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Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and

epigenetic factors cause ASE by altering the final composition of a gene’s product, leading to expression imbalances that can

have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they

contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and di-

etary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains

were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between twoASE classes: parent-of-origin-

dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleo-

tide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental

contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across met-

abolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with incon-

sistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data

from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic

and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results

provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which

is an essential step toward deciphering the genotype-to-phenotype map.

[Supplemental material is available for this article.]

Deciphering the genotype-to-phenotype map remains a funda-
mental quest in biology. Gene expression is a promising focal
point, because it is an intermediate step between DNA sequence
and gross phenotype. Gene expression itself is a complex trait reg-
ulated by genetic, epigenetic, and environmental factors (Pastinen
2010). Recent efforts to characterize gene expression have often
only interrogated changes in total expression levels and assumed
that genes are biallelically expressed (i.e., both alleles are equally
expressed), which may mask underlying regulatory mechanisms.
Epigenetic changes and gene-by-environment interactions can
also alter gene expression patterns in a dynamic and tissue-specific
manner without modifying the underlying nucleotide sequence;
these effects are missed in a typical sequence-based method.
Thus, an allele-specific approach is required to directly measure
how cis-regulatory variation impacts gene expression and to tease
it apart from trans-acting factors that affect both chromosomes
(Bonasio et al. 2010). Allele-specific expression (ASE) is a phenom-
enon in which a gene’s expression diverges from biallelic. In dip-
loid organisms, one allele is preferentially expressed over the
other. Previous findings estimate that 30%–56% of genes show ev-
idence of allelic imbalance, indicating allele-specific effects have
widespread impacts on gene regulation (Ge et al. 2009; Keane
et al. 2011; Castel et al. 2020). Depending on a gene’s function,
these expression imbalances can lead to phenotypic variation
with functional consequences.

ASE can be divided into two classes: sequence or parent-of-or-
igin (Fig. 1). Sequence-dependent ASE occurs when the alleles are

differentially expressed based on their haplotype or nucleotide
identity. These patterns are thought to be largely driven by cis-act-
ing genetic variants in coding and noncoding regions, such as a
premature stop codon that truncates one allele’s transcript or a var-
iant in a promoter region that prevents transcription factors from
binding (Keane et al. 2011; Rivas et al. 2015). They can also occur
further away from the gene yet still impact its expression, such as
motif variations for long-range enhancers or in the sequence con-
text of DNA methyltransferase substrates (Wienholz et al. 2010;
Cavalli et al. 2016). Stochastic transcriptional bursts can also cause
transient fluctuations in which allele is expressed, resulting in ran-
dom monoallelic expression that is inconsistent across cells or or-
ganisms (Deng et al. 2014; Reinius and Sandberg 2015).

In contrast, parent-of-origin-dependent ASE occurs when the
alleles are differentially expressed based on which parent contrib-
uted it, regardless of the underlying sequence. These patterns are
examples of parent-of-origin effects (POEs), a broader class of epi-
genetic phenomena that manifest as phenotypic differences ac-
cording to maternal or paternal inheritance (Lawson et al. 2013).
The best characterized POE mechanism is genomic imprinting,
an extreme case of parent-of-origin-dependent ASE in which one
parent’s allele is silenced via selective epigenetic marks, such as
DNA methylation and histone modifications (Umlauf et al.
2004; Barlow and Bartolomei 2014; Inoue et al. 2017). Known im-
printed genes compose ∼1% of the human and mouse genomes,
yet play important roles in development, metabolism, and cogni-
tion (Reik and Walter 2001). Partial imprinting is another, more
subtle, form of parent-of-origin-dependent ASE that has been
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documented but is less understood (Wolf et al. 2008; Morcos et al.
2011). Randommonoallelic expression can also produce transient
and nonheritable parental biases in individual cells through differ-
ent mechanisms than imprinting (Gimelbrant et al. 2007; Morcos
et al. 2011). Other sources of POEs include maternal effects and
gene-specific trinucleotide expansions, but these do not involve
ASE (Hager et al. 2008).

Comprehensive atlases of how ASE patterns vary between tis-
sues and developmental stages have been generated in human and
mouse models (Babak et al. 2015; Leung et al. 2015; Andergassen
et al. 2017; Castel et al. 2020). These studies reveal that both paren-
tal and sequence biases are not always consistent between tissues,
indicating that tissue-specific genetic and epigenetic features can
mediate allelic imbalances. Additionally, trans-acting environ-
mental factors have been shown to interact with cis-regulatory var-
iants to modulate the magnitude of ASE effects in human and rice
models (Buil et al. 2015; Moyerbrailean et al. 2016; Knowles et al.
2017; Shao et al. 2019). Imprinted genes can also be responsive to
environmental exposures during fetal development (Kappil et al.
2015). Together, these findings suggest that a complicated cross
talk between genetic variants, epigenetic changes, and environ-
mental signals underlies allele-specific gene regulation, but this
model needs to be further investigated.

Here, we explored how allelic genotype, parent-of-origin, tis-
sue type, sex, and dietary fat simultaneously work together to in-
fluence ASE patterns in a F1 reciprocal cross of the LG/J and SM/J
inbred mouse strains. These strains are uniquely suited for gene-
by-environment studies owing to their divergent genetic back-
grounds and variable responses to dietary nutrition (Ehrich et al.
2003; Nikolskiy et al. 2015; Miranda et al. 2019; Carson and
Lawson 2020). They are also the progenitors of the longest-run-
ning advanced intercross line (AIL). An AIL is a multigenerational
population produced by intercrossing two inbred strains beyond
the F2 generation while minimizing relatedness between mates
(Darvasi and Soller 1995). Since its inception, the LG/J x SM/J
AIL has been extensively used to map quantitative trait loci
(QTL) related tometabolic, musculoskeletal, behavioral, and phys-
iological traits (Ehrich et al. 2005; Lawson et al. 2010, 2011a,b;
Lionikas et al. 2010; Cheverud et al. 2011; Parker et al. 2014;
Gonzales et al. 2018; Cordero et al. 2019). To probe whether ASE
imbalances contribute to complex traits, we integrated our ASE re-

sults with these AIL mapping studies and
highlighted how this orthogonal ap-
proach can prioritize candidate genes.
Untangling the genetic, epigenetic, and
environmental mechanisms that govern
allele-specific gene regulation is crucial
to improving our ability to predict phe-
notypes from genotypes.

Results

Partitioning allele-specific expression

into parent-of-origin and sequence

effects

We measured ASE in a F1 reciprocal cross
of the LG/J and SM/J inbred strains.
Briefly, LG/J mothers were mated with
SM/J fathers and vice versa, resulting in
F1 offspring who are genetically equiva-
lent but differ in the allelic direction of

inheritance. Male and female F1 mice were fed either a high or
low fat diet. We obtained RNA-seq data from three metabolically
relevant tissues: hypothalamus (HYP), white adipose (WAT), and
liver (LIV). We analyzed nine environmental contexts per tissue:
high fat (H), low fat (L), females (F), males (M), high fat females
(HF), high fat males (HM), low fat females (LF), low fat males
(LM), and all contexts collapsed (All). Together, these 27 “tissue-
by-context” analyses (three tissues ×nine contexts) allowed us to
explore how tissue type and environmental signals influence
ASE (Fig. 1).

The LG/J and SM/J genomes differ by >5million single-nucle-
otide polymorphisms (SNPs) and indels (Nikolskiy et al. 2015). To
be informative for ASE, a strain-specific variant must be located
within a gene’s exome. In this F1 model, informative variants are
located in 55% of expressed genes in our three tissues and 47%
of all genes in the mm10 reference genome (Supplemental Fig.
S1).We harnessed those strain-specific variants tomap sequencing
reads to their chromosome of origin. Overall, 9016 genes had
detectable ASE in at least one tissue-by-context analysis (∼37%
of all expressed genes) (Supplemental Fig. S2). Next, we identified
2853 genes with significant ASE biases (∼6%) and classified them
into two patterns: parent-of-origin-dependent (unequal expres-
sion based on parental origin) and sequence-dependent (unequal
expression based on nucleotide identity) (Fig. 1; Supplemental
Table S1).

