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Inflammatory bowel disease (IBD) is a group of multifactorial and inflammatory infirmities
comprised of two main entities: Ulcerative colitis (UC) and Crohn’s disease (CD). Classic
strategies to treat IBD are focused on decreasing inflammation besides inducing and
extending disease remission. However, these approaches have several limitations such
as low responsiveness, excessive immunosuppression, and refractoriness. Despite the
multifactorial causality of IBD, immune disturbances and intestinal dysbiosis have been
suggested as the central players in disease pathogenesis. Hence, therapies aiming
at modulating intestinal microbial composition may represent a promising strategy in
IBD control. Fecal microbiota transplantation (FMT) and probiotics have been explored
as promising candidates to reestablish microbial balance in several immune-mediated
diseases such as IBD. These microbial-based therapies have demonstrated the ability
to reduce both the dysbiotic environment and production of inflammatory mediators,
thus inducing remission, especially in UC. Despite these promising results, there is still
no consensus on the relevance of such treatments in IBD as a potential clinical strategy.
Thus, this review aims to critically review and describe the use of FMT and probiotics to
treat patients with IBD.

Keywords: fecal microbiota transplantation, probiotics, Crohn’s disease, Ulcerative colitis, dysbiosis

INTRODUCTION

Inflammatory Bowel Disease (IBD) is a group of immune-mediated diseases mainly represented
by Ulcerative colitis (UC) and Crohn’s disease (CD) (Mao et al., 2018). IBD presents a
multifactorial etiology driven by immunological disturbances, genetic alterations and the
influence of environmental factors such as diet, lifestyle, socioeconomic development, intestinal
dysbiotic microbiota, among other aspects (Basso et al., 2014). Current therapies are based on
pharmacological approaches using traditional medicines such as aminosalicylates, corticosteroids,
thiopurines, folic acid antagonists, or biological therapies, aiming at controlling inflammation
besides reducing disease relapse (Sales-Campos et al., 2015). However, these approaches are not
curative, and patients may become refractory or intolerant to them. In this context, therapies
aiming at modulating the microbes inhabiting the human body, especially the intestine, have been
suggested as one of the most promising strategies to treat immune-mediated diseases such as IBD
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(Ott et al., 2004; Alipour et al., 2016). This is of particular interest
because recent investigations demonstrate that conventional
treatments fail to completely restore the normal microbiota of
patients with IBD, even if associated with special diets (Lewis
et al., 2015). Though we understand the importance of other
microbial interventions using symbiotics and prebiotics, for
example, this review will focus on the human studies using fecal
microbiota transplantation (FMT) and probiotics as strategies to
restore the normal microbiota in IBD patients.

INTESTINAL MICROBIOTA

Before addressing the role of FMT and probiotics in IBD, it is
important to introduce how the intestinal microbiota is able to
interact with the vertebrate host, thus influencing health and
disease status. Despite the great distribution of microorganisms
in different sites of the human body, the most diverse microbial
species is found in the gastrointestinal tract (GIT) (Hooper and
Gordon, 2001; Hooper et al., 2001). More than 1000 microbial
species, including bacteria, virus, and fungal, were identified in
the human GIT (Turnbaugh et al., 2007). These commensal
and symbiotic communities of microorganisms, also known as
microbiota, are able to directly or indirectly influence local
and systemic physiology of the human body, including but not
limited to the immunologic, endocrine, and nervous systems (Lei
et al., 2015). The composition of gut microbiota, in turn, can be
influenced by different aspects such as diet, xenobiotics, lifestyle,
and genetics (Goodrich et al., 2014; Wen and Duffy, 2017). Thus,
it is reasonable to assume the great impact that perturbations in
the complex bidirectional relationship between vertebrate hosts
and gut microbes may have on host physiology. Further, this
complex interaction can also lead to the onset and maintenance
of several diseases, including IBD (Eck et al., 2017). Though gut
microbiota is colonized by different microorganisms (bacteria,
fungi, archaea, and viruses), the term “microbiota” is often used
to refer to bacterial species within the GIT, which represents
more than 96% of the total microbial population (Turnbaugh
et al., 2007). However, fungal and viral dysbiosis have also been
implicated in IBD development (Lewis et al., 2015; Duerkop et al.,
2018).

