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A B S T R A C T   

Background and purpose: Despite hardware acceleration, state-of-the-art Monte Carlo (MC) dose engines require 
considerable computation time to reduce stochastic noise. We developed a deep learning (DL) based dose engine 
reaching high accuracy at strongly reduced computation times. 
Materials and methods: Radiotherapy treatment plans and computed tomography scans were collected for 350 
treatments in a variety of tumor sites. Dose distributions were computed using a MC dose engine for ∼30,000 
separate segments at 6 MV and 10 MV beam energies, both flattened and flattening filter free. For dynamic arcs 
these explicitly incorporated the leaf, jaw and gantry motions during dose delivery. A neural network was 
developed, combining two-dimensional convolution and recurrence using 64 hidden channels. Parameters were 
trained to minimize the mean squared log error loss between the MC computed dose and the model output. Full 
dose distributions were reconstructed for 100 additional treatment plans. Gamma analyses were performed to 
assess accuracy. 
Results: DL dose evaluation was on average 82 times faster than MC computation at a 1 % accuracy setting. In 
voxels receiving at least 10 % of the maximum dose the overall global gamma pass rate using a 2 % and 2 mm 
criterion was 99.6 %, while mean local gamma values were accurate within 2 %. In the high dose region over 50 
% of maximum the mean local gamma approached a 1 % accuracy. 
Conclusions: A DL based dose engine was implemented, able to accurately reproduce MC computed dynamic arc 
radiotherapy dose distributions at high speed.   

1. Introduction 

Deep learning (DL) techniques have previously been applied to 
accelerate the radiotherapy planning process [1–3]. Accurate and fast 
dose computation is a requirement for Intensity Modulated Radiation 
Therapy (IMRT). Monte Carlo (MC) techniques provide highest accu
racy, and may efficiently be applied in clinical treatment planning 
thanks to graphics processing unit (GPU) acceleration [4,5]. Nonethe
less, accurate dose estimation requires computation times in the order of 
minutes, which may hamper application in on-line adaptive settings 
where sub-minute computation times would be essential. 

To improve the balance between accuracy and runtime of dose 
computation, trained up-sampling of low resolution two-dimensional 
(2D) dose distribution slices was investigated [6]. Volumetric modu
lated arc therapy (VMAT) distributions for prostate cancer patients were 
reconstructed from pencil beam computations in water using a knowl
edge distillation framework with trained teacher and student networks 

[7]. Many contributions to the literature have used a three-dimensional 
(3D) U-Net architecture for dose computation. A dose verification tool 
for a novel cobalt IMRT machine was developed [8]. De-noising of fast 
MC computations with high stochastic noise was implemented [9]. 
Fluence maps for fixed beam IMRT of prostate plans were pre-processed 
using ray tracing to feed the network [10]. Similarly, individual multi
leaf collimator (MLC) shapes were projected into 3D parameter sets, and 
then used to compute fixed beam IMRT doses for prostate cancer pa
tients using conventional and magnetic resonance (MR) guided linacs 
[11,12]. This method was extended to VMAT under MR guidance for 
various treatment sites [13]. Similarly, a transformer based U-Net so
lution was recently presented for MR image guided treatment [14]. 
Apart from the 3D U-Net approach, 3D convolutions were combined 
with 2D sequences connected using a transformer network for proton 
dose calculation and to reconstruct VMAT dose distributions, taking 3D 
projected shape information as input [15,16]. A 2D convolutional 
approach combined with a long-short term memory (LSTM) network 
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was used to model proton dose deposition [17]. 
An MC dose engine can account for the continuous gantry and leaf 

motions during VMAT dose delivery, which so far none of the DL models 
in literature have considered. Furthermore, so far all DL based photon 
dose engines used some form of 3D data pre-processing, which limits the 
efficiency at inference time. 

We implemented a dose engine using a recurrent 2D convolutional 
neural network architecture, directly taking as input the Digital Imaging 
and Communications in Medicine (DICOM) planning computed to
mography (CT) image and the Radiotherapy Plan (RTPLAN) parameters 
at pairs of control points specifying gantry rotation and leaf and jaw 
motions during dynamic arc delivery, and producing a 3D segment dose 
distribution on the patient grid as output. This allows the model to be 
trained end-to-end on high quality MC dose distributions for dynamic as 
well as static beams, while the limited memory footprint and compu
tational burden favor application under time critical conditions. The aim 
of this work was to demonstrate the feasibility of a 2D recurrent network 
for VMAT dose computation, and to compare its speed and accuracy 
with existing solutions. 

2. Materials and methods 

2.1. Patient data 

Following institute review board approval, 350 DICOM treatment 
plans were collected from our institutional database, filtering to ensure a 
planning CT and RTPLAN were present, in which static (IMRT) or dy
namic (VMAT) irradiation had been planned for any site of treatment. A 
total of 181 plans were static, containing 7460 control points in 863 
beams, while 169 plans used 447 dynamic beams consisting of 26842 
control points. 