Both classes of ASE patterns are prevalent and distinct

Across our 27 tissue-by-context analyses, we identified 271 genes
with significant parent-of-origin-dependent ASE (Supplemental
Tables S2–S4). HYP had the greatest number of genes (229), fol-
lowed by WAT (35), then LIV (27). Fourteen genes were expressed
in multiple tissues, but the majority were tissue-specific (Fig. 2A).
In HYP, the most genes were detected in the “All” context.
However, inWAT and LIV, more genes were only detected in a spe-
cific diet, sex, and/or diet-by-sex context; those expression biases
were missed when contexts were collapsed (Fig. 2B). Two hundred
fourteen genes (79%) were paternally biased, 55 genes (20%) were
maternally biased, and two genes (1%) switched their ASE bias di-
rection across the cohorts (Fig. 2C). This heavy paternal skew is
driven by a 672-kb cluster of 171 small nucleolar RNAs

Figure 1. Evaluating ASE across tissues and environmental contexts.We partitioned ASE into its parent-
of-origin and sequence effects, then compared ASE patterns across metabolic tissues, in response to di-
etary fat and between sexes. An example of parent-of-origin-dependent ASE is when the maternal allele
(red) is preferentially expressed over the paternal allele (blue), regardless of which haplotype contributed
it. An example of sequence-dependent ASE is when the LG/J allele is preferentially expressed over the SM/
J allele, regardless of which parent contributed it.
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Figure 2. Both classes of ASE patterns are prevalent and distinct. (A) Venn diagram of all parent-of-origin-dependent ASE genes across tissues. (B)
Number of significant parentally biased genes in each tissue-by-context analysis (maternal, red; paternal, blue): (All) all contexts; (H) high fat; (L) low
fat; (F) females; (M) males; (HF) high fat females; (HM) high fat males; (LF) low fat females; and (LM) low fat males. (C) Summary of ASE biases across
all analyses. (D) Proportions of gene classes in each tissue. (E) Venn diagram of all sequence-dependent ASE genes across tissues. (F ) Number of significant
sequence-biased genes in each tissue-by-context analysis (SM/J, purple; LG/J, green). (G) Summary of ASE biases across all analyses. (H) Proportions of gene
classes in each tissue. (I) Parent-of-origin effect (POE) versus allelic genotype effect (AGE) scores in the “All” context of each tissue. Dots represent individual
genes and are color coded by their ASE bias direction: (red) maternal; (blue) paternal; (purple) SM/J; (green) LG/J; and (yellow) both ASE classes. Most
genes have no bias (gray). Dashed lines indicate significant score thresholds.
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(snoRNAs) in the Prader-Willi/Angelman syndrome (PWS/AS)
domain on Chromosome 7 that are only expressed in HYP
(Supplemental Fig. S3). Parentally biased ASE genes also included
protein-coding genes, microRNAs, long noncoding RNAs, long in-
terspersed noncoding RNAs, and pseudogenes (Fig. 2D).

We identified 2673 genes with significant sequence-depen-
dent ASE across our 27 tissue-by-context analyses (Supplemental
Tables S2–S4). WAT had the greatest number of genes (1495), fol-
lowed by LIV (1486), thenHYP (1264). Although some genes’ bias-
es were tissue-specific, 1657 genes (62%) were biased in multiple
tissues (Fig. 2E). In all tissues, the most genes were detected in
the “All” context, then the diet or sex contexts, and finally the
diet-by-sex contexts, likely reflecting the sample sizes and power
available in each cohort (Fig. 2F). As shown in Figure 2G, 1218
genes (46%) were SM/J biased, 1410 genes (53%) were LG/J biased,
and 45 genes (2%) switched their expression bias direction across
the cohorts. Sequence-biased ASE genes were predominantly pro-
tein-coding genes (∼80%) but also included pseudogenes, immu-
noglobulins, and various noncoding RNAs (long noncoding,
long interspersed noncoding, micro, ribosomal, small interfering,
and small nucleolar) (Fig. 2H).

Parent-of-origin and sequence-dependent ASE patterns were
oftenmutually exclusive. In each tissue, geneswith extremeparen-
tal biases typically hadweak sequence biases and vice versa (Fig. 2I;
Supplemental Fig. S4). However, 61 genes in HYP and three genes
in WAT had both parental and sequence biases, likely because of
epigenetic regulatory mechanisms affected by allelic variation.
Both ASE patterns occurred genome wide (Supplemental Fig. S5).
Parentally biased genes tended to cluster in known imprinted re-
gions, like the Ube3a/Snrpn, Meg3, Peg3/Usp29, and H13/Mcts2 do-
mains (Supplemental Fig. S6). Sequence-biased genes were spread
diffusely across the genome, but occasionally clustered in discrete
regions potentially controlled by the same regulatory element
(Supplemental Fig. S7).

Parent-of-origin-dependent ASE recapitulates canonical

imprinting patterns

To evaluate whether parent-of-origin-dependent ASE is influenced
by tissue or environmental context, we characterized the expres-
sion profiles of those 271 genes across our 27 tissue-by-context
analyses. For each analysis, we quantified the direction andmagni-
tude of each gene’s parental bias by calculating a POE score from
the mean allelic bias of each F1 reciprocal cross. POE scores ranged
from −1 (completely maternally expressed) to +1 (completely pa-
ternally expressed); a score of 0 indicated biallelic expression
(Methods). In each analysis, a gene could be expressed in three pos-
sible ways: significant parental bias, biallelic (expressed but with
no allelic bias), or not expressed. We sorted the 271 parentally bi-
ased ASE genes into three expression profiles: tissue-independent,
tissue-dependent, and context-dependent (Fig. 3A–D; Supplemen-
tal Fig. S3).

We identified 183 tissue-independent genes (67%), defined as
a consistent parental bias in every tissue they were expressed.
Within a given tissue, theywere parentally biased inmost environ-
mental contexts (Fig. 3B). Next, we identified 15 genes (6%) as tis-
sue-dependent. These genes showed a parental bias across most
contexts in one or two tissues, but were biallelically expressed
(no bias) across contexts in the other tissue(s) (Fig. 3C). Here, we
distinguish between tissue-specific gene expression (not expressed
in certain tissues) and tissue-dependent ASE (biased expression
only in certain tissues).

All 198 tissue-independent/-dependent genes were related to
genomic imprinting, the best characterized mechanism of parent-
of-origin-dependent ASE. Twenty-nine genes were canonically im-
printed (bolded in Fig. 3, defined in Methods), and the other 169
genes were various noncoding RNAs located within known im-
printed domains. For example, 156 genes were in a cluster of 171
paternally biased snoRNAs in the PWS/AS domain on
Chromosome 7 (Supplemental Fig. S3). As expected with imprint-
ing, these genes were extremely biased toward one parent’s allele;
their mean POE scores were −0.82 and 0.71 for maternally and pa-
ternally biased genes, respectively (Fig. 3E). HYP had the highest
proportion of these genes (85%) among our three adult tissues,
even if the aforementioned HYP-specific snoRNA cluster is exclud-
ed (52%). WAT had the second highest proportion (49%), but few
of these genes were expressed in LIV (26%) (Fig. 3A). These find-
ings are consistent with the previously reported dichotomy of im-
printing levels between neural and non-neural adult tissues (Babak
et al. 2015) as well as imprinting’s role in development and cogni-
tion (Barlow and Bartolomei 2014). Furthermore, our data replicat-
ed 25 of 96 genes previously found to be imprinted in these tissues
(Babak et al. 2015), comprising nearly all bolded genes in Figure
3B–D. Five genes had sequence biases instead and 11 genes were
biallelically expressed, potentially a result of methodology differ-
ences between the studies. We could not compare the imprinting
status of the remaining 55 genes because 34 had no informative
variants in our F1 model and 21 no longer appeared in the
mm10 reference assembly.

We validated the expression profiles of two canonically im-
printed genes (Peg3 and Grb10) by pyrosequencing (Supplemental
Fig. S8). Paternally expressed 3 gene (Peg3) was paternally biased in
all three tissues, regardless of context. Its locus had 60 strain-specif-
ic variants, but none were predicted as functional. Peg3 functions
as a DNA-binding transcriptional repressor to control fetal growth
rates, maternal caring behaviors, and tumor growth. It is only ex-
pressed from the paternal allele in most tissues, especially the pla-
centa and brain (Thiaville et al. 2013; He and Kim 2014). Growth
factor receptor bound protein 10 (Grb10) was paternally biased in
HYP but maternally biased in WAT and LIV. Its locus had 154
strain-specific variants, but none were predicted as functional.
Grb10 encodes an adapter protein that interactswith receptor tyro-
sine kinases to impact insulin signaling and growth hormone
pathways (He et al. 1998). It has a documented pattern ofmaternal
expression in most adult mouse tissues, but paternal expression in
the brain (Plasschaert and Bartolomei 2015).