To limit inappropriate activation in surfaces with great contact
with microbes, like GIT, the human body has developed chemical
and physical barriers to anatomically separate the microbiota
from immune cells (Hooper et al., 2012). However, this interface
is not insurmountable and some commensal microorganisms
are able to interact with the immune, endocrine and nervous
systems (Cani and Knauf, 2016). So far, two hypotheses
were proposed to clarify the mechanisms concerning this
interplay: the presence of pattern recognition receptors (PRR)
in host cells sensing microbial associated molecular patterns
(MAMPs)/danger associated molecular patterns (DAMPS), and
the activity of microbial metabolites over different mammalian
biological systems (Castro et al., 2015; Rangan et al., 2016).
In this context, it is possible to highlight the beneficial
role of the polysaccharide A of Bacteroides fragilis, which is
able to stimulate the differentiation and activity of regulatory

T cells (Treg) in the gut (Donaldson et al., 2016). The
presence of Tregs in intestine is of great contribution to
the maintenance of a tolerant environment, thus avoiding
unnecessary inflammation (Hoeppli et al., 2018). Further, the
production of immunoglobulin A (IgA) by intestinal plasma
cells, which is crucial for the protection against pathobionts
in intestine, is positively influenced by epithelium-associated
bacteria such as Mucispirillum and segmented filamentous
bacteria (SFB) (Bunker et al., 2015). One of the most studied
groups of microbiota-derived metabolites with protective effects
toward the mammalian host is the short chain fatty acids (SCFAs)
that are mainly derived from fermentation of dietary fibers (Rios-
Covian et al., 2016). SCFAs are primarily represented by three
compounds acetate, propionate and butyrate, which contribute to
the integrity of intestinal epithelium besides directly influencing
host metabolic and immune functions (van de Wouw et al.,
2018).

INTESTINAL DYSBIOSIS IN THE
PATHOGENESIS OF IBD

Dysbiosis has been explored as a causative agent of several
systemic and local diseases affecting GIT, including UC
and CD (Kostic et al., 2014). The gut microbial changes
in IBD are summarized in Table 1. In comparison to
healthy subjects, IBD patients have reduced microbial
composition (up to 25%), diversity, and richness with increased
numbers of pathogenic/pathobionts microorganisms (e.g.,
Proteobacteria, Fusobacteria species, and Ruminococcus
gnavus – Firmicutes) (Frank et al., 2007), and decreased
numbers of beneficial microorganisms such as Lachnospiraceae

TABLE 1 | Changes in gut microbiota composition in inflammatory bowel disease
patients.

Microorganism (s) Commensal (C) or
pathogenic (P)

microorganisms∗

UC DC

Verrucomicrobia C ↓ ↓

Bifidobacterium C ↓ ↓

Roseburia species C ↓ ?

Bacteroides C ↓↑ ↑

Firmicutes C ↓ ↓

Clostridium species
(clusters IV and XIVa

C ↓ ↓↑

Saccharomyces
cerevisiae

C ↓ ↓

Pseudomonas P ↓ ↓

Proteobacteria P ↑ ↑

Fusobacterium P ↑ ↑

Ruminococcus gnavus P ↑ ↑

Candida albicans P ↑ ↑

CD, Crohn’s disease; UC, Ulcerative colitis. ∗Most of the species. References
(Gophna et al., 2006; Frank et al., 2007; Kaakoush et al., 2012; Machiels et al.,
2014; Lewis et al., 2015; Tahara et al., 2015; Shah et al., 2016; Sokol et al., 2017;
Vrakas et al., 2017).
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(Firmicutes), Bifidobacterium species (Actinobacteria), Roseburia
(Firmicutes), Sutterella (Proteobacteria) (Gilbert et al., 2016),
and Faecalibacterium prausnitzii (Firmicutes), which are at
least 10-fold reduced in IBD (Xiao et al., 2015). To note,
F. prausnitzii has been suggested as one of the major microbial
components of human healthy intestinal microbiota representing
almost 5% of the total bacterial population (Louis and Flint,
2009). This bacterium contributes to the maintenance of a
regulatory environment in intestine through the production
of butyrate, besides providing energy to colonocytes (Sokol
et al., 2008). The observation that intestinal microbes cooperate
to the maintenance of epithelial integrity in intestine is of
great importance since these mechanisms are frequently
disrupted in IBD. One of the theories to explain the occurrence
of dysbiosis in IBD relies on the inflammation. Results
from both experimental and clinical investigations associate
inflammatory responses and perturbations in microbial
composition in ileum and other intestinal areas to the
development of dysbiosis (Gevers et al., 2014; Forbes et al.,
2016). On the other hand, a less dysbiotic environment is
observed in non-affected areas of diseased subjects (Forbes et al.,
2016).