The plans were recomputed at a 2 mm resolution using the GPUMCD 
standalone dose calculation library (Version 1, Elekta AB, Stockholm, 
Sweden) at a 1 % statistical uncertainty setting. As only models for an 
Elekta accelerator using a multileaf collimator (MLC) with 160 leaves 
with a width of 5 mm at isoc depth were available, interpolated leaf 
positions were added to plans created for an (older) 80 leaf MLC. The 
GPUMCD engine separately models 6 MV and 10 MV energies, and uses 
separate models for flattened and flattening filter free (FFF) beams. 
Irrespective of the original intent, each plan was recomputed for the four 
cross combinations, storing each segment dose distribution separately. 
This led to four sets of ∼30000 segment dose distributions to be used for 
model training. A separate model was trained for each combination of 
energy and filter setting, resulting in four sets of trained model weights. 
A validation set of six treatment plans were held back to aid model se
lection and hyper-parameter tuning, five of which were VMAT for the 
treatment sites brain, head-and-neck (H&N), lung, breast and rectum, 
and one IMRT for a lung case including the mediastinum. 

The GPUMCD engine consists of a Microsoft Windows dynamic link 
library, and the functions contained within it expect the data as derived 
from the RTPLAN to be presented in a particular form, for each segment 
providing a full state of the linear accelerator at both the beginning and 
ending control points. The MC engine then simulates particles at states 
in between, for a VMAT plan at interpolated MLC and gantry positions. 
The processed RTPLAN information used to evaluate each segment was 
captured and saved in a separate JavaScript Object Notation (JSON) file 
accompanying each segment dose distribution, to be used as model input 
(see Supplement). 

Additionally, 100 plans were retrieved from the database to serve as 
test set, consisting of five sets of twenty plans for the major tumor sites 
breast, H&N, lung, prostate, and rectum. These were collected from a 
more recent time frame and were all VMAT plans using the 160 leaf 
MLC. All plans used two treatment arcs, except the breast plans which 
had between two and eight arcs. Full patient dose distributions were 
evaluated using the GPUMCD engine at 1 % accuracy with the beam 
energy, FFF status and dose grid resolution as used for clinical planning. 

2.2. Dose engine based on deep learning 

Assuming dose only depends on CT values encountered down to a 
given depth, the model was constructed on a diverging coordinate sys
tem (Fig. 1a) as a 2D convolutional neural network on the (x, z) plane 
perpendicular to the beam axis, while using recurrence to model dose 
variation along the beam direction y (Fig. 1b). 

The MLC shape was rendered on this plane at a grid spacing in the x 
direction corresponding to the leaf separation of 5 mm at the isoc depth, 
and using 2 mm spacing in the leaf travel direction z. Based on the leaf 
and jaw positions at the beginning and ending control point of each 
segment, the fractional exposure was computed for each grid cell. For 
each segment the size of the grid was chosen to fit the MLC shape with a 
4 cm margin to allow accurate modeling of the scattered dose in e.g. 
lung tissue. Zero padding was applied symmetrically to allow concate
nation of multiple segments into a batch, equalizing the x and z di
mensions while keeping each segment shape centered on the grid. While 
sampling CT values onto the 2D plane, the table, gantry, and collimator 
rotations were incorporated in the transformation matrix. For a VMAT 
segment the CT was transformed to the mid gantry position, while the 
amount of gantry rotation (zero in the case of IMRT) and the collimator 
angle were passed as input variables to the network. A 2.5 mm spacing 
was used between plane positions in the y direction, while skipping 
planes only containing air in front of and behind the patient (in beam’s 
eye view). The coordinates x, y and z were used as input variables to the 
network, as well as a magnification factor relating the size of a 2D pixel 
to the nominal size at the isoc, as it expands with depth i. Explicit 
incorporation of coordinates as network inputs enabled the convolu
tional layers to encode the varying voxel geometries at different treat
ment depths and positions relative to the beam axis. Collimator angle 
θcoll and gantry rotation Δθgantry were included as continuous variables 
by expressing these using pairs of sin and cos functions. 

A gated recurrent unit (GRU) architecture with 64 hidden channels 
was deployed, in which the fully connected units were substituted with 
2D convolutions using a 3 × 3 kernel size [18]. The 2D input variables 
(CT, MLC and x and z coordinates) were combined with the scalar inputs 
(collimator angle, gantry motion, y coordinate and magnification factor) 
by addition rather than concatenation, as this would have required 
expansion of the latter to 2D, introducing many redundant values in 
GPU memory. At each depth i the output of the GRU was transformed 
using a fully connected layer to produce the coefficients for a tri-cubic 
spline interpolation to sample the final output dose distribution on the 
patient’s dose grid [19]. This sampling of dose onto the final grid was 
part of the gradient based training. 

