (lanes 10–12). At the highest

molar excess of unlabeled probe (lane 12), complex formation was

almost completely absent being indicative of complete competi-

tion.

Sequence comparison of the sense and antisense strand of the

SREBP-responsive sequence between +656 and +665 with

identified SREBP binding elements from known SREBP target

genes revealed an inversely oriented sequence from +654 to +663
that had 50% sequence homology with the classic SRE-1 from

human LDL receptor. In addition, our newly identified SREBP-

responsive sequence showed characteristics of both, a SRE and an

E-box. Such elements are called SRE-2 or SRE-like and are

frequently found in the promoter region of lipogenic genes

[26,27]. Therefore, we designated our identified SRE as InvSRE-

like+654. This SRE showed high homology (80%) with a

functional E-box-like SRE (SRE-2) identified in the promoter of

Figure 7. Identification of a SREBP-responsive element within rTPO III (+650/+675) by mutational and competitive analysis. (A)
Nucleotide sequences of either wild-type or mutated rTPO III used for EMSA. The mutated nucleotides are highlighted and in shaded boxes. (B, C) In
vitro-binding of rat nuclear SREBP-1c (B) and rat nuclear SREBP-2 (C) to rTPO III. EMSA was performed using in vitro-translated rat nuclear SREBP-1c or
rat nuclear SREBP-2 and DIG-labeled oligonucleotide corresponding to rTPO III (+650/+675). For competition, 50-, 100- and 250-fold molar excess
(SREBP-1c) or 25-, 50- and 100-fold molar excess (SREBP-2) of unlabeled specific probe (human LDLR-SRE) was used.
doi:10.1371/journal.pone.0091265.g007

Figure 8. Sequence comparison of the SREBP-responsive sequence within rTPO III. Comparison of the antisense strand of rTPO III with the
consensus sequences of classic SRE-1 and E-Box-like SRE (SRE-2) and with the E-Box-like SRE of the h, m D6-desaturase gene [21].
doi:10.1371/journal.pone.0091265.g008
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the lipogenic human and mouse D6-desaturase gene [28]

(Figure 8).

The same approach as for the identification of the SREBP-

responsive cis element within +650/+675 was applied to identify a

SREBP-responsive cis-element within +598/+628. EMSA re-

Figure 9. Identification of a SREBP-responsive element within rTPO VI (+598/+628) by mutational and competitive analysis. (A)
Nucleotide sequence of either wild-type or mutated rTPO VI used for EMSA. The mutated nucleotides are highlighted and in shaded boxes. (B, C) In
vitro-binding of rat nuclear SREBP-1c (B) and rat nuclear SREBP-2 (C) to rTPO VI. EMSA was performed using in vitro-translated rat nuclear SREBP-1c or
rat nuclear SREBP-2 and DIG-labeled oligonucleotide corresponding to rTPO VI (+598/+628). For competition, 50-, 100- and 250-fold molar excess
(SREBP-1c) or 25-, 50- and 100-fold molar excess (SREBP-2) of unlabeled specific probe (human LDLR-SRE) was used.
doi:10.1371/journal.pone.0091265.g009

Figure 10. Sequence comparison of the SREBP-responsive sequence within rat TPO VI. (A, B) Comparison of the sense (A) and antisense
(B) strand of rTPO VI with the consensus sequence of classic SRE-1 and with SRE-3 of mSREBP-1c [22] and SRE-1 of h, r, mCYP51 [23].
doi:10.1371/journal.pone.0091265.g010
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vealed that a shifted protein/DNA complex was formed between

nSREBP-1c (Figure 9B) and nSREBP-2 (Figure 9C) and the wild-

type rTPO VI wt and the mutant rTPO VI mut1 (lane 1), mut2

(lane 2), mut3 (lane 3), mut5 (lane 5), and mut6 (lane 6). In

contrast, the mutant rTPO VI mut4 (lane 4) lost the ability to form

a shifted complex with nSREBP-1c (Figure 9B) and nSREBP-2

(Figure 9C). This finding suggested that the nucleotides +614 to +
618 are critical for the binding of both, nSREBP-1c and nSREBP-

2. Again the binding specificity of both SREBP isoforms to the +
598/+628 sequence was confirmed in competition experiments

with the wild-type rTPO VI oligonucleotide and increasing molar

excess of unlabeled specific probes (wild-type human LDLR-SRE).

Fig. 9B and 9C shows that formation of the shifted complex

successively decreased with increasing molar excess of unlabeled

specific probe (lanes 11–13).

