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Abstract
Purpose The shape of the mandible has been analyzed in a variety of fields, whether to diagnose conditions like osteoporosis
or osteomyelitis, in forensics, to estimate biological information such as age, gender, and race or in orthognathic surgery.
Although the methods employed produce encouraging results, most rely on the dry bone analyses or complex imaging
techniques that, ultimately, hamper sample collection and, as a consequence, the development of large-scale studies. Thus,
we proposed an objective, repeatable, and fully automatic approach to provide a quantitative description of the mandible in
orthopantomographies (OPGs).
Methods We proposed the use of a deep convolutional neural network (CNN) to localize a set of landmarks of the mandible
contour automatically from OPGs. Furthermore, we detailed four different descriptors for the mandible shape to be used for
a variety of purposes. This includes a set of linear distances and angles calculated from eight anatomical landmarks of the
mandible, the centroid size, the shape variations from the mean shape, and a group of shape parameters extracted with a point
distribution model.
Results The fully automatic digitization of the mandible contour was very accurate, with a mean point to the curve error of
0.21 mm and a standard deviation comparable to that of a trained expert. The combination of the CNN and the four shape
descriptors was validated in the well-known problems of forensic sex and age estimation, obtaining 87.8% of accuracy and a
mean absolute error of 1.57 years, respectively.
Conclusion The methodology proposed, including the shape model, can be valuable in any field that requires a quantitative
description of the mandible shape and a visual representation of its changes such as clinical practice, surgery management,
dental research, or legal medicine.
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Introduction

The mandible is the strongest, largest, and only movable
facial bone [1]. It enables speech and mastication and hosts
the lower teeth. As a consequence, mandible disorders have
a significant effect on both appearance and quality of life.
Furthermore, examinations of the mandible’s form can be
employed in the diagnosis of several conditions [2–7].

Dentistry, orthodontics, and forensics have probably been
the fields where the mandible bone has been studied the
most. Regarding the latter, many works reported a strong
relationship between mandibular bone features, such as mor-
phometry and appearance, and biological variables as sex or
age. Gender dimorphism has been assessed through a set of
distances between anatomical landmarks [8–10] or the anal-
ysis of the mandibular shape [11]. It is worth noting that the
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sex estimationmodels reported a high accuracy for adult sub-
jects, as the gender dimorphism is higher than in subadults
[12]. The mandible evolution with age has been studied to a
lesser extent, with the opposite finding, that is, the mandible
changes in older people are quite limited and mainly related
to tooth loss [13]. In addition to sex and age, the population-
specific patterns of mandible development have also been
studied [14].

Regarding the collection of mandible information, the
studies have traditionally relied on dry bone measurements.
However, recent decades have seen the increasing use of
imaging techniques, such as 3D optical scanner [11,15], or
computed tomography [8]. One of the most used systems
is the panoramic dental imaging or orthopantomography
(OPG), but this procedure has several drawbacks. Given its
rotational acquisition process, the image projection leads not
only to an information loss, but also to a potential deforma-
tion,which is especially noticeable in the horizontal direction
[16]. However, it is still nondestructive, it captures the com-
plete mandible in a single image, which is both faster and
beneficial for the storage of data and the measuring process,
and it is reportedly useful to measuring the mandible [17].
Indeed, the value of OPG images has been proved in a variety
of dentistry tasks, including the diagnosis of several clini-
cal conditions [18,19], surgery management [20], or forensic
procedures [21]. Although this imaging technique has been
used for decades, the mandible detection methods based on
automatic image processing algorithms are still very scarce
[22,23].

The current study presents a two-step pipeline to describe
the shape of the mandible automatically on OPG images, to
use this description for a variety of purposes. In the first step
of the proposed pipeline, a deep convolutional neural network
(CNN) is applied to automatically extract the mandible con-
tour. In a second step, four different descriptors are employed
to characterize the mandibular shape, namely a set of linear
distances and angles, the centroid size, the mandible varia-
tions with respect to the mean shape, and a set of parameters
given by a shape model.