Dietary environment and sex influence parent-of-origin-

dependent ASE in a partially imprinted manner

Finally, we classified 73 genes (27%) as context-dependent, mean-
ing they had a parental bias only in certain environmental con-
texts within a tissue, but biallelic expression (no bias) in other
contexts and/or tissues (Fig. 3D). Only three genes were canonical-
ly imprinted, and 18 genes were noncoding RNAs located in
known imprinted domains (including 14 snoRNAs in the PWS/
AS domain). The remaining 52 genes had no clear connection to
genomic imprinting, yet they showed significant parent-of-ori-
gin-dependent ASE in certain context(s). These genes had more
subtle allelic biases than the tissue-independent/-dependent
genes; their mean POE scores were −0.39 and 0.39 for maternally
and paternally biased genes, respectively (Fig. 3E). These patterns
are consistent with partial imprinting, in which the two parental
alleles are differentially expressed in a less extreme manner than
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Figure 3. Parent-of-origin-dependent ASE patterns fall into three expression profiles. (A) Proportion of ASE genes per tissue with each parental bias pro-
file. Heatmaps of ASE profiles across analyses: (B) tissue-independent, (C ) tissue-dependent, and (D) context-dependent. A subset of the 271 genes is
shown, including those validated with pyrosequencing. Genes are color coded by their expression pattern in each tissue-by-context analysis. Shades of
red and blue indicate their degree of maternal or paternal bias, respectively (POE scores). If genes are not biased, shades of yellow indicate their biallelic
expression levels (log-transformed total counts). Black indicates genes are not expressed. Bolded genes are canonically imprinted. The y-axis is grouped and
sorted by chromosomal position. Supercolumns denote tissues: (HYP) hypothalamus; (WAT) white adipose; and (LIV) liver. Subcolumns denote environ-
mental contexts: (All) all contexts; (H) high fat; (L) low fat; (F) females; (M) males; (HF) high fat females; (HM) high fat males; (LF) low fat females; and (LM)
low fat males. (E) POE scores for each parental bias profile. Vertical lines indicate mean POE scores. Dots represent individual ASE genes. (F) UpSet plots of
the significant sex, diet, and/or sex-by-diet effects of context-dependent genes in each tissue. Bar height and color indicate how many genes with each
parental bias: (red) maternal; (blue) paternal; and (yellow) direction switching.
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the uniparental expression associated with genomic imprinting
(Wolf et al. 2008; Morcos et al. 2011). LIV had the highest propor-
tion of these genes among the three tissues (74%). WAT had the
second highest proportion (51%), whereas HYP had the lowest
proportion (15%) (Fig. 3A). LIV is also a tissue where more paren-
tally biased genes were detected in the diet- and/or sex-specific
contexts than the “All” context (Fig. 2B). LIV is responsive to envi-
ronmental factors, especially diet, given its central roles in diges-
tion and detoxification (Trefts et al. 2017). Taken together, these
findings suggest a mechanism of parent-of-origin-dependent ASE
outside of traditional imprinting that is sensitive to environmental
perturbations.

To further explore how sex and/or dietary fat can alter paren-
tal biases, we calculated individualized POE scores for each con-
text-dependent gene and modeled how they vary across diet,
sex, and diet-by-sex contexts (Supplemental Tables S5, S6). These
categories were not mutually exclusive; across all three tissues,
most genes were significant for more than one effect. Nonetheless,
when we intersected these significant gene lists, we found that
each tissue showed a distinct pattern of context-dependent paren-
tal biases (Fig. 3F; Supplemental Fig. S9). For example, LIV had sim-
ilar proportions of significant sex, diet, and diet-by-sex effects
(each 75%–80%); 60% of its genes were significant for all three ef-
fects. Most of WAT’s genes had a significant sex effect (83%), but
diet or diet-by-sex effects were much less common (44% and
28%, respectively). Finally, 63% of HYP’s genes had a significant
sex effect, whereas 40%–45% had significant diet or diet-by-sex
effects.

We validated the expression profiles of two context-depen-
dent genes (Apob and Slc22a3) by pyrosequencing (Supplemental
Fig. S10). Apolipoprotein B (Apob) had a significant diet effect in
WAT, reflected in maternal biases in the HF and F contexts. Apob
was biallelically expressed in the remaining WAT contexts and
all contexts in LIV and HYP. Its locus had 126 variants, including
seven nonsynonymous SNPs (six, LG/J genome). Apob produces
the main component of lipoproteins, which transport lipids in
the blood (Olofsson and Borèn 2005). Maternal-specific associa-
tions between APOB variants and adiposity traits have been found
in humans (Hochner et al. 2015). Apob expression also differs be-
tween high and low fructose diets in mice livers (Sud et al.
2017). Solute carrier family 22 (organic cation transporter), mem-
ber 3 (Slc22a3) had significant diet and diet-by-sex effects in LIV,
reflected in maternal biases in the HF and HM contexts. Slc22a3
was biallelically expressed in the remaining LIV contexts and all
contexts in WAT and HYP. Its locus had 285 strain-specific vari-
ants, but none were predicted as functional. Slc22a3 is a transport-
er that eliminates organic cations from cells (Kekuda et al. 1998). It
has been reported asmaternally expressed in liver and extraembry-
onic tissues, but biallelic elsewhere (Babak et al. 2015). Slc22a3 is
also differentially expressed in kidneys between high fat and
chow-fed mice (Gai et al. 2016).

Sequence-dependent ASE arises from haplotype-specific

genetic variation

Next, we similarly characterized the expression profiles of the 2673
sequence-biased genes across our 27 tissue-by-context analyses to
evaluate whether sequence-dependent ASE is also influenced by
tissue or environmental context. For each analysis, we quantified
the direction andmagnitude of each gene’s sequence bias by calcu-
lating an allelic genotype effect (AGE) score from the mean allelic
bias of each F1 reciprocal cross. AGE scores ranged from −1

(completely SM/J expressed) to +1 (completely LG/J expressed); a
score of 0 indicated biallelic expression (Methods). In each analy-
sis, a gene could be expressed in three possible ways: significant se-
quence/allelic genotype bias, biallelic (expressed but with no bias),
or not expressed. We sorted the 2673 sequence-biased ASE genes
into three expression profiles: tissue-independent, tissue-depen-
dent, and context-dependent (Fig. 4A–D).

We identified 605 genes (23%) as tissue-independent, mean-
ing they had a consistent sequence bias in every tissue they were
expressed. Within a given tissue, they had a sequence bias in
most environmental contexts (Fig. 4B). These genes were strongly
biased toward one strain’s allele; theirmeanAGE scores were−0.79
and 0.78 for SM/J and LG/J biased genes, respectively (Fig. 4E). All
three tissues had a similar proportion of these genes (29%–35%)
(Fig. 4A). These patterns likely reflect the vast genetic variation ac-
cumulated between the LG/J and SM/J backgrounds over the de-
cades, whereby a cis-acting variant impacts one strain’s allelic
function wherever that gene is expressed, regardless of tissue type.

We validated the expression profiles of two tissue-indepen-
dent genes (Eef1a1 andTubb2a) by pyrosequencing (Supplemental
Fig. S11). Eukaryotic translation had a LG/J bias in all three tissues,
regardless of context. Its locus had 30 strain-specific variants, in-
cluding twononsynonymous SNPs in the SM/J genome. Eef1a1de-
livers aminoacylated transfer RNAs to the elongating ribosome
during protein synthesis and has crucial roles in protein degrada-
tion and other cellular processes. It is abundantly and ubiquitously
expressed inmost tissues (Mateyak and Kinzy 2010; Li et al. 2013).
Tubulin, beta 2A class IIA (Tubb2a) had a SM/J bias in all three tis-
sues, regardless of context. Mutations in this gene are rare and of-
tennonviable; however, its locus had one SNP in the LG/J genome.
Tubb2a is a tubulin isoform that binds GTP to createmicrotubules,
which are critical for the cytoskeleton organization, intracellular
trafficking, and mitotic cell division. It is also ubiquitously ex-
pressed in most tissues, especially the brain (Hammond et al.
2008; Rice et al. 2008).