There is evidence suggesting dysbiosis as a cause of
IBD. Environmental factors, which directly affects intestinal
microbiota composition, have been pointed out as one of the
key players in the pathogenesis of IBD. In this regard, early
life exposure to breastfeeding and maternal smoking during
pregnancy, have been inversely and positively correlated to
disease outcome in CD, respectively (Lindoso et al., 2018).
Accordingly, patients with UC (Elinav et al., 2011) tend to have a
better outcome when treated with microbial-based therapies (i.e.,
antibiotics, FMT, and probiotics). The mechanisms concerning
the influence of dysbiosis in IBD outcome are still a matter of
debate and investigation. Some studies suggest the association
between the development of inflammation and the presence of
some specific bacteria species. The reduction in strict anaerobes
(e.g., Clostridium groups IV and XIVa), along with the expansion
of facultative aerobic or aerobic bacteria, may increase the local
concentration of oxygen, thus leading to augmented vascular and
mucosal permeability, and promoting intestinal inflammation
(Albenberg et al., 2014). Different strains of Clostridium species
(e.g., IV, XIVa, and XVIII), which lack toxins and virulence
factors, have their immunosuppressive activity demonstrated
by inducing Treg cells in intestine in a TGF-β-, IL-10- or
butyrate-dependent manner (Atarashi et al., 2013; Furusawa
et al., 2013). These data suggest that microbial imbalance in
IBD favors the development of inflammation by reducing crucial
anti-inflammatory players, besides favoring the onset of pro-
inflammatory mechanisms. On the other hand, inflammation
per se also contributes to the onset of a dysbiotic environment.
Regardless if inflammation leads to dysbiosis or vice-versa, they
have a strong synergistic interaction that must be targeted
to develop improved therapeutic strategies. For this reason,
therapies aiming at reestablishing the microbial balance may
represent the next frontier to treat inflammatory disorders, such
as IBD, in which the dysbiosis plays a central role in disease
pathogenesis.

FECAL MICROBIOTA
TRANSPLANTATION (FMT)

Fecal microbiota transplantation has long been used to treat
recurrent Clostridium difficile infection (CDI) presenting great
effectiveness and significant safeness, with cure rates reaching
90% (Khan et al., 2018). One of the main mechanisms proposed
to explain the ability of FMT to treat CDI is attributed to its
capacity to restore intestinal microbial balance (Gagliardi et al.,
2018). This characteristic has expanded the use of FMT to treat
both local and systemic illnesses associated with gut dysbiosis,
such as irritable bowel syndrome (IBS) (Mizuno et al., 2017),
IBD (Angelberger et al., 2013; Kunde et al., 2013) and metabolic
syndrome (Vrieze et al., 2012).

Because of the importance of elucidating how microbiota
donors are selected and how FMT is delivered to recipients,
these aspects will be clarified first. Then, we are going to present
and discuss the most important scientific studies regarding the
therapeutic use of FMT in IBD (Table 2).

FMT Donor Screening and Routes of
Administration
Several aspects must be considered in the search for microbiota
donors. Prior to the gut microbial sequencing per se, a putative
donor must be screened for the presence of infectious agents in
feces, including C. difficile, intestinal parasites and virus (e.g.,
Norovirus) (Paramsothy et al., 2015). In blood, aside from the
complete blood count, electrolytes, liver, and kidney function
tests, the presence of inflammatory markers, and transmissible
infectious agents such as HIV, Hepatitis, HTLV, among others,
must be performed (Paramsothy et al., 2015). Further, as
inclusion criteria, the donor must have no history of suggestive
GIT disease, no other major active comorbidities, and preferably,
no use of medications, especially, antimicrobials (Paramsothy
et al., 2015; Holleran et al., 2018). To ensure that only healthy
donors will be selected, additional criteria of exclusion must be
used as follows: any family history of colorectal cancer affecting
first-degree relatives; use of probiotics 3 months prior the
donation period; household members with active GIT infections;
any personal or familial history of malignancies, malnutrition,
obesity, neurological, or developmental disorders (Paramsothy
et al., 2015; Holleran et al., 2018). The difficulties to select FMT
donors that fulfills all the stringency criteria along with the costs
involved in the screening process have created some important
barriers for the broader utilization of this microbial therapeutic
approach. Unfortunately, this scenario has stimulated patients
to perform FMT in a “homemade” fashion, using inappropriate
screened donors, without medical supervision, which often result
in serious complications (Hohmann et al., 2014).