Materials andmethods

The workflow employed in the present study is set out in
Fig. 1. First, the contour of the mandible, given by a set
of anatomical landmarks and the intermediate points—also
known as semilandmarks—was obtained through an auto-
matic landmark detection method based on a CNN. Second,
four different descriptors were applied to the mandible con-
tour, namely a set of 11 linear distances and angles, the
centroid size, the shape variations with respect to the mean
shape, and the shape parameters given by a point distribution

model (PDM). Both steps are explained in detail in Sects. 2.2
and 2.3, respectively.

Data

This study uses an OPG dataset collected by the School
of Medicine and Dentistry of the Universidade de Santi-
ago de Compostela (Spain) with a direct digital panoramic
unit (Orthophos Plus DS; Sirona USA, Charlotte, NC). All
the images were 1,552 pixels high, with the width varying
between 2,400 and 3,200 pixels. The dataset comprised 1,195
images of patients aged from five to 70, and the age and gen-
der distributions were almost uniform.

The mandible contours were composed of eight anatom-
ical landmarks, corresponding to the red points in Fig. 2,
namely the right and left condyles (RC and LC), the right
and left coronoid processes (RCP and LCP), the right and left
gonions (RG and LG), and the superior and inferior borders
(SB and IB). On top of that, 88 semilandmarks were placed
along themandible contour to fill the gap between anatomical
landmarks. To minimize the potential errors associated with
the semilandmarks’ placement [24], the annotators digitized
themwithout a specific protocol regarding the position or the
quantity. After that, they were automatically post-processed
so there were a specific number of equally spaced semiland-
marks between two consecutive anatomical landmarks (blue
points in Fig. 2). Specifically, there were eight semiland-
marks between the condyles and the gonions, eight between
the gonions and the inferior border, 10 between the condyles
and the coronoid processes, and 18 between the coronoid
processes and the superior border. The normalized mandible
shape, therefore, contained 96 points in every case. Thisman-
ual digitization process was carried out through the Labelbox
platform [25].

Automatic digitization of themandible contour

To make the mandible shape description method work in
a fully automatic way, an automatic method to digitize the
mandible landmarks and semilandmarkswithout the need for
anoperator is proposed.Thiswas specifically approached as a
heatmap regression problem.Therefore, a fully convolutional
neural network was used to obtain one heatmap per contour
point, i.e., 96. The target heatmaps were generated from a
bivariate normal distribution, where the mean corresponded
to the coordinates of the contour points, and the standard
deviation was set to a fraction of the image width to ensure it
works in the same way although the resolution of the image
is changed.

The point coordinates were obtained from the estimated
heatmaps using the soft-argmax function, which allows for
sub-pixel precision; it is also differentiable, meaning that a
network can be trained end-to-end. This was applied as fol-
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Fig. 1 Process of describing the
mandible shape from a new
panoramic X-ray image. In a
first step, the mandible contour
composed of both landmarks
and semilandmarks is obtained
automatically with a CNN. In a
second step, four descriptors are
applied, including a set of linear
distances and angles; the
centroid size, the variations
from the mean shape, and the
shape parameters produced by a
point distribution model.

Fig. 2 Mandible landmarks and
measurements

lows: after estimating the heatmaps, each onewas normalized
so that its pixel values add up to 1. Then, the coordinates of
every image pixel were multiplied by the heatmap value at
those coordinates. The results were summed according to
(1), where � is the Hadamard product, P is the normalized
heatmap, andw and h are the imagewidth and height, respec-
tively. This produced an approximation of the heatmap’s peak
value.

〈x̃max , ỹmax 〉 =
w∑

x=1

h∑

y=1

[
〈x, y〉 � Px,y

]
. (1)

After performing some experimentation with different
state-of-the-art CNNs specifically designed for landmark
localization, we selected the stacked hourglass network
(SHN) [26]. This network involves the sequential application
of a set of subnetworks representing a downsampling–
upsampling architecture that relies significantly on residual
connections to overcome the vanishing gradient problem.
In the first stage, the network applies a set of convolution-
pooling modules to output the probability map of each
landmark. In successive stages, the subnetworks operate
directly over the belief maps obtained in the previous stage,
enabling the inter-landmark relationships to be modeled and,
therefore, the results to be refined. The input image resolu-
tion was set to 256x512 pixels, and the SHN parameters were
fixed to a depth of four and 64 initial filters. As an output, it

produced 97 high-resolution outputs (one heatmap per con-
tour point and one mandible mask).