Sequence-dependent ASE can be mediated by tissue-specific

features

Next, we identified 684 genes (25%) as tissue-dependent. These
genes showed a sequence bias across most contexts in one or
two tissues, but were biallelically expressed (no bias) across con-
texts in the other tissue(s) (Fig. 4C). Here, we again distinguish be-
tween tissue-dependent ASE (biallelic in some tissues) and tissue-
specific gene expression (not expressed in some tissues). These
genes were moderately biased toward one strain’s allele; their
mean AGE scores were −0.57 and 0.55 for SM/J and LG/J biased
genes, respectively (Fig. 4E). All three tissues also had a similar pro-
portion of these genes (27%–32%) (Fig. 4A). These patterns show
that sequence-dependent ASE is not solely a result of genetic vari-
ation; here, tissue-specific epigenetic factors likely interact with
cis-acting variants to influence allelic frequency.

We validated the expression profiles of two tissue-dependent
genes (Upp2 and Mettl7b) by pyrosequencing (Supplemental Fig.
S12). Uridine phosphorylase 2 (Upp2) had a strong SM/J bias across
contexts in HYP, a weaker SM/J bias in WAT, and biallelic expres-
sion in LIV. Its locus had 1043 strain-specific variants, including
five nonsynonymous SNPs in the LG/J genome. Upp2 catalyzes
the phosphorolysis of uridine into uracil and ribose-1-phosphate
during nucleosidemetabolism (Johansson 2003). Inmice, it is pre-
dominantly expressed in liver and weakly expressed in brain
(Roosild et al. 2011). Methyltransferase like 7b (Mettl7b) had a
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LG/J bias across contexts in WAT, biallelic expression in LIV, and
no expression in HYP. Its locus had 77 strain-specific variants, in-
cluding one nonsynonymous SNP in the SM/J genome. Mettl7b is

an akyl thiol methyltransferase implicated in several cancers
(Maldonato et al. 2021). It is highly expressed in lipid droplets, par-
ticularly liver and adipose tissue (Turró et al. 2006).
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D

B

C

Figure 4. Sequence-dependent ASE patterns fall into three expression profiles. (A) Proportion of ASE genes per tissue with each sequence bias profile.
Heatmaps of ASE profiles across analyses: (B) tissue-independent, (C) tissue-dependent, and (D) context-dependent. A subset of the 2673 genes are shown,
including those validated with pyrosequencing. Genes are color coded by their expression pattern in each tissue-by-context analysis. Shades of purple and
green indicate their degree of SM/J or LG/J bias, respectively (AGE scores). If genes are not biased, shades of yellow indicate their biallelic expression levels
(log-transformed total counts). Black indicates genes are not expressed. The y-axis is grouped and sorted by chromosomal position. Supercolumns denote
tissues: (HYP) hypothalamus; (WAT) white adipose; and (LIV) liver. Subcolumns denote environmental contexts: (All) all contexts; (H) high fat; (L) low fat;
(F) females; (M)males; (HF) high fat females; (HM) high fatmales; (LF) low fat females; and (LM) low fatmales. (E) AGE scores for each sequence bias profile.
Vertical lines indicate mean AGE scores. Dots represent individual ASE genes. (F) UpSet plots of the significant sex, diet, and/or sex-by-diet effects of con-
text-dependent genes in each tissue. Bar height and color indicate how many genes with each sequence bias: (purple) SM/J; (green) LG/J; and (yellow)
direction switching.
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Sequence-dependent ASE is sensitive to sex and dietary

environments

Finally, we classified 1384 genes (52%) as context-dependent.
These genes had a sequence bias only in certain environmental
contexts within a tissue, but biallelic expression (no bias) in other
contexts and/or tissues (Fig. 4D). These genes had more subtle al-
lelic biases than the other two profiles; their mean AGE scores
were −0.32 and 0.34 for SM/J and LG/J biased genes, respectively
(Fig. 4E). LIV had the most context-dependent genes (616) and
HYP had the fewest (483), but overall all three tissues comprised
a similar proportion of these genes (38%–41%) (Fig. 4A). These pat-
terns suggest that environmental factors can interact with genetic
variation to influence the final allelic composition of a gene’s
product.

To further explore how sex and/or dietary fat can alter se-
quence biases, we calculated individualized AGE scores for each
context-dependent gene and modeled how they vary across diet,
sex, and diet-by-sex contexts (Supplemental Tables S5, S6).
When we intersected these gene lists, we found that each tissue
showed a similar pattern of context-dependent sequence biases
(Fig. 4F; Supplemental Fig. S13). Significant sex effects were the
most prevalent in each tissue, ranging from 32% of genes in
HYP, 43% in WAT, to 51% in LIV. Diet effects were slightly less
common but still widespread: 30% of genes in HYP, 43% in
WAT, and 48% in LIV. Finally, diet-by-sex effects were also perva-
sive in each tissue, comprising 29% of genes in HYP, 33% inWAT,
and 41% in LIV. These categories were not mutually exclusive;
most genes were significant for more than one effect across the
three tissues.

We validated the expression profiles of two context-depen-
dent genes (Ifi205 and Gas1) by pyrosequencing (Supplemental
Fig. S14). Interferon activated gene 205 (Ifi205) had significant
sex and diet-by-sex effects in WAT, reflected in strong LG/J biases
in the three female-related (HF, LF, F) and “All” contexts. Ifi205
was biallelically expressed in the remaining WAT contexts and
all LIV contexts. Its locus had 254 strain-specific variants, includ-
ing 10 nonsynonymous SNPs in the SM/J genome. Ifi205 binds
DNA in response to interferon signaling, which activates the im-
mune system (Albrecht et al. 2005). Significant sex differences
have been reported in mice, in which females have higher total
Ifi205 expression levels thanmales (Cao et al. 2018). Growth arrest
specific 1 (Gas1) had significant diet and sex effects in LIV, reflect-
ed in strong SM/J biases in the three low fat diet-related (LF, LM, L),
female, and “All” contexts. Gas1 was biallelically expressed in the
remaining high fat diet and male contexts in LIV and all contexts
inHYP andWAT. Its locus had 57 strain-specific variants, although
none were predicted as functional. Gas1 encodes a membrane gly-
coprotein that binds and regulates sonic hedgehog during devel-
opment (Lee et al. 2001). Gas1 is differentially expressed
between high and low selenium diets in mice ovaries, suggesting
its expression may be sensitive to dietary environment (Qazi
et al. 2021).

Sequence-dependent ASE genes can switch the direction

of their allelic biases

Finally, we found 45 sequence-dependent ASE genes with incon-
sistent patterns of allelic biases. These genes showed significant
ASE in opposite directions among the tissues and/or environmen-
tal contexts (Fig. 5). For 44 of the 45 genes, such direction switch-
ing occurred at the tissue level: for example, a genemay have a LG/
J bias in one tissue, a SM/J bias in another tissue, and sometimes

even no bias (biallelic) in the third tissue. Four genes had tissue-in-
dependent ASE, or a sequence bias across contexts in every ex-
pressed tissue (albeit in different directions). Nineteen genes had
context-dependent ASE, or a sequence bias only in certain envi-
ronmental contexts that switched direction across tissues. One
gene (Cidec) had a context-dependent switch in ASE direction
within the same tissue, discussed further below. The remaining
22 genes had a combination of context- and tissue-dependent
ASE patterns: such genes had a sequence bias in one direction
across contexts in one or two tissues, but a context-dependent se-
quence bias in the opposite direction in another tissue. Overall,
these genes had moderate allelic biases; their mean AGE scores
were −0.38 and 0.40 for SM/J and LG/J biased genes, respectively.
These dynamic direction-switching patterns confirm that se-
quence-dependent ASE is not solely a result of genetic variation.
Otherwise, the same variant causing ASE in one tissue would
also be present in any other cell expressing that gene. These pat-
terns hint at epigenetic regulatory elements interacting with ge-
netic variation in a tissue-specific manner to influence the final
allelic frequency.