For a long time, retention enema was the most used technique
for FMT. However, alternative approaches have been used in
this regard, including nasogastric tube, capsules, colonoscopy,
and self-administered enemas, as previously reviewed (Allegretti
et al., 2017). Colonoscopy and retention enema are by far, the
most frequently used routes of FMT administration (Gough et al.,
2011).
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TABLE 2 | Clinical trials of fecal microbiota transplantation for inflammatory bowel disease.

Authors Diagnosis Number of patients
(P) or studies (S)

∗#
FMT route Therapeutic regimen& Outcome

Paramsothy
et al. (2017b)

UC n = 41 (S) N.A N.A 33% of clinical remission

CD n = 11 (S) N.A N.A 52% of clinical remission

Moayyedi et al.
(2015)

UC n = 70 (P) Enema 50 g offeces/300 mL of
water; once weekly for 6
weeks

24% of clinical remission

Paramsothy
et al. (2017a)

UC n = 85 (P) Enema 150 mL$; once a day,
5 days per week for
8 weeks

27% of clinical and endoscopic
remission or response

Rossen et al.
(2015)

UC n = 50 (P) Naso-duodenal tube 60 g of feces/500 mL of
saline; two doses (days 0
and 21)

No statistical difference between
control and treated patients

Vaughn et al.
(2016)

CD n = 19 (P) Colonoscopy 50 g of feces/250 mL of
saline; one dose

58% of clinical response (control
group not included)

Cui et al. (2015) CD n = 30 (P) Endoscopy 150–200 mL$; one dose 86.7 and 76.7% of clinical
improvement and remission,
respectively at week 4

Suskind et al.
(2015)

CD n = 9 (P) Nasogastric tube 30 g of feces/100 or
200 mL of saline; one dose

77.77% of clinical remission at
week 2 55.55% of clinical remission
at weeks 6 and 12

CD, Crohn’s disease; N.A, Not applicable; UC, Ulcerative colitis. *Both total number of patients for clinical trials and number of studies for systematic analysis or meta-
analysis were included. # Includes the number of control patients. &Feces may have undergone additional steps for FMT samples preparation. $ Initial solution concentration
is not available.

FMT in IBD
Ulcerative colitis and Crohn’s disease are the major entities
represented by IBD. The role of FMT has been more explored in
the former. From the 307 adult patients pooled in a meta-analysis
from 24 UC cohort studies, FMT induced remission in 33%.
In 6 pediatric cohort studies, totalizing 34 UC patients, clinical
remission was slightly reduced to 23% (Paramsothy et al., 2017b).
Three randomized controlled trials also presented promising
results regarding the use of FMT to treat UC. From a total of
70 UC patients with active disease without infectious diarrhea
enrolled in the study, 36 were treated with FMT, and 34 with
placebo, once a week for a total of 6 weeks, and remission was
induced in 24% of those treated with FMT compared to 5% in the
placebo group (Moayyedi et al., 2015). It is important to mention
that both placebo and FMT groups were under concomitant anti-
inflammatory/immunosuppressive therapy (e.g,. corticosteroids,
mesalamine, and anti-TNF therapy) while enrolled in the study
(Moayyedi et al., 2015). Similar results were observed using
enemas 5 days per week for 8 weeks, in a study in Australia
that observed a remission rate of 27% in UC patients with
active UC treated with FMT when compared to 8% in patients
treated with placebo only (Paramsothy et al., 2017a). Regardless
if patients had received FMT or not, they were also treated
with immunosuppressive drugs such as 5-aminosalicylates,
thiopurines, methotrexate, and/or oral prednisone, in a stable
dose (Paramsothy et al., 2017a). On the other hand, the remission
rates observed in UC patients treated with FMT from healthy
donors were similar to those observed in UC patients receiving
their own fecal microbiota (Rossen et al., 2015).