Mandible description

The quantitative description of the mandible was performed
using four different descriptors. First, the mandible contours
given by the anatomical landmarks and semilandmarks were
employed to calculate a set of linear distances and angles.
Some of these measurements are widely used in forensics
and other clinical procedures, such as the ramus length [27],
the bigonial and bicondylar breadth [10]; and the mandibular
angle [28]. Other additional measures have been proposed
to further improve the mandible description. Overall, eight
linear distances and three angles were considered, as set out
in Fig. 2b and Table 1.

The second descriptor corresponded to the norm of the
distances from each mandible contour point to the centroid
and will be referred to as the centroid size [12]. To calcu-
late the other two descriptors, the mandible contours were
aligned through generalized Procrustes analysis (GPA) to
provide optimal comparability. The mean shape (X) was cal-
culated and subtracted from each aligned shape to obtain
the vector of variations from the mean shape (�X ), which
was used as the third descriptor. Finally, the fourth descrip-
tor was computed using a point distribution model (PDM),
which involved decomposing a shape into a mean shape and
a linear combination of modes of variation [29].
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Table 1 Description of the linear distances and angles.

Code Measurements Description

a1 Chin angle Angle defined by the lines that join
the gnathion and the mandibular
angles

a2(L|R) Mandibular angle Angle formed by the lower margin
of the body and the posterior
margin of the ramus

a3(L|R) Coronoid–condylar angle Angle formed by the ramus and the
imaginary line that connects the
mandibular angle and the
coronoid process

d1(L|R) Diagonal length Distance between the mandibular
angle and the gnathion

d2(L|R) Ramus length Distance between the mandibular
angle and the condyle

d3(L|R) Coronoid–gonion Distance between the gonion and
the coronoid process

d4 Bicondylar breadth Distance between the condyles

d5 Bigonial breadth Distance between the gonions

d6(L|R) Condyle-angle height Vertical distance between the
condyle and the mandibular angle

d7(L|R) Angle-gnathion height Vertical distance between the
mandibular angle and the
gnathion

d8 Chin height Distance from interdental to
gnathion

L|R: left and right sides

We began with the shape variations, �X , employing a
singular value decomposition for each of them to transform
�X intoU�V T, with: U being thematrix of the eigenvectors
of (�X)(�X)T; � a diagonal matrix with the singular val-
ues; and V T the matrix of the eigenvectors of (�X)T(�X).
The eigenvalues and eigenvectors were then extracted, the
i-th eigenvalue giving the proportion of variance of the train-
ing shapes explained by the i-th eigenvector. As most of the
shape variations could be represented with a reduced subset
of modes of variation, the optimal number of modes required
to explain a minimum proportion, l, of the total variance is
computed from the eigenvalues.

To obtain the fourth descriptor, referred to as the shape
parameters, the dataset wasmapped to a k-dimensional space
(k � 2P) using

(�X)k = (�X)Vk, (2)

where Vk is a matrix composed of the first k columns of V .
The original dataset, X, was reconstructed via

X̃ = X + (�X)k V T
k . (3)

The PDM approach had three main benefits: 1. the dimen-
sionality of the problemwas reduced,whilemost of the shape

variation was retained; 2. the low-dimensional shapes pro-
duced by (�X)k were orthonormal to each other; and 3. it
helped us to conduct graphical assessments of variations in
the mandible’s shape.

Comparative analysis

In this section, two different experiments were described,
namely the validation of the automatic mandible digitization
system, and the assessment of the predictive capabilities of
the proposed mandible descriptors in the problem of sex and
age estimation.

Mandible digitization

The first experiment comprised the comparison between
automatic and manual mandible digitization methods. In this
regard, the error produced by the CNN was compared to the
interobserver error. To make this possible, a subset of 300
images from the dataset were annotated by a second expert.
The results were compared by using the following metrics:
the point-to-point error corresponding to the Euclidean dis-
tance between the real and estimated anatomical landmarks;
the point-to-curve error (PT2CRV) corresponding to themin-
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imumEuclidean distance between each estimated point (both
landmarks and semilandmarks) to the real mandible contour,
averaged over all the estimated points; the absolute error
of the linear distances and angles; and the overlapping of
the mandible masks through the Dice similarity coefficient
(DSC). All the errors calculated through Euclidean distances
were reported in mm by using the resolution information of
the X-ray acquisition device (11.11 pixels/mm).