We validated the expression profiles of two direction-switch-
ing genes (Stab2 and Ociad2) with pyrosequencing (Supplemental
Fig. S15). Stabilin 2 (Stab2) had a LG/J bias in all contexts in LIV but
a SM/J bias across most contexts in HYP and WAT. Its locus had
1019 strain-specific variants, including 14 nonsynonymous
SNPs in the SM/J genome. Stab2 binds to hyaluronic acid and me-
diates its transportation inside the cell (Zhou et al. 2002). It is pre-
dominantly expressed in two isoforms in the liver and spleen, but
weakly expressed in the brain and adipose tissue (Falkowski et al.
2003). OCIA domain containing 2 (Ociad2) had significant sex
and sex-by-diet effects in WAT and LIV. These are reflected in
LG/J biases in the L, F, and “All” contexts in WAT, but SM/J biases
in the LF, L, F, and “All” contexts in LIV. Ociad2 was biallelically
expressed in the remaining contexts of both tissues and in HYP.
Its locus had 118 strain-specific variants, although none were pre-
dicted as functional. Ociad2 regulates cell migration and is moder-
ately expressed in several tissues, including the brain and liver
(Sinha et al. 2018). It is highly expressed in female ovarian tumors
(Nagata et al. 2012), but otherwise sex or diet effects on Ociad2 ex-
pression have not been explored.

ASE genes are enriched in QTLs for metabolic

and anatomical traits

Mapping studies in the LG/J x SM/J advanced intercross line have
identified hundreds of QTLs associated with a constellation of
complex traits. Such approaches are agnostic to tissue and often
implicate regions withmany genes, making it difficult to pinpoint
which ones are phenotypically relevant. In contrast, ASE patterns
are gene-specific and vary across tissues and environments. If there
is a functional difference between alleles, then an expression im-
balance in the right conditions can have phenotypic consequenc-
es and manifest as QTL signals. To probe this, we integrated ASE
and QTL data from populations derived from the same founder
strains at various degrees of intercrossing (Fig. 6A; Supplemental
Table S7).

Previously, 127 QTLs influencing metabolic traits were
mapped in the AIL F16 generation (Lawson et al. 2010, 2011b;
Cheverud et al. 2011). These studies incorporated the same envi-
ronmental contexts (sex and dietary fat) used here, traced the
parental origin of each marker allele, and characterized the
context-dependent additive and imprinting effects influencing
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metabolic traits. Overall, sequence-dependent ASE genes were sig-
nificantly enriched in the 83 F16 QTLs with additive effects (P=
0.01) (Fig. 6B). We compared the QTL sets for each metabolic trait
category with the full ASE gene sets for each tissue. QTLs for obe-
sity traits were enriched for HYP, WAT, and LIV genes (P<0.01).
QTLs for diabetes traits were enriched for HYP genes (P=0.01),

but not WAT or LIV. QTLs for serum lipid traits were enriched
for WAT genes (P=0.02), but not HYP or LIV (Supplemental Fig.
S16). These findings reflect the discrete roles of each tissue in me-
tabolism physiology and illustrate that ASE patterns can inform
which tissues are phenotypically relevant. Conversely, parent-of-
origin-dependent ASE genes (excluding the 171 snoRNA cluster

Figure 5. Forty-five ASE genes switch their sequence bias direction across conditions. Heatmap of ASE profiles for the 45 genes with significant sequence
biases in opposite directions, including those validated with pyrosequencing. Genes are color coded by their expression pattern in each tissue-by-context
analysis. Shades of purple and green indicate their degree of SM/J or LG/J bias, respectively (AGE scores). If genes are not biased, shades of yellow indicate
their biallelic expression levels (log-transformed total counts). Black indicates genes are not expressed. The y-axis is grouped and sorted by chromosomal
position. Supercolumns denote tissues: (HYP) hypothalamus; (WAT) white adipose; and (LIV) liver. Subcolumns denote environmental contexts: (All) all
contexts; (H) high fat; (L) low fat; (F) females; (M) males; (HF) high fat females; (HM) high fat males; (LF) low fat females; and (LM) low fat males.
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in the PWS/AS domain) were not enriched in the 76 F16 QTLs with
imprinting effects (P=0.47) (Fig. 6B). Tissue-specific ASE gene sets
were also not enriched in the QTL sets for any metabolic trait cat-
egory (P>0.05) (Supplemental Fig. S16), supporting previous work
showing parental biases are often not the direct source of imprint-
ing QTL effects (Macias-Velasco et al. 2022).

Additionally, 149 QTLs influencing behavioral, musculoskel-
etal, andmetabolic traits were mapped in later generations (F50–56)
of the same AIL population (Gonzales et al. 2018; Cordero et al.
2019). These studies did not capture environmental contexts or
parental origin, but still explored howadditive effects impact com-

plex traits in a context-independent manner. Overall, sequence-
dependent ASE genes were significantly enriched in additive
F50–56 QTLs for muscle weights (P= 0.03), bone sizes (P=0.01),
and diabetes-related traits (P=0.01) (Fig. 6C). These results are con-
sistent with the history of the LG/J and SM/J founder strains: they
were independently selectively bred for large and small body sizes,
so it is not surprising that strain-specific variation can induce ASE
biases in their F1 cross that often occur in/near regions relevant
for morphometric traits. Furthermore, sequence-dependent ASE
genes were not enriched in additive F50–56 QTLs for behavioral
traits related to locomotor activity and prepulse inhibition (P=
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Figure 6. Integrating ASE and QTL data reveal Cidec as a candidate gene for insulin levels. (A) Breeding scheme for the LG/J x SM/J advanced intercross
line. We calculated enrichment of tissue-specific ASE gene sets (x-axis) in trait-specific AIL QTL sets (y-axis) among sequence-dependent ASE genes in ad-
ditive F16 QTL (top) and parent-of-origin-dependent ASE genes in imprinting F16 QTL (bottom) (B), and sequence-dependent ASE genes in additive F50–56
QTL (C). Circle color corresponds to the enrichment P-value. Numbers indicate the total overlapping ASE genes in eachQTL set. (D,E) Tally of howmany AIL
QTLs contain each range of ASE genes: 0 (purple) to more than 10 (yellow). Pie charts match their adjacent ASE gene and QTL set intersections. (F) The AIL
F16 QTL Ddiab6d showed context-dependent additive effects. Box plots of serum insulin levels across SNP rs6393943 genotypes in F16 mice (LL, LG/J ho-
mozygous; LS, heterozygous; SS, SM/J homozygous). The x-axis is grouped by diet-by-sex context: (HF) high fat females; (HM) high fat males; (LF) low fat
females; and (LM) low fatmales. Horizontal bars denotemean phenotypes. (∗∗∗) P≤0.001; assessed by Student’s t-test. (G) Cidec had a context-dependent
switch in sequence bias direction within LIV. ASE heatmap of Cidec across tissues-by-context analyses (for full description, see Fig. 4 or 5). (H) Cidec ASE
biases had significant sex, diet, and diet-by-sex effects. Violin plots display individual AGE scores for Cidec (y-axis) across environmental contexts (x-
axis). Horizontal bars denote mean AGE scores. Dots are color coded by their sequence bias. (∗∗) P≤0.01, (∗∗∗) P≤0.001; assessed by ANOVA (sex,
diet) or Tukey’s post hoc tests (diet-by-sex). (I) Cidec ASE profile in LIV and WAT was validated by pyrosequencing. Bar graphs denote mean allelic ratios
(y-axis) in select cohorts (x-axis) and are color coded by allele (LG/J, green; SM/J, purple). (J) Cidec had significantly higher expression in HM. Violin plots of
total expression levels in LIV (y-axis) for each diet-by-sex context (x-axis). (∗∗) P≤0.01; assessed by Student’s t-test.
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0.42) (Fig. 6C). Tissue-specific ASE gene sets were also not enriched
in behavioral QTLs, even for the brain region HYP (P=0.79)
(Supplemental Fig. S17), suggesting the metabolic tissues profiled
here are not relevant for these behavioral phenotypes.