Unfortunately, data supporting the role of FMT in CD are
scarcer than in UC, and so far, no results from randomized

clinical trials are available. The evidence of the beneficial effects
of FMT in CD are all derived from small and uncontrolled
studies. A single dose of FMT performed by colonoscopy
showed an improvement in clinical outcome of 58% of patients
treated with FMT (Vaughn et al., 2016). This observation was
followed by increased levels of Tregs in recipients’ lamina propria
followed by higher microbial diversity (Vaughn et al., 2016),
which suggests a reestablishment of microbial balance and a less
prominent inflammation. Similarly, a single treatment with FMT
induced clinical improvement and remission based on clinical
activity in CD patients (Cui et al., 2015). This amelioration
was followed by increased patient’s body weight after FMT
(Cui et al., 2015). For all CD-patients enrolled in the study
a 12-week washout period was required for those exposed to
immunosuppressive therapies such as cyclosporine, tacrolimus,
or infliximab. Antibiotics and probiotics were withdrawn 60 and
30 days before FMT, respectively (Vaughn et al., 2016). The
beneficial role of FMT was also addressed in young patients
with CD. Nine individuals, aged 12–19 years, presenting mild-
to-moderate symptoms received FMT by nasogastric tube once
and were followed by 12 weeks (Suskind et al., 2015). Based
on the clinical score, 2 weeks after FMT, 7 of 9 patients
were in remission, and 5 of 9 patients were in remission at
6 and 12 weeks after FMT. All patients enrolled in the study
were allowed to receive immunomodulators during the FMT or
placebo treatment (Suskind et al., 2015).

Limitations in FMT Studies
The studies presented here showed promising results regarding
the use of FMT to induce remission in UC and to a less
extent in CD patients. The differences in the route and
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interval of administration, besides of the composition and
bacterial load in FMT, may explain the dissimilarities observed
among studies. Another important drawback is the lack of
comprehensive guidelines to be used globally in the screening
and standardization of putative microbiota donors (age,
gender, and health status) along with strategies of production,
dosage regimen and to evaluate the transplant engraftment.
Further, probably because of economic reasons, clinical trials
do not deeply investigate the microbial composition of fecal
donors using 16S rRNA sequencing and their similarities
to the recipients’ microbiota. Thus, the observation of
similarities between the intestinal microbiota composition
of donors and recipients may dictate the successfulness of
FMT engraftment. Without the proper identification of the
microbial community and the total bacterial load transplanted
from a healthy donor to a diseased subject, it is difficult
to predict the impact of FMT in IBD or other disorders.
Further, as the majority of clinical trials were conducted
with concomitant use of immunomodulatory drugs, it is
reasonable to assume that FMT may work better as an
adjuvant therapy rather than an isolated strategy. To confirm
the role of FMT in IBD, more controlled clinical trials with
a great number of patients and more standardized fecal
samples must be conducted. Additionally, strategies aiming at
providing an intestinal microbiota rebalance using well-defined
microbial species may represent an improved alternative to total
FMT.

FMT Adverse Effects
In general, up to 10% of FMT recipients present minor to
mild self-limited adverse effects. The majority of them are
related to disturbances in GIT such as diarrhea and abdominal
discomfort/pain (Hohmann et al., 2014; Baxter and Colville,
2016). Though less frequently observed, severe side effects can
include IBD flares, CDI and other infections, colectomy, small
bowel obstruction, pancreatitis, and even death, as recently
reviewed (Qazi et al., 2017; Jeon et al., 2018). However, some
evidences have shown no differences between FMT and control
groups concerning the occurrence of undesirable effects (Narula
et al., 2017). Despite the possibility of occurrence of adverse
effects, FMT is considered to be safe in IBD. An in-depth
screening of donors along with a broader comprehension of
the physiopathology in IBD may facilitate the development
of strategies to avoid the occurrence of such undesirable
effects.

PROBIOTICS

Probiotics are used as safe food additives, pharmaceutical
formulations or nutritional supplements defined as “live
microorganisms which, when administered in adequate amounts,
confer a health benefit on the host” by the World Health
Organization (WHO) (Hill et al., 2014). Nevertheless, studies
have pointed out that dead microorganisms or their biologically
active compounds per se can also play protective functions,
inferring that the “probiotic” definition should be revisited

or other classifications implemented (Rachmilewitz et al.,
2004).

The underlying mechanisms of probiotics are dependent on
microbial strain. Moreover, the effects of probiotic mixtures
may be complementary (also referred to additive) or synergistic
(Ruiz et al., 2009). In general, probiotic strains produce growth
factors that strengthen the gut epithelium and antimicrobial
substances (e.g., SCFAs, bacteriocins, hydroperoxides, bile acids,
and lactic acids) that kill harmful microorganisms (Konieczna
et al., 2012a). As a consequence, cellular components (e.g.,
cellular wall, DNA) are released in the gut environment, which
activate immune responses by enhancing the pro-inflammatory
cytokines production and immunoglobulin synthesis, besides of
improving macrophage and lymphocytes activity (Markowiak
and Slizewska, 2017). In this regard, the use of Bifidobacterium
infantis 35624 in human volunteers increased the amount of
IL-10 and FoxP3+ cells (Treg) in the circulation (Haskard
et al., 2001; Konieczna et al., 2012b). Although immune
tolerance is a putative consequence of these enhancements,
there is still no consensus on this matter (Castellazzi et al.,
2013).