Sex and age estimation

In the second experiment, the proposedmandible description
method was validated in a real problem representative of
mandible change and widely studied in the literature: sex
and chronological age estimation. In this regard, both the
shape parameters and the centroid size were used to make
a visual assessment of the mandible variations according to
the sex and age of a subject.

Furthermore, predictive models were developed for sex
and age estimation by using each of the proposed mandible
descriptors as the independent variables. To avoid potential
collinearity problems, especially with the linear distances
and angles, ridge regression and classification models were
used for age and sex estimation, respectively. To evaluate the
robustness of the proposed automatic approach, the results
obtained with the CNN-digitized mandible contour were
compared with those obtained with a manual digitization
process—referred to as the semiautomatic method.

The sex estimation performance was evaluated through
the accuracy metric—the percentage of images correctly
classified—and the F1. The latter is considered amore robust
method for binary classification problems, and it is calculated
independently for each class C ∈ {Male, Female}, as fol-
lows:

F1C = T P

T P + 1
2 (F P + F N )

(4)

where T P (true positives) is the number of images of the class
C which are correctly classified, F P (false positives) is the
number of images of the opposite class which are classified
as the class C and F N (false negatives) is the number of
images of the class C which are classified as the opposite
class.

On the other hand, the age estimation performance was
assessed through the absolute error between the real and esti-
mated ages.

Furthermore, the best sex and age estimation models
obtained in the previous step were compared to other meth-
ods proposed in the literature. Themetrics in this comparison
were those provided by the other researchers, namely the
accuracy in the case of sex classification, and the standard

error (SE), the coefficient of determination (R2) and the p
value associated with the F-test in the case of age regression.

As previously mentioned, sex and age estimations are
more successful for specific age ranges. As a result, and to
enable a reliable comparisonwith othermethods, the sex esti-
mation models were tested on subjects older than 18 and age
estimation on those below that age.

Results

In this section, the results concerning the experiments
described in the previous sections are presented.

Mandible digitization

As shown in Table 2, the greatest interobserver agreement on
the issue of landmark digitization occurred for the condyles
(1.08 and 1.44 for RC and LC, respectively), and the biggest
differenceswere related to gonion localization (4.73 and 3.85
for RG and LG, respectively). Comparatively, the network
yielded lower errors for every landmark other than the SB
(1.20 vs. 1.43) and IB (1.58 vs. 1.60). The maximum dif-
ference was found for the RG, where the network reduced
the degree of error by an average of 1.5mm. Concerning the
linear distances and angles, the interobserver agreement in
the angles was noticeably reduced by the network in the case
of the chin (a1, 2.57 vs. 1.45) and coronoid–condylar (a3,
1.95 vs. 1.27) angles. The smallest interobserver error in the
distance measurements was found for the chin height (d8,
0.92), while the greatest disagreement by far related to the
bigonial breadth measurement (d5, 4.60). The neural net-
work was also capable of reducing the differences between
the observers and was especially noticeable for the diagonal
length (d1, 3.29 vs. 2.24), ramus length (d2, 3.69 vs. 2.19),
bigonial breadth (d5, 4.60 vs. 3.43), condyle-angle height
(d6, 3.50 vs. 2.06), and angle-gnathion height (d7, 3.22 vs.
1.91), with a reduction of more than 1 mm for all of them.
Overall, the overlapping of the mask of the mandible contour
was slightly better with the mask estimated by the network
(0.98 vs. 0.99).