Although sequence-biased genes were located in additive AIL
QTL more often than expected, individual QTL typically con-
tained few ASE genes (Supplemental Table S7). Additive F16 QTLs
overlapped a mean of 75 genes each, yet 51% of those QTLs con-
tained only one to five sequence-dependent ASE genes. Thirty-sev-
en percent of QTLs containedmore than six ASE genes andmerely
12% had no ASE genes (Fig. 6D). Similarly, additive F50–56 QTLs
overlapped a mean of 61 genes each, but 36% of those QTLs con-
tained only one to five sequence-dependent ASE genes. Forty-five
percent of QTLs contained more than six ASE genes and 19% had
noASE genes (Fig. 6E). In contrast, imprinting F16QTLs overlapped
amean of 62 genes each, but 92%of themdid not contain any par-
ent-of-origin-dependent ASE genes (Fig. 6D). Only two imprinting
F16 QTLs contained more than 10 ASE genes and they both over-
lapped the cluster of 171 snoRNAs on Chromosome 7.

Cidec has a context-dependent switch in ASE direction

and is a candidate gene for insulin levels

Because ASE genes often comprise a subset of all genes within a
QTL, we propose that incorporating ASE patterns can dissect
QTL etiology and prioritize candidate genes in relevant tissues.
Here, we present an example of the utility of this orthogonal ap-
proach.Ddiab6dwas an AIL F16 QTL on Chromosome 6 associated
with serum insulin, basal glucose, and glucose tolerance levels that
showed additive effects in a context-dependent manner (Lawson
et al. 2011b). In high fat males, AIL F16 mice homozygous for the
SM/J allele had significantly higher insulin levels than the homo-
zygous LG/J mice (P<0.001). There were no significant differences
in insulin levels between homozygote genotypes in the high fat
females, low fat females, or low fat male cohorts (Fig. 6F). The
Ddiab6d locus spanned 14.7Mb and contained 100 genes, compli-
cating efforts to pinpoint the causal mechanisms of this additive
effect.

However, only four sequence-dependent ASE genes were lo-
cated in the Ddiab6d locus: Brpf1, Cidec, Irak2, and Syn2. Cell
death-inducing DFFA-like effector c (Cidec) had a diet- and sex-de-
pendent switch in bias directionwithin the same tissue, whichwas
a notable exception to the tissue-level ASE direction switches re-
ported above. In LIV, Cidec had a strong SM/J bias in the HM con-
text, yet a LG/J bias in the HF, LF, and F contexts (Fig. 6G). It was
biallelically expressed in the remaining LIV contexts and across
all WAT contexts, but not expressed in HYP. Cidec ASE biases
also had significant sex, diet, and diet-by-sex effects in LIV (P<
0.01) (Fig. 6H). We validated the context-dependent switch in
ASE bias direction with pyrosequencing (Fig. 6I). Cidecwas also ex-
pressed in LIV at a significantly higher level in HM than the other
diet-by-sex contexts (P<0.01) (Fig. 6J).

Cidec promotes and regulates lipid storage in liver and adipose
tissue (Xu et al. 2012). Cidec expression is sensitive to diet compo-
sition and sex hormones; for example, male mice had higher total
hepatic expression than femaleswhen fed aWesterndiet (i.e., high
cholesterol and saturated fats) (Herrera-Marcos et al. 2020). In an-
other study, high fat-fed mice had increased Cidec expression in
liver that was also associated with improved insulin sensitivity
(Iv et al. 2015). The liver plays an important role in regulating ho-
meostatic insulin levels and removing it from the bloodstream
(Tokarz et al. 2018). Hepatic insulin clearance is an emerging com-

ponent of type 2 diabetes and metabolic syndrome, as impaired
hepatic insulin clearance is correlated with increased waist circum-
ference, blood pressure, fasting glucose, triglycerides, and insulin
secretion (Pivovarova et al. 2013; Najjar and Perdomo 2019).
Together, these data implicate Cidec as a candidate gene for
Ddiab6d whose allelic composition in the liver is sensitive to met-
abolically relevant environmental factors and can influence insu-
lin levels.

Discussion

Allele-specific expression imbalances caused by genetic and epige-
netic variation have widespread functional consequences on com-
plex traits, but how environmental signals contribute to this cross
talk remains understudied. Here, we explored how allelic geno-
type, parent-of-origin, tissue type, sex, and dietary fat simultane-
ously impact ASE biases in an adult mouse F1 reciprocal cross.
We present a genome-wide map of parent-of-origin and se-
quence-dependent ASE patterns across three metabolically rele-
vant tissues and nine environmental contexts. The granularity of
our analyses revealed that both ASE classes are highly dependent
on tissue and environmental context. We identified 2853 genes
with significant parental and/or sequence biases and sorted
them into three expression profiles: tissue-independent, tissue-de-
pendent, and context-dependent.We also found 45 genes with in-
consistent ASE biases that switched direction across tissues and/or
contexts. Although the breadth of these patterns precluded a de-
tailed discussion of each gene, we validated examples of each ex-
pression profile to show how these allelic imbalances could
manifest and lead to potential functional consequences.

“Tissue-independent” genes are strongly biased wherever
they are expressed. Most parent-of-origin-dependent ASE genes
(67%) have this expression profile—all of which are related to ge-
nomic imprinting, a well-characterized epigenetic phenomenon
that results in uniparental expression and is often conserved across
tissues (Barlow and Bartolomei 2014). In contrast, only 23% of se-
quence-dependent ASE genes have this expression profile, likely
owing to cis-acting genetic variants in coding regions that severely
affect one allele’s function whenever that gene is expressed.
These patterns conform to the conventional ASE mechanism
whereby the genetic and epigenetic processes that influence allelic
composition will always do so wherever a gene is expressed, in a
manner impervious to tissue type or environmental signals (Lo
et al. 2003; Babak et al. 2015). However, we found this is not always
the case.

“Tissue-dependent” genes aremoderately biased in one direc-
tion in some tissues, but are biallelically expressed or biased in the
opposite direction in other tissues. Tissue-specific gene expression
(simply not expressed in certain tissues) is not considered here,
because we are specifically interested in cases in which a gene
has one allelic ratio in one tissue (e.g., 80% SM/J, 20% LG/J) and
a different ratio in another tissue (e.g., 50% SM/J, 50% LG/J).
Merely 6% of parent-of-origin-dependent ASE genes have this ex-
pression profile, and all are located in known imprinted domains.
Twenty-five percent of sequence-dependent ASE genes have this
profile, demonstrating that sequence biases are not solely attribut-
able to genetic sources. Instead, both patternsmay be explained by
variation in tissue-specific regulatory features, such as enhancers
or RNA-binding proteins. Such tissue-specific factors can then in-
teract with cis-acting variants to produce a tissue-dependent allelic
imbalance. This is likely the case for genes with inconsistent biases
between tissues, for which the variation in one allele may be
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favorable in certain tissues’ regulatory landscape but the opposite
allele is more favorable elsewhere (Leung et al. 2015; Andergassen
et al. 2017).

Finally, “context-dependent” genes are subtly biased in one
direction in certain environmental contexts, but are biallelically
expressed or biased in the opposite direction in other contexts
and tissues. We found this expression profile is quite prevalent
in both classes of ASE. Twenty-seven percent of parent-of-origin-
dependent ASE genes have diet- and/or sex-specific biases in a
less extreme manner than the other profiles. Most genes have no
clear connection to imprinting, suggesting another mechanism
for parental ASE outside of traditional imprinting that is sensitive
to environmental perturbations (Wolf et al. 2008; Morcos et al.
2011). More than half of sequence-dependent ASE genes
(52%) have diet- and/or sex-specific biases, indicating these
extrinsic and intrinsic factors interact with genetic variation to
cause a sequence bias. Both patterns suggest a model in which en-
vironmental signals may interact more efficiently with one allele
over the other, leading to shifting and inconsistent allelic propor-
tions in response to environmental cues (Shao et al. 2019). Often,
these genes are not significantly biased in our “all contexts” anal-
ysis, only in a specific environmental cohort. This highlights the
necessity of studying gene-by-environment interactions, as such
effects are obscured when multiple contexts are collapsed
together.