2.3. Model training 

Model training was performed on a Linux GPU cluster with 24 GB 
memory per node, using PyTorch with its Adam optimizer [20]. Training 
loss was evaluated as the Mean Squared Logarithmic Error (MSLE) be
tween the MC generated segment dose distribution and the model 
output, evaluated at 10000 dose grid voxels sampled randomly for each 
segment. The logarithm in the MSLE function helped to penalize abso
lute dose differences in low dose regions more heavily, leading to a more 
consistent relative accuracy across dose levels. 

Using a learning rate of 10− 4, training ran for five days using 105 

parameter updates (approximately 6 epochs) with single segment 
batches, followed by 105 parameter updates using batches of three 
segments and a final 104 parameter updates using a reduced learning 
rate of 10− 5 (see Supplement). 

2.4. Model evaluation 

Model evaluation and testing as well as the MC dose computations 
were done on a Microsoft Windows personal computer with Nvidia 
A4000 GPU with 16 GB memory, using PyTorch’s C++ interface to 
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integrate with our local software environment. 
Average MC and DL computation times were computed per treat

ment site and overall, and plotted against planning target volume (PTV) 
size. 

Model accuracy was assessed by computation of global gamma 
values between the MC and DL dose distributions with criteria of 2 and 1 
(% and mm) for voxels above 10 % of dose maximum, similar to pre
viously published studies. Voxels at a CT number less than − 800 were 
disregarded, unless these were part of the delineated lungs. For each 
treament site, orthogonal dose and gamma plots were produced for the 
case with highest (worst) gamma score. 

Given the large numbers of voxels at low doses whose accuracy is 
compared to the maximum dose, global gamma evaluation tends to lead 
to high pass rates. As a more critical test we therefore also evaluated 
local gamma using a 2 % and 1 mm criterion for voxels with at least 10 % 
and 50 % of dose maximum, and reported mean gamma values. 

3. Results 

3.1. Computation speed 

The duration of dose computation was found to depend strongly on 
the size of the high dose region, so on PTV size. This applied both to the 
MC computations and the DL evaluations, see Fig. 2. Rectum cases which 
in general have low plan complexity still computed relatively quickly 
despite large PTV sizes and are concentrated in the lower right hand side 
of the diagram, while the more heavily modulated plans for head-and- 
neck targets could take long even for smaller PTVs, and are found to
wards the upper left hand side. 

The speedup factor of DL compared to the MC computation depen
ded on treatment site, and for breast cases was two times higher than for 
prostate (Table 1). While breast and rectum PTVs were similar, the 
speedup was higher for the breast cases. 

3.2. Computation accuracy 

Global gamma pass rates in the test were similarly high for all 
treatment sites at 2 %, 2 mm criterion, while at 1 %, 1 mm the H&N 
cases showed a somewhat reduced pass rate on average (Table 2). 

In the plan with lowest global gamma pass rate for each of the tumor 
sites, higher gamma values can be seen at anomalies near the patient 
external (Fig. 3b, d, f), at contrast agent (3d) or fiducial markers (3h), 

and in bone (3d, j) (Fig. 3). Also, dose build-up regions in the rectum 
case show high gamma (3j), while in the prostate case intermediate 
gamma values reside in the high dose region (3h). 

From local gamma evaluations, it followed that for voxels above 10 
% of maximum dose the DL model was accurate well within 2 %, while 
for voxels above 50 % it approached a 1 % accuracy on average 
(Table 3). 

Fig. 1. (a) Geometry of the deep learning dose engine model. Computation takes place on a 2D grid perpendicular to the beam axis, accounting for beam divergence. 
Table rotation, mid-gantry position and collimator rotation are incorporated as a transformation of the CT. Gantry motion and collimator angle are used as input 
variables in the model. (b) The network architecture. A 2D convolutional recurrent neural network processes MLC, CT and geometrical data and produces cubic spline 
coefficients to interpolate dose on the patient dose grid. 2D and scalar input data are combined by addition. 

Fig. 2. Dose evaluation run times for MC at 1 % accuracy (red) and DL (blue) 
against PTV size. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Planning target volumes, DL run times and speedup factors of DL over MC at 1 % 
accuracy. Mean value and standard deviation (SD) were computed per treatment 
site and overall.   

PTV (cm3) TDL (s) TMC/ TDL  

mean SD mean SD mean SD 

Total 662 630 16 11 82 34 
Breast 1291 430 27 7 118 31 
H&N 272 211 18 12 75 28 
Lung 327 239 9 7 70 32 
Prostate 107 50 7 3 59 14 
Rectum 1311 564 19 10 87 30  
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4. Discussion 

We demonstrated a novel dose engine using a 2D convolutional 
recurrent neural network on a computational grid accounting for beam 
divergence. The model does not depend on time consuming 3D pre- 
processing steps, and includes the leaf and gantry motions in VMAT 
delivery to accurately reproduce high quality MC generated dose 

distributions. The model was shown to perform well on lower cost mid- 
range GPU hardware. 