Sex and age estimation

For both the sex and age estimations, the first shape variation
mode produced by the PDMwas the most significant in rela-
tion to the classification/regression models. To visualize the
main differences between the male and female mandibles,
the mean male and female shapes were reconstructed using
only the first mode ((3), with k = 1). Furthermore, the effect
of the mandible size was also assessed by scaling the mean
reconstructed shapeswith themeanmale and female centroid
sizes. Fig. 3a demonstrates that themean adultmalemandible
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Table 2 Annotation errors of the 2nd observer and the prediction errors of the best-performing network (SHN), both of which are measured against
the gold standard (1st observer). All the errors calculated are reported in mm

Metric Absolute error (μ ± σ )

Interobserver Network

Point-to-point absolute error (mm) RG 4.73 ± 2.93 3.23 ± 2.59

LG 3.85 ± 2.83 3.21 ± 2.31

SB 1.20 ± 1.36 1.43 ± 1.26

IB 1.58 ± 1.35 1.60 ± 1.52

RC 1.08 ± 0.87 0.99 ± 0.75

LC 1.44 ± 1.27 1.13 ± 0.92

RCP 2.09 ± 2.28 1.40 ± 1.49

LCP 2.35 ± 2.35 1.55 ± 1.65

Point-to-curve (mm) PT2CRV 0.20 ± 0.09 0.21 ± 0.23

Angles absolute error (degrees) a1 (chin angle) 2.57 ± 1.68 1.45 ± 1.42

a2 (mandibular angle) ((a)) 0.81 ± 0.71 0.81 ± 0.62

a3 (coronoid–condylar angle) ((a)) 1.95 ± 1.49 1.27 ± 1.09

Linear distances absolute error (mm) d1 (diagonal length) ((a)) 3.29 ± 2.24 2.24 ± 1.78

d2 (ramus length) ((a)) 3.69 ± 2.40 2.19 ± 1.85

d3 (coronoid–gonion) 2.17 ± 1.83 1.39 ± 1.39

d4 (bicondylar breadth) 1.37 ± 1.30 1.28 ± 1.09

d5 (bigonial breadth) 4.60 ± 3.29 3.43 ± 1.60

d6 (condyle-angle height) ((a)) 3.50 ± 2.27 2.06 ± 1.79

d7 (angle-gnathion height) ((a)) 3.22 ± 2.13 1.91 ± 1.77

d8 (chin height) 0.92 ± 0.89 0.70 ± 0.74

Mask overlapping DSC 0.98 ± 0.01 0.99 ± 0.00

(a) Average on right and left sides

Fig. 3 Mandible variations in
subjects older than 18 regarding
the sex

shape is very similar to the female mandible shape. However,
when the mean centroid size is included (Fig. 3b), the male
mandible tends to be slightly bigger than that of the adult
female subjects. The mean mandible shape is also recon-
structed for the different age groups. As shown in Fig. 4a,
the younger age group had more open rami, while the older
age groups had a more pointy chin. When the size compo-
nent is added, a clear mandible growing pattern can be seen
(Fig. 4).

Table 3 compares the results of the semiautomatic and
automatic methodologies, and is where it can be seen that
the performance differences between them varied greatly
depending on the mandible information used. When the lin-
ear distances and angles were employed in a fully automatic
way, the accuracy increased by2%.The classificationmethod
based on the centroid size yielded similar results both for the
semiautomatic and the automatic approaches, with an accu-
racy value of about 0.750, while the performance for shape
variations fell slightly with the automatic approach. The use
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Fig. 4 Mandible variations in
subjects younger than 18
regarding the age

of the shape parameters produced by the PDM led to better
results in the automatic approach, with an improvement of
1.9% of accuracy and a more balanced F1 measure between
males and females. Finally, the combination of the shape
parameters and the centroid size produced the best results
in every aspect. Specifically, the automatic approach outper-
formed the semiautomaticmethod by almost 2%, reaching an
overall accuracy of 0.878. The F1 metric was also the high-
est, with values of 0.857 and 0.894 for males and females,
respectively.

The results produced by the automatic sex classifier
were compared to the outcomes of the methods by other
researchers reporting an accuracy greater than 0.8, as set out
in Table 4. To enable a reliable comparison to be made, the
findings are reported for the same age ranges used by these
other authors. The proposed automaticmethod outperformed
the other approaches in seven out of eight comparisons, with
differences between −0.8% and +7.9%.