Non-immunological benefits associated to probiotics include
the digestion and absorption processes, competition with
potential pathogens for nutrients and intestinal adhesion sites,
pH alterations, agglutination of pathogenic microorganisms,
and sequestration of metabolic toxins (Gagliardi et al., 2018).
Animal models and in vitro assays describe that probiotics
also decrease the apoptosis, increase the mucus synthesis, tissue
repair, redistribution and production of tight junctions in gut
epithelial cells, thus reducing the intestinal permeability and
enhancing the barrier protection and function (Caballero-Franco
et al., 2007; Zyrek et al., 2007).

Lactobacillus (e.g., reuteri, rhamnosus, casei, acidophilus,
plantarum, gasseri, paracasei, johnsonii, ghallinarum, and
crispatus) and Bifidobacterium (e.g., bifidum, infantis, longum,
animalis, breve, lactis, and adolescentis) are the most used
strains in probiotics formulations, but multispecies approach
has been increasingly applied (Holzapfel et al., 2001). Others
strains commonly used include Streptococcus spp., Lactococcus
spp., Enterococcus spp., non-pathogenic Escherichia coli (strain
Nissle), and Clostridium ssp (Kechagia et al., 2013).

New bacteria genera and species have also been investigated
showing good perspectives in preclinical trials. These bacteria
are described as new-generation probiotics bringing more
complexity to common probiotics in attempt to simulate FMT
treatments. The new-generation probiotics comprise Clostridium
clusters IV, XIVa, and XVIII, F. prausnitzii, Akkermansia
muciniphila, Bacteroides uniformis, B. fragilis, and Eubacterium
hallii (El Hage et al., 2017). Technological limitations are current
challenges for using these bacteria as probiotics. Importantly,
Clostridium clusters XIVa and IV are described as promoters of
Treg differentiation, critical for immune tolerance as described
earlier (Atarashi et al., 2011). Indeed, these bacteria are decreased
in the gut of IBD patients (Sokol et al., 2006; Kang et al., 2010;
Machiels et al., 2014). Although the number of Tregs is increased
in the gut of IBD patients, the expansion is not sufficient to
restrain the inflammatory development.
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Since gut microbiota is not composed only by bacteria, some
formulations and studies use yeasts as probiotics in association
with bacteria strains, or even in single-drug formulations. In
this context, Saccharomyces boulardii is the most commonly
used yeast strain and has several anti-inflammatory properties
(Pothoulakis, 2009).

Criteria for New Probiotic Development
As pharmaceutical or nutraceutical products, probiotics must
meet some criteria to be commercially available. Beyond efficacy,
the safety properties of a given drug are the main concern of
scientists and regulatory agencies (Doron and Snydman, 2015).
Bacterial and yeast strains or their derived-products have distinct
levels of regulations according to their purposes and must meet
the requirements outlined in published and frequently updated
guidelines designed by regulatory agencies (Doron and Snydman,
2015). They can be considered as food (food ingredient, medical
food, and dietary supplement), drug (new drugs) or biological
product (Degnan, 2008).

As in FMT, safety is a priority, since some inflammatory
conditions or patients under immunosuppressive therapy
increase the susceptibility to infectious complications, including
sepsis (Farina et al., 2001; Riquelme et al., 2003). Probiotics
must have human origin, scientifically proven positive effects,
be safe even in high-risk populations, cannot cause allergies and
must present good technology properties (e.g., feasible culture
and large-scale production) (Markowiak and Slizewska, 2017).
Several in vitro assays may be employed at the first glance to
evaluate probiotic potential, epithelium adherence, microbicide
activity, ability in reducing the number of pathogenic bacteria
and resistance to antibiotic use, bile salts, stomach acids, digestive
enzymes and pH (Saarela et al., 2000).

Although not mandatory, studies should also evaluate the
adverse effects and drug interactions of probiotics since they
have been used as adjuvant therapy in various diseases
(Thomsen et al., 2018). For instance, the probiotic E. coli strain
Nissle 1917 influences the pharmacokinetics of concomitantly
taken antiarrhythmic drug amiodarone by increasing the
drug bioavailability (Matuskova et al., 2014). Therefore, their
presumed safety should be avoided, and the potential risks not
neglected.