Sequence analysis of the sense and antisense strand of the

SREBP-responsive region between +614 and +618 and its

adjacent region revealed two overlapping putative SREBP-binding

motifs (Figure 10). The sense strand contained a sequence from +
609 to +618 which was 50% homologue to the classic SRE-1 from

human LDL receptor, but 80% homologue to the SRE-3 of the

murine SREBP-1c promoter (Figure 10A) [29]. The second,

inversely oriented binding sequence was located at +614/+623
and shared 60% homology with the classic SRE-1 from human

LDL receptor and 80% homology with a functional SRE

identified in the human, rat and mouse CYP51 promoter

(Figure 10B) [30]. We designated these two overlapping SREBP-

responsive sequence as InvSRE+614 and SRE+609.

Sequence Comparison of the SREBP-responsive cis-
elements in the TPO Gene between Rat and Mouse
It is well known that nucleotide sequences, which are critical for

gene regulation, typically display a high degree of conservation.

Thus, such sites can be successfully predicted from genome

comparison of closely related species like rats and mice [31]. To

provide further indication of the regulatory importance of the

identified SREBP-responsive elements, we carried out sequence

alignment of the identified SREBP-responsive regions of rat TPO

gene with the mouse TPO gene. As shown in Figure 11A, we

observed that the identified SRE+609 and SRE+640 of the rat

TPO gene are completely conserved (100% homology) in the

mouse TPO gene. The InvSRE+614 and the InvSRE-like+654
were 70% and 90%, respectively, homologue to the mouse TPO

gene also indicating a high degree of conservation of the sequence

and position between mouse and rat. Thus, these additional

findings from sequence comparisons together with our experi-

mental findings substantiate the importance of the identified

SREBP-responsive elements for transcriptional regulation of the

rat TPO gene. However, sequence alignment of the identified

SREBP-responsive regions of rat TPO gene with the human TPO

gene showed a markedly lower degree of homology (Figure 11B).

This indicates that transcriptional regulation of the human TPO

gene by SREBPs may differ from that of the rat and mouse TPO

gene. To clarify this future studies are required.

Figure 11. Sequence alignment of the SREBP-responsive cis-elements in the TPO gene between rat and mouse. Alignment of the
intronic sequence of rat TPO gene from +578 to +700 (NM_019353) with the intronic sequence of mouse TPO gene from +598 to +718 (NM_009417)
(A), and with the intronic sequence of human TPO gene from +826 to +951 (NM_001206745) (B). Conserved nucleotides are indicated by asterisks and
the identified SREBP-responsive cis-elements are in shaded boxes.
doi:10.1371/journal.pone.0091265.g011
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Evaluation of the Transactivation Activity of the
Identified SREBP-responsive cis-elements of the Rat TPO
Gene
Several studies demonstrated that SREBP-binding elements

identified in a given SREBP target gene are not mandatorily

functional, despite binding of SREBPs was shown using EMSA

[32–34]. In order to test whether our identified SREBP-binding

elements SRE+640, InvSRE-like+654 and the overlapping SRE+
609/InvSRE+614 are capable of mediating SREBP-dependent

transactivation of the rat TPO gene, we prepared three luciferase

reporter constructs containing two copies of each of these in front

of the luciferase reporter. Transient transfection of these constructs

and co-transfection of either nSREBP-1c or nSREBP-2 expression

plasmids or empty vector (pcDNA3.1) into HepG2 cells showed

that only the wild-type construct containing the overlapping SRE+
609/InvSRE+614 was responsive to nSREBP-1c and nSREBP-2

(Figure 12), but not the wild-type constructs containing two copies

of either SRE+640 or InvSRE-like-654. In addition, the mutant

versions of all these constructs, in which five nucleotides had been

substituted, did not show any response at all to nSREBP-1c and

nSREBP-2. These findings indicated that only the overlapping

SRE+609/InvSRE+614 is a functional SREBP binding and

activation site, at least in the reporter gene assay. The core motif

of the overlapping SRE+609/InvSRE+614, 59-CTGAG-39and its

inverse sequence 59-CTCAG-39, shared 50% each of the SRE+
609 and the InvSRE+614, wherefore it was not possible to solely

ascribe the SREBP-dependent transactivation ability to one of

these two binding elements. However, given that the degree of

conservation between rat and mouse was higher for the SRE+609

(100% homology) than for the InvSRE+614 (70% homology), it is

likely that the SRE+609 is responsible for SREBP-dependent

transactivation of the rat TPO gene. The other binding sequences,

SRE+640 and InvSRE-like+654, were shown to be not functional

in the reporter gene assay indicating that these are SREBP binding

sites but not SREBP transactivation sites. Nevertheless, we cannot

exclude that SRE+640 and/or InvSRE-like+654 are functional

in vivo, because we tested the transactivation ability of these

bindings elements in isolated form in the reporter gene assay, but it

is possible that SRE+640 or InvSRE-like+654 or both of them

work in concert with SRE+609/InvSRE+614 and their interaction

is necessary to allow the complete SREBP-dependent transactiva-

tion potential of the rat TPO gene in vivo.