The age estimation results are presented similarly in
Table 5. Each of the four descriptors yielded similar results
when applying the semiautomatic or the fully automatic
method. The main differences were obtained with the shape
variations (1.57 and 1.79 for semiautomatic and automatic
mode, respectively) and the shape parameters (with an
improvement of 0.12 years in the error of the automatic
mode). The best-performing descriptors were the shape vari-
ations and the shape parameters in the semiautomatic and
fully automatic methods, respectively. When combining the
shape parameters and the centroid size descriptors, the abso-
lute error of both approaches was significantly enhanced
(with improvements of 0.04 and 0.13 on average, respec-
tively, with respect to the best performing single-descriptor
model).

The age estimation methods were compared to those pro-
posed by other authors with the same performance metrics,
as set out in Table 6. Specifically, the performance of the
proposed approach was reported for the subadult age range
available in our dataset (5–17 years). Although the R2 val-
ues were slightly worse (maximum of 0.880 vs. 0.804), our

method outperformed thesemethods in terms of the SE (max-
imum of 2.4 vs. 2.0).

Discussion and conclusions

This paper presents an automatic method for detecting and
describing the mandibular contour. The mandible detection
was carried out with the stacked hourglass network. This
CNN produced, by a large margin, more confident detections
than those of the experts for every anatomical landmark other
than SB and IB and for every angle and linear measurement,
as well as in the overlapping of the mandible mask.

To perform the quantitative description of the mandible,
four different descriptors have been proposed. The combi-
nation of the shape parameters and the centroid size not
only allowed us to summarize the shape and size infor-
mation numerically, but to also produce comprehensive
visualizations of the mandible variations between different
populations, age cohorts, and sexes. In this regard, the first
and main shape parameter given by the PDM represented a
shape evolution in accordance with that reported in the clin-
ical literature [14,30]. This fact led us to confirm that the
proposed approach is useful to assess the mandible shape
changes both quantitatively and qualitatively.

Finally, all this shape information was used to com-
pare mandible description for both a semiautomatic and a
fully automatic method for the selected validation experi-
ment of classifying sex and estimating chronological age.
The two methods were then evaluated in five different sce-
narios: linear distances and angles; centroid size; shape
variations;mandible shape parameters provided by the PDM;
and mandible shape parameters together with centroid size.
The semiautomatic method required an expert to annotate
the mandible contour’s landmarks, which were then used to
estimate both the sex and the age. The automatic method
retrieved the mandible contour extracted by the CNN.

Concerning the sex-classification experiments, the top
accuracy of the semiautomatic and automatic methods was
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Table 3 Performance of the
sex-classification method in
those aged between 18 and 70.

Predictor Semiautomatic Automatic

Acc F1male F1female Acc F1male F1female

Linear distances and angles 0.808 0.754 0.842 0.821 0.778 0.849

Centroid size 0.756 0.694 0.798 0.750 0.683 0.798

Shape variations 0.769 0.739 0.793 0.756 0.708 0.791

Shape parameters 0.731 0.691 0.761 0.750 0.748 0.769

Shape parameters + centroid size 0.859 0.831 0.879 0.878 0.857 0.894

RC: ridge classification; Acc: accuracy; Mean F1: F1 measure, averaged over both sexes

Table 4 Comparison of the sex-classification results in the literature (semiautomatic) and those of the best-performing automatic approach presented
in this paper.

Work Age Meas. Method N Test Acc(a) Acc ofthis work(a) (b)

Saini et al. [31] 23–65 DB (5) DFA 116 – 0.802 0.881 (+ 7.9%)

Giles [32] 21–75 DB (9) DFA 265 TT 0.850 0.871 (+ 2.1%)

Steyn and Işcan [10] – DB (5) DFA 81 – 0.815 -(c)

Dayal et al. [36] 25–69 DB (6) DFA 60 CV 0.839 0.847 (+ 0.8%)

Pokhrel and Bhatnagar [9] – DB (4) DFA 79 – 0.829 -(c)

Abualhija et al. [21] 21–45 OPG (3) LoR 50 TT 0.800 0.857 (+ 5.7%)

Franklin et al. [11] 18–70 3DS (38) PDM+LoR 225 CV 0.831 0.878 (+ 4.7%)

Lin et al. [8] 21–70 3D CT (10) DFA 240 LOO 0.879 0.871 (− 0.8%)