Probiotics in IBD
In general, probiotics have been effectively used in treating IBD
to prevent dysbiosis in patients undergoing prolonged antibiotic
or immunosuppressive therapies (Zuo and Ng, 2018). Further,
these microorganisms have been used as adjuvant therapy on
the attempt to reverse the dysbiotic environment associated
with IBD onset and worsening (Yoshimatsu et al., 2015; Tamaki
et al., 2016). Although the number of clinical and experimental
studies using probiotics in IBD is substantially high, lack of
standard practices in therapeutic regimens, low number of
samples and poor disease characterization, have limited the
relevant conclusions about the efficacy of probiotics in this
scenario.

Probiotics have been described as an alternative to induce
and maintain the remission in UC, while low or no effects

are observed in CD. The adjuvant use of multispecies
probiotic VSL#3, which contains four strains of Lactobacillus
(L. casei, L. plantarum, L. acidophilus and L. delbrueckii subsp.
Bulgaricus), three of Bifidobacterium (B. longum, B. breve,
and B. infantis), and one of Streptococcus (S. salivarius
subsp. Thermophilus), improved the clinical symptoms in
patients with mild to moderately active UC after receiving
the daily dose of 3.6 × 1012 CFU (Tursi et al., 2010;
Mardini and Grigorian, 2014). Corroborating results were
observed after treating mild-to-moderate UC patients with
VSL#3 alone, twice a day at the same dose described
earlier (Sood et al., 2009). The maintenance of remission
rates in UC was also similar in patients under single drug
treatment of either non-pathogenic E. coli Nissle 1917 (5–
50 × 109/day) or mesalazine (1500 mg/day) (Kruis et al.,
2004).

However, the systematic review using rigorous statistical
methods showed that the beneficial effects of both VSL#3 or
E. coli Nissle on UC are weak or inconclusive, while there is no
positive association in CD (Jonkers et al., 2012), confirming the
need for further new randomized controlled trials to increase the
significance level of these findings.

The use of Bifidobacterium-fermented milk (containing
B. breve, B. bifidum, and L. acidophilus) as adjuvant therapy
to treat 20 patients (including placebo control) with mild
to moderately active UC, showed significant improvement in
both clinical and endoscopic activity indexes after 12 weeks
(10 billion bacteria/day) (Kato et al., 2004). Interestingly, the
SCFAs concentration in feces was higher in the probiotic-
treated group compared to the placebo group. However, a
recent study using a similar therapeutic strategy (B. breve- and
L. acidophilus-containing fermented milk) showed no efficacy
to treat or maintain the remission of UC in 195 patients
(Matsuoka et al., 2018). In fact, the use of B. bifidum as single
strain-containing probiotic was sufficient to increase the levels
of fecal SCFAs in healthy volunteers (Gargari et al., 2016),
however, the protective role in UC or CD remains unknown.
Despite some discrepancies regarding the number of patients
used in the studies mentioned above, the first was the only
one to confirm the increased number of Bifidobacteria in the
feces of probiotics-treated patients and to perform endoscopic
analysis.

The treatment with Lactobacillus GG (18 × 109 viable
bacteria/day) alone or associated with mesalazine, prolonged the
relapse-free period in UC patients compared to the group treated
with immunosuppressant drug alone in a 12-month treatment
regimen (Zocco et al., 2006). Similarly, a systematic review of
randomized clinical trials showed the use of different lactic acid
bacteria and Bifidobacteria as adjuvant therapy improved the
course of disease and maintenance of clinical remission in UC
(Saez-Lara et al., 2015).

As stated above, probiotics have poor or no effects on CD.
However, studies have yielded positive results to induce remission
by associating probiotics and prebiotics (defined as symbiotics)
(Fujimori et al., 2007; Saez-Lara et al., 2015). Additionally, one
open-label pilot study containing four children with mildly to
moderately active CD had a significant improvement on clinical
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TABLE 3 | Effective clinical trials using probiotics for treating inflammatory bowel disease.