We can only detect ASE in genes with strain-specific variants
in transcribed regions, which is a fraction of all expressed genes. In
particular, imprinted genes that are crucial for development may
be under tight evolutionary control and not have variants; thus,
we are unable to assess their ASE status. Although our exact find-
ings are limited to this F1 mouse model, the broad patterns never-
theless show the complexity of ASE and its contribution to
complex traits. Traditional mapping studies connect genotypes
to phenotypes, but are agnostic to tissue and often do not consider
environment. Expression QTL studies connect genotypes to total
gene expression, but assume biallelic expression. Tissue- and con-
text-dependent ASE of both classes can bridge these approaches
and pinpoint which tissues and/or environments are relevant for
a phenotype. A gene may be expressed at the same level in two co-
horts, but its allelic composition could differ owing to ASE. If there
is a functional difference between its alleles, then an expression
imbalance in the right conditions could have phenotypic conse-
quences. We integrated ASE and QTL data from populations
derived from the same founder strains at various degrees of
intercrossing. Tissue-specific ASE genes are enriched in QTLs for
metabolic andmusculoskeletal traits, yet consist of a small portion
of all genes within the QTL. Incorporating these dynamic ASE pat-
terns with orthogonal evidence will help us decipher the geno-
type-to-phenotype map.

Methods

F1 reciprocal cross mouse model and RNA sequencing

Weobtained LG/J and SM/J founders fromThe Jackson Laboratory
and generated F1 reciprocal crosses by mating LG/J mothers with
SM/J fathers (LxS) and vice versa (SxL). F1 offspring were weaned
into sex-specific cages at 3 wk and randomly placed on either a
high fat diet (42% kcal from fat; Teklad TD88137) or an isocaloric
low fat diet (15% kcal from fat; ResearchDiets D12284). They were
fed ad libitum. The F1 crosses did not differ inweight gained in any
diet-by-sex cohort (P>0.05) (Supplemental Fig. S18). At 20 wk, F1

mice were euthanized with a sodium pentobarbital injection fol-
lowed by cardiac perfusion with phosphate-buffered saline. We
harvested hypothalamus (HYP), liver (LIV), and reproductive
white adipose (WAT) tissue, which were flash frozen in liquid ni-
trogen and stored at −80°C until RNA extraction. All procedures
were approved by the Institutional Animal Care and Use
Committee at Washington University School of Medicine.

We sequenced 32 samples per tissue, representing four mice
from each sex, diet, and F1 cross cohort. We extracted total RNA
from WAT and HYP using the RNeasy Lipid Tissue Mini Kit
(QIAGEN) and from LIV using a standard TRIzol-chloroform pro-
cedure. Samples were selected based on sufficient NanoDrop
RNA concentrations (Thermo Fisher Scientific) and RNA integrity
scores ≥8.0 (Agilent). We constructed RNA-seq libraries with the
Ribo-Zero rRNA Removal Kit (Illumina), checked their quality
with the Bioanalyzer DNA 1000 assay (Agilent), and sequenced
them at 100-bp paired-end reads on an Illumina HiSeq 400. After
sequencing, reads were demultiplexed and assigned to individual
samples.

Allele-specific expression mapping

Mapping ASE in F1 heterozygotes is vulnerable to reference ge-
nome alignment bias (Degner et al. 2009; Wang and Clark
2014). Previously, LG/J and SM/J reference genomes were created
by combining strain-specific SNPs and indels with the
GRC38.72-mm10 reference template (Nikolskiy et al. 2015). Cus-
tomized gene annotations were created by adjusting Ensembl def-
initions (GRCm38.72) for indexing differences owing to strain-
specific indels. To mitigate this concern, we combined those LG/
J and SM/J genomes into a custom pseudogenome and aligned
RNA-seq reads to both strains simultaneously. We mapped reads
uniquely using the two-pass mapping strategy in STAR v.2.7.2b
(Dobin et al. 2013). Briefly, splice junctions are collected during
a first round and used to inform a second round of mapping. By
not allowing multimapping, we only retained reads that uniquely
cover strain-specific variants so we could assign their allelic origin;
reads covering identical regions between the parental strains were
discarded. Alignment summaries are provided in Supplemental Ta-
ble S8 and Supplemental Figure S19.

Next, we assigned each aligned read to a gene using BEDTools
v.2.27.1 (Quinlan and Hall 2010) and our strain-specific Ensembl
annotations. We assessed ASE at the gene level because not all ex-
ons within a given gene contained informative variants. Gene-lev-
el allele-specific counts were then upper quartile normalized
(Supplemental Fig. S20) and filtered to remove lowly expressed
genes (total normalized counts < 20). We retained a total of 9171
genes in HYP, 9745 genes in WAT, and 8026 genes in LIV.

Library complexity

Insufficient library complexity can hamper ASE detection (Wang
and Clark 2014). To measure each library’s complexity, we fit the
distribution of LG/J allele expression biases (the proportion of total
allele-specific read counts with the LG/J haplotype) to a beta-bino-
mial distributionusing theVGAMpackage (Yee 2010).We estimat-
ed the shape parameters (α, β) of the beta-binomial distribution
and calculated the overdispersion parameter (ρ) as ρ=1/(1 +α+
β). Lower values of ρ (<0.075) indicate a library is sufficiently com-
plex. OneWAT and one LIV library had poor complexity and were
removed from further analyses (Supplemental Fig. S21).

Determining biased allele-specific expression

For each “tissue-by-context” analysis, we required a gene to be ex-
pressed in≥75%of biological replicates per F1 reciprocal cross. This
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conservative sample size threshold retained only genes expressed
in most biological replicates in a given cohort, allowing us to con-
fidently conclude their expression status. We intentionally re-
moved sporadically expressed genes, because they may result in
false or transient biases.

We adapted a published regressionmodel (Takada et al. 2017)
to jointly estimate parent-of-origin (PO) and allelic genotype (AG)
effects on ASE. First, we assigned two binary variables to each
gene’s allele-specific counts based on their allelic origin. For the
PO term, maternal alleles received a 0 and paternal alleles received
a 1; for the AG term, LG/J alleles received a 0 and SM/J alleles re-
ceived a 1 (Supplemental Fig. S22). Next, we added a term repre-
senting the RNA-seq library barcodes so that both allele-specific
read counts (two separate rows in our data set) for an individual
mouse are treated as a pair. This paired-sample design helps distin-
guish between cases inwhich a gene is not expressed in a particular
sample (i.e., both alleles’ read counts are zero) and an extreme ex-
pression bias (i.e., only one allele’s counts are zero), which results
in a lower biological coefficient of variation and lower overall dis-
persion (Supplemental Fig. S22). Our final regression model equa-
tion was

Allele− Specific Read Counts � PO+ AG+ Library Barcode.

Finally, we fit a negative binomial generalized linear model (GLM)
and conducted likelihood ratio tests in edgeR (Robinson et al.
2010; McCarthy et al. 2012) to estimate the POE and AGE on ASE.

Next, we quantified the direction and magnitude of each
gene’s expression biases. For each sample, we calculated a gene’s al-
lelic bias as the proportion of total counts with the LG/J haplotype
(Lbias) or SM/J haplotype (Sbias). Using the mean allelic biases of
each F1 cross, we constructed POE and AGE scores per gene as fol-
lows:

POE = mean(SxL Lbias)−mean(LxS Lbias),

AGE = (mean(LxS Lbias)+mean(SxL Lbias))− (mean(LxS Sbias)+mean(SxL Sbias))
2

.

POE scores ranged from −1 (completely maternally expressed)
to +1 (completely paternally expressed). Similarly, AGE scores
ranged from −1 (completely SM/J expressed) to +1 (completely
LG/J expressed). Scores of 0 for both indicated biallelic expression.
Full summary statistics for each analysis are provided in Supplemen-
tal Tables S2–S4.

Estimating significance thresholds

Adjusting for multiple tests in ASE analyses is challenging. Allelic
biases are often correlated for genes within and between regions,
breaking any independence assumptions. We used a permutation
approach to estimate our significance thresholds. For each tissue-
by-context analysis, we generated a permuted null distribution
of both AGE and POE terms. Over several iterations, we randomly
shuffled the allele-specific read counts for all genes, reran our
GLM analyses, and recalculated the POE/AGE scores. Instead of
choosing an arbitrary number, we continued to add new iterations
until the null model was “stable.” After every iteration, we added
those permuted results to the overall null model and evaluated
the difference in mean permuted likelihood ratios. We defined
“stability” as when the difference inmean permuted likelihood ra-
tios for both terms fluctuated by <|0.001| for 10 consecutive itera-
tions (Supplemental Fig. S23). In other words, the null model was
considered “stable” once incorporating another iteration did not
shift the overall distribution of test statistics (mean iterations per
analysis = 51). Summary statistic comparisons between the real
and permuted data sets are provided in Supplemental Figures
S24–S26.