This work 18–70 OPG (96) RC 935 TT 0.878

(a) Shape parameters and centroid size were used, as they yielded the best results (Table 5)
(b) The accuracy was calculated for the same age range than original publications. The percentage differences were also reported
(c) The accuracy could not be calculated for the same age range, as the original work did not report this information
Meas.: Measurements. Meas. legend: DB: dry bone; 3DS: 3D scanner; CT: computed tomography. Method legend: DFA: discriminant function
analysis; LoR: logistic regression; PDM: point distribution model; RC: ridge classification. N: sample size. Test approach legend: TT: train-test;
CV: cross-validation; LOO: leave-one-out. Acc: accuracy

Table 5 Mean and standard
deviation of the absolute error
(in years) in the age estimation
method for subjects aged
between five and 17.

Predictor Absolute Error (μ ± σ )

Semiautomatic Automatic

Linear distances and angles 1.75 ± 1.24 1.80 ± 1.28

Centroid size 2.40 ± 1.83 2.38 ± 1.83

Shape variations 1.57 ± 1.17 1.79 ± 1.17

Shape parameters 1.82 ± 1.26 1.70 ± 1.09

Shape parameters + Centroid size 1.53 ± 1.26 1.57 ± 1.21

Table 6 Comparison of the best
age estimation results of the
automatic methodology and the
semiautomatic results presented
previously in the literature.

Work Age Meas. Method N SE R2 p

Franklin and Cardini [37] 1–17 3DS (38) LR 79 2.4 0.834 1×10−31

Franklin et al. [15] 1–17 3DS (38) LR 79 2.1 0.880 1.8×10−37

PDM+LR 2.4 0.827 1.8×10−27

This work 5–17 OPG (96) RR((a)) 260 2.0 0.804 0.00055

(a) Shape parameters and centroid size were used, as they yielded the best results (Table 5)
Meas. legend: 3DS: 3D scanner. Method legend: LR: linear regression; PDM: point distribution model; RR: ridge regression; N:
sample size; SE: standard error (in years); R2: coefficient of determination; p: p value of the F-test
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achieved when combining the shape parameters and the
centroid size. The F1 values of over 0.83 for both classes
confirmed that the models were not biased toward a specific
gender. The accuracy fell slightly when we used size-free
descriptors alone, such as the shape variations and the shape
parameters, or linear distances and angles. However, it is
notable that the automatic method achieved a higher accu-
racy when relying on linear distances and angles. This is in
line with the significant performance differences between the
network and the observers when extracting these measure-
ments.

Comparing the sex-classification performance with that
of previous studies, the proposedmethodology outperformed
almost every other methodology except the approach in [8],
which used 3D CT images. It is also notable that three out of
the eight studies we analyzed did not describe any validation
scheme [9,10,31], while one performed a train-test split on
part of the dataset [32]. It should also, therefore, be noted that
the data sample used by our team is composed of 935 images,
making it the largest database used in an investigation of this
kind.

Regarding the age estimation results, the absolute error of
the proposed automatic method was between 1.57 and 2.38
years on average. Although the proportion of the explained
variance given by R2 was slightly lower than in the other
methods, the proposed method performed better concerning
the SE. This is especially remarkable, given that our study did
not include subjects younger than five; if it had been done,
the results may have been even better, due to the significant
development that occurs in that age range.

Although the studies using CNN-based methods that
employ an entire OPG image to conduct sex and age esti-
mations performed better, they only serve the purpose for
which they were developed [33–35]. On the other hand, the
method we propose based on automatic mandible descrip-
tion performs well when estimating age and sex; it is also
more versatile, as it can also be employed in other applica-
tions, such as in evaluating the mandible shape differences
between populations, sexes, and age cohorts, and for disease
diagnosing or surgery management.

In conclusion, the automatic method we describe in this
paper is very reliable when extracting the mandible contour,
with a dramatic improvement in the time it took to do so.Con-
sequently, the methodology proposed, including the shape
model, can be valuable in any field that requires a quantitative
description of the mandible shape and a visual representation
of its changes, such as clinical practice, surgerymanagement,
dental research, or legal medicine.
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