Despite providing evidence for regulation of TPO gene

expression by SREBPS, the present study has several limitations:

One important limitation regards the physiological and the

molecular significance of SREBP-dependent regulation of the

TPO gene in the thyroid, because we used a non-thyroidal and

non-rat cell model for the reporter gene experiments. In light of

the fact that sequence alignment of the identified SREBP-

responsive regions between rat and human revealed a low degree

of homology and many instances of tissue-specific regulation of

gene expression are known from the literature, it is important to

investigate the transcriptional regulation of the rat and the human

TPO genes by SREBPs in suitable rat and human, respectively,

thyrocyte models in future studies. In addition, despite showing

that the TPO mRNA level is subject to regulation by SREBPs in

the rat FRTL-5 thyrocyte model, the functional significance for

TH synthesis cannot be evaluated from this thyrocyte model

Figure 12. Evaluation of the transactivation activity of the identified SREBP-responsive cis-elements of the rat TPO gene. HepG2 cells
were transiently transfected with either wild-type or mutated reporter gene constructs of rTPO 2xSRE/InvSRE-Luc, rTPO 2xSRE+640-Luc, rTPO
2xInvSRE-like+654-Luc and co-transfected with either pcDNA3.1 (empty vector) or plasmids expressing nuclear forms of rat SREBP-1c and rat SREBP-2
for 12 h. After transfection, medium was changed to RPMI1640 medium supplemented with 10% FBS for 24 h. Afterwards, cells were lysed, and
luciferase activities were measured. Bars represent means 6 SD from at least three independent experiments each performed in quadruplicate. The
wild-type (upper strand) and mutated (lower strand) sequences of the putative SREBP-responsive cis-elements are indicated. The lower-case letters
represents the substituted nucleotides.
doi:10.1371/journal.pone.0091265.g012
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because the FRTL-5 model is notorious for the lack of TPO

activity. Thus, future studies using a thyrocyte model expressing a

functional TPO protein are necessary to clarify the functional

significance of the herein described novel regulatory pathway.

Conclusion

The present results show that the rat TPO gene is a SREBP

target gene and that SREBP-dependent transactivation is medi-

ated by an approximately 80 bp region within the first intron of

the TPO gene which contains two isolated and two overlapping

SREBP-binding elements. In connection with our recent finding

that the rat NIS gene, which like the TPO gene is essential for TH

synthesis, is also a SREBP target gene in the thyroid, the present

findings suggest that SREBPs may be novel targets for pharma-

cological modulation of TH synthesis. We have shown recently

that the main hormonal regulator of the thyroid, TSH, stimulates

SREBP expression, which provides a plausible explanation for the

recent observation that TSH stimulates expression of genes

responsible for fatty acid and cholesterol synthesis in thyrocytes

[12–14]. The physiological meaning of this mechanism likely is to

provide membrane lipids for growth and proliferation of

thyrocytes, which is stimulated by TSH. The physiological

significance of the present observation that SREBPs also mediate

regulation of genes involved in TH synthesis (TPO, NIS [10]) may

be interpreted as a mechanism to coordinate lipid and TH

synthesis in growing and proliferating thyrocytes. This indicates

that SREBPs, at least in the thyroid, are more than just master

regulators of lipid synthesis [35,36]. To provide convincing

evidence that this novel regulatory pathway is also of relevance

in vivo for TH synthesis deserves additional experiments using a

reconstituted or follicular model, which facilitates studying the

functional consequence of the herein described regulatory

pathway with respect to iodine oxidation, thyroglobulin incorpo-

ration, and TH synthesis.
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9. Nazar M, Nicola JP, Vélez ML, Pellizas CG, Masini-Repiso AM (2012) Thyroid

peroxidase gene expression is induced by lipopolysaccharide involving nuclear

factor (NF)-kB p65 subunit phosphorylation. Endocrinology 153: 6114–6125.

10. Ringseis R, Rauer C, Rothe S, Gessner DK, Schütz LM, et al. (2013) Sterol
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