Next, we built an empirical cumulative distribution function
(ECDF) from each term’s permuted P-values for each tissue-by-
context analysis (Supplemental Fig. S27). We fit each term’s
raw P-values to its respective ECDF to compute the adjusted P-
values, that is, the proportion of tests from the null model that
are more extreme (smaller P-values) than a test from the real
model. We also calculated the 5th and 95th quantiles of the per-
muted POE and AGE scores in each analysis; the more extreme
value of each score became our critical thresholds. We deemed
adjusted P-values≤0.05 as statistically significant and real scores
beyond their critical threshold as biologically significant. Parent-
of-origin-dependent ASE genes had significant POE P-values and
POE scores; sequence-dependent ASE genes had significant AGE
P-values and AGE scores (Supplemental Fig. S28; Supplemental
Table S1).

Total expression mapping

During allele-specific mapping, reads were not aligned if they cov-
ered homozygous regions between the parental strains. We saved
those unmapped reads and aligned them separately to the LG/J
and SM/J genomes using a standard multimapping approach in
STAR v.2.7.2b. We assigned each aligned read to a gene using
BEDTools v.2.27.1 and our strain-specific Ensembl annotations.
Next, we averaged the read counts for both genomes; because
those reads covered homozygous regions, theymapped to each ge-
nome similarly. We combined the averaged “multimapped”
counts with the raw “allele-specific” counts from the previous
mapping step, resulting in raw “total expression” counts. Finally,
gene-level counts were upper quartile normalized and filtered to
remove lowly expressed genes (total counts < 10).We retained a to-
tal of 25,926 genes inHYP, 26,450 genes inWAT, and 24,076 genes
in LIV.

Characterizing ASE profiles: tissue-independent, tissue-

dependent, and context-dependent

We sorted both classes of ASE genes into three expression pro-
files. Tissue-independent genes had a significant bias in every ex-
pressed tissue. Within a tissue, the gene must be biased in five or
more of the nine environmental contexts (i.e., most, but not all,
contexts). This flexibility allowed for genes that may have true
ASE but were excluded because of our conservative sample size re-
quirements; these genes could appear as biallelic because they
still passed our other filtering thresholds. Tissue-dependent genes
had a significant bias in some tissues and no bias in others. The
gene must be biased in more than five of the nine contexts in
one or two tissues, but biallelic in more than five of the nine con-
texts in the other tissue(s). Both profiles allowed for genes to not
be expressed in some tissues, because we wanted to distinguish
between tissue-specific gene expression and tissue-dependent
ASE. Finally, context-dependent genes had a significant bias
only in certain environmental contexts and no bias elsewhere.
The gene must be biased in five or more of the nine contexts
within a tissue, but biallelic in the other contexts and/or tissues.
All significant ASE genes fit into one of these expression profiles;
no genes were unclassified.

Evaluating environmental context dependency

For each context-dependent gene, we calculated each sample’s al-
lelic bias as the proportion of total read counts with the LG/J hap-
lotype (Lbias) or the SM/J haplotype (Sbias). We constructed
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individualized POE or AGE scores per sample per gene as follows:

Individual POE = mean(SxL Lbias)− Lbias, cross = LxS
Lbias −mean(LxS Lbias), cross = SxL

{
,

Individual AGE =
(Lbias +mean(SxL Lbias))− (Sbias +mean(SxL Sbias))

2
, cross = LxS

(mean(LxS Lbias)+ Lbias)− (mean(LxS Sbias)+ Sbias)
2

, cross = SxL
.

⎧⎪⎨
⎪⎩

POE scores ranged from −1 (completely maternal) to +1
(completely paternal); AGE scores ranged from −1 (completely
SM/J) to +1 (completely LG/J). Scores of 0 indicated biallelic ex-
pression or not expressed.

Next, we used ANOVA models to test whether a gene’s allelic
biases (individualized scores) were influenced by sex, diet, and/or
their interaction. We considered FDR-corrected P-values≤0.1 to
be significant (Supplemental Table S5). For genes with significant
diet-by-sex interactions, we conducted Tukey’s post hoc tests to
identify significant differences among diet-by-sex cohorts (adjust-
ed P≤0.05) (Supplemental Table S6).

Chromosomal location enrichment

We performed overrepresentation analysis for chromosomal loca-
tions with the WEB-based GEne SeT AnaLysis Toolkit v2019 (Liao
et al. 2019). For each tissue-by-context analysis, we analyzed the
list of genes with significant biases against the background of all
genes with detectable ASE. A Benjamini–Hochberg FDR-corrected
P-value≤0.1 was considered significant.

Canonically imprinted genes

We defined genes as “canonically imprinted” if they appeared in
the Geneimprint mouse database (https://www.geneimprint
.com, as ofMay 2020) and/or a PubMed searchwith imprinting-re-
lated terms.

Pyrosequencing

We validated two to three examples of each expression profile (to-
tal = 13 genes). We sorted genes in each profile by total expression
level. To minimize noise during pyrosequencing, we prioritized
genes that were highly expressed and statistically significant (for
context-dependent examples), but excluded those with high ex-
pression variance between biological replicates. For each gene,
we identified the strain-specific SNPs within exons and designed
primer sets to flank the variants using Geneious Prime 2020.0.4
(https://www.geneious.com) (Kearse et al. 2012). Wherever possi-
ble, target regions were 150- to 200-bp long and spanned an
exon–exon junction to avoid genomic DNA contamination. We
verified the specificity of each primer set in silico with Geneious
and in vitro with PCR and Sanger sequencing. All primer sequenc-
es are provided in Supplemental Table S9.

We extracted total RNA from the HYP, WAT, and LIV of one
mouse per F1 cross in each diet-by-sex cohort using the RNeasy
Lipid Tissue Mini Kit (QIAGEN). The cDNA of each gene target
was reverse transcribed and PCR amplified with the PyroMark
OneStep RT-PCR Kit (QIAGEN) using one biotinylated (reverse)
and one nonbiotinylated (forward) primer. The biotinylated
single-stranded PCR products were purified with Streptavidin
Sepharose High Performance beads (Cytiva) and hybridized to se-
quencing primers (same as forward) on the PyroMarkVacuumPrep
Workstation (QIAGEN). Finally, we performed pyrosequencing
with the allele quantification program on the PyroMark Q24 sys-
tem (QIAGEN). The PyroMark Q24 software quantified the allelic
ratio of the variable position(s) in each gene’s assay. We calculated
the mean allelic ratios of each variant in each tissue-by-context
cohort.

Integrating ASE and QTL data

The genotypes, phenotypes, and QTL mapping methods for the
LG/J x SM/J advanced intercross line are described elsewhere
(Lawson et al. 2010, 2011b; Cheverud et al. 2011; Gonzales et al.
2018; Cordero et al. 2019). The F16 QTL were originally mapped
to the NCBI37/mm9 reference genome, so we converted those
intervals to their GRCm38/mm10 coordinates with the UCSC
Genome Browser’s liftOver tool (https://genome.ucsc.edu) (Lee
et al. 2022). We also extracted the ASE gene positions from the
GRCm38/mm10 assembly annotation.

We analyzed the two ASE classes separately: sequence-depen-
dent ASE genes were intersected with F16 and F50–56 additive QTL,
and parent-of-origin-dependent ASE genes were intersected with
F16 imprinting QTL (Supplemental Table S7). We counted how
many ASE genes overlapped with each QTL using BEDTools
v.2.27.1.We sorted each AIL generation’s QTL based on their asso-
ciated trait category and compared those trait-specific QTL sets
with the tissue-specific ASE gene sets. Next, we conducted enrich-
ment analyses to determine whether ASE genes are overrepresent-
ed in AIL QTLs. We randomly shuffled the QTL windows around
the genome and tallied how many ASE genes overlapped with re-
gions of those lengths by chance. These permutations were repeat-
ed more than 10,000 iterations to establish a null model. We
calculated a Z-score based on the null model and the real ASE/
QTL overlap, then sampled a normal distribution to obtain a P-val-
ue. We considered P-values≤0.05 to be significantly enriched.
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