Authors Diagnosis Number of patients
(P) or studies (S)

∗#
Probiotic Therapeutic regimen Outcome

Mardini and
Grigorian, 2014

UC n = 5 (S) n = 441 (P) VSL#3& Oral; 3.6 × 1012 CFU/day$ 53.4% of clinical responsiveness
and 43.8% of clinical remission

Tursi et al.,
2010

UC n = 144 (P) VSL#3& Oral; 3.6 × 1012 CFU/day;
once a day for 8 weeks

53.4% of clinical improvement and
47.3% of clinical remission

Sood et al.,
2009

UC n = 147 (P) VSL#3& Oral; 3.6 × 1012 CFU/dose;
twice a day for 12 weeks

51.9% of clinical improvement and
42.9% of clinical remission at
12 weeks

Kruis et al.,
2004

UC n = 327 (P) Escheria coli Nissle 1917 Oral; 5–50 × 109 viables
bacteria; once a day for
12 months

No differences between probiotic-
and mesalazine-treated groups

Kato et al.,
2004

UC n = 20 (P) Fermented milk (B. breve,
B. bifidum and
L. acidophilus)

Oral; 109 bacteria/day;
once a day for 12 weeks

70% of clinical responsiveness and
40% of clinical remission

Zocco et al.,
2006

UC n = 187 (P) Lactobacillus GG Oral; 9 × 109 viable
bacteria/dose; twice a day
for 12 months

No differences between probiotic-
and mesalazine-treated groups

Fujimori et al.,
2007

CD n = 10 (P) B. breve, L. asei and
B. longum

Oral; 75 × 109

bacteria/day; once a day
for 13 (±4.5) months

70% of clinical responsiveness and
60% of clinical remission

Gupta et al.,
2000

CD n = 4 (P) Lactobacillus GG Oral; 1010 CFU/dose; twice
a day for 6 months

75% of clinical improvement at
weeks 4 and 12

CD, Crohn’s disease; UC: Ulcerative colitis. *Both total number of patients for clinical trials and number of studies for systematic analysis or meta-analysis were included.
# Includes the number of control patients. &VSL#3 is composed by L. casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis
and Streptococcus sulivarius subsp. thermophiles. $Length of treatments not available.

aspects after treatment with Lactobacillus GG (1010 CFU/tablet,
twice a day for 6 months) (Gupta et al., 2000). However, the
low number of samples and the absence of appropriate control
(placebo-treated patients or under regular therapy) undermine
the rigor of study. Probiotics have no effects in maintaining
the remission of CD (Bousvaros et al., 2005; Bourreille et al.,
2013).

In conclusion, probiotics are potential options in inducing
and maintaining remission of mild to moderately UC,
however, seem to be ineffective in DC (Table 3). The results
must be considered as preliminary evidence and further
randomized double-blind placebo-controlled multicenter
trials must be performed to increase the reliability of
results.

Limitations on Probiotics Studies
Different therapeutic regimen (including dose and frequency of
administration) is an important problem to design treatment
protocols. Although doses vary according to bacterial strains,
studies have shown that 108–1010 CFU/day are ingested after
consuming 100 mL or 100 g of probiotic-containing product
(Atarashi et al., 2011). As a consequence, meta-analysis studies
have several biases to compare related clinical trials and to draw
relevant conclusions.

Unlike FMT therapy, the route of administration is not a
potential problem, since the majority of studies use the oral route
as the main one, although enemas are also a potential method of
probiotic delivery (Oliva et al., 2012).

Another important issue regarding probiotics formulations is
the quality control. Several inconsistent data have been described

between label information and product content, contamination,
poor quality of strains, among others, as previously reviewed
(Kolacek et al., 2017). Moreover, the same strain may show
different efficacy in distinct batches as a result of a lack of
standardization in bacterial culture procedures used throughout
the studies and manufactures. Thus, both guidelines and
improvements on supervision are highly encouraged to provide
sufficient information on the design of new studies and to prevent
unwanted and conflicting outcomes.

The immunosuppressive therapy is also a current challenge
for clinicians and researchers. Since long-term use of
immunosuppressants causes dysbiosis, it is important to
determine whether this factor is a premise for the patient’s
responsiveness to probiotic treatment (Bhat et al., 2017).

Altogether, these factors represent important limitations in
studies setup and the conflicting clinical results found in the
literature may derive from poorly designed and standardized
studies.

CONCLUSION AND FURTHER
DIRECTIONS

Both FMT and probiotics are therapies with good prospects in
the medical field, especially in IBD. However, like other newly
developed therapies, the challenges encountered for increasing
the reliability, safety, and standardization of FMT and probiotics
are considerable. Thus, more multicenter studies must be
performed to increase the number of samples and variables
(features of IBD, phenotypic and genotypic characteristics of
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the patients, standardizations in the therapeutic regimen, etc.),
generating more significant conclusions.
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