The model architecture using 2D convolutions and recurrence in the 
third dimension resembles previous work on proton dose distributions, 
in which a LSTM was used [17]. Similarly, others used a transformer 
network to connect 2D slices [16]. Transformers have demonstrated 

Table 2 
Pass rates per plan of global gamma using a 2 %, 2 mm and a 1 %, 1 mm criterion 
for voxels receiving at least 10 % of the maximum dose. Mean value and stan
dard deviation (SD) were computed per treatment site and overall.   

γG
10(2%, 2mm) %pass γG

10(1%,1mm) %pass  

mean SD min mean SD min 

Total 99.6 0.3 97.6 86.2 7.3 62.3 
Breast 99.5 0.3 98.9 86.4 4.5 80.0 
H&N 99.6 0.2 99.1 82.4 9.3 65.3 
Lung 99.7 0.3 98.7 87.2 7.4 62.3 
Prostate 99.6 0.3 98.9 87.3 7.6 73.4 
Rectum 99.4 0.5 97.6 87.8 5.9 70.0  

Fig. 3. DL dose distributions (left) and global gamma values using a 2 %, 2 mm criterion (right) for the plan with the lowest pass rate in each of the tumor sites.  

Table 3 
Mean voxel values per plan of local gamma using a 2 %, 1 mm criterion for 
voxels receiving at least 10 % and 50 % of the maximum dose. Mean value and 
standard deviation (SD) were computed per treatment site and overall.   

γL
10(2%,1mm) γL

50(2% ,1mm)

mean SD mean SD 

Total 0.75 0.13 0.53 0.20 
Breast 0.79 0.11 0.55 0.08 
H&N 0.78 0.14 0.52 0.14 
Lung 0.67 0.07 0.44 0.07 
Prostate 0.81 0.13 0.57 0.30 
Rectum 0.71 0.12 0.40 0.09  
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unparalleled power to encode time dependencies, while the LSTM rep
resents a more complex, potentially more powerful version of a recur
rent network than the GRU we deployed. As the depth dependency of 
dose is determined by localized radiation diffusion and cumulative ef
fects such as beam hardening, we still expected the GRU to be 
appropriate. 

Directly comparing computational speed with previously published 
implementations is difficult because of the dependency on PTV size and 
differences in GPU hardware. Run times around one minute for full 
evaluation of a prostate step & shoot IMRT plan were reported, although 
using an older GPU [11]. When generalizing their methods to VMAT 
irradiation in the presence of a 1.5 T external magnetic field, these au
thors struggled to reach the necessary computational efficiency to 
handle the large numbers of segments [13]. The average run time of 
eight seconds for a set of prostate, lung, H&N and brain cases previously 
reported is consistent with our results, although these authors used a 
higher end GPU with larger memory (Nvidia A40 with 48 GB) [16]. As 
our model was implemented end to end as GPU accelerated code and 
does not depend on pre-processing steps, it is expected to scale well with 
hardware capabilities. 

Gamma pass rates at a 2 % and 2 mm criterion were also comparable 
with those reported by [16]. These authors reported reduced pass rates 
in H&N cases, possibly related to air cavities. Our pass rates were more 
consistent across treatment sites, however we explicitly filtered out air 
cavities in the gamma analysis. Using a 1 % and 1 mm criterion our pass 
rates were lower for prostate and lung cases, but higher for H&N. 

Run times for the DL model were observed to depend on the size of 
the high dose region, but also on plan complexity. In a heavily modu
lated plan, numerous irregularly shaped segments contribute to the high 
dose region. Areas blocked by leaves still receive scattered dose, 
contributing both to low and high dose regions. Margins around the 
segment shapes should ensure these regions are included in the com
putations. For a given volume of high dose, a more modulated plan will 
thus require longer computation time. 

In constructing the model, simplifying assumptions were made. 
While the dose deposited at any point should mainly depend on the CT 
values that were encountered down to that depth, this is not true for the 
contribution of back-scattered radiation. A similar issue arises due to the 
rotation of the computational plane relative to the isoc in a VMAT 
segment. This causes one end of the plane to rise towards CT values that 
were already seen and could be accommodated for in the network’s 
hidden state, but on the other end of the plane this rotation means the 
dose actually depends on CT values that are yet to be sampled. A possible 
solution for these issues would be to use a bidirectional network, how
ever preliminary results using such a setup showed little difference, and 
the additional complication was deemed not worthwhile. 

The rendering of the MLC shape onto the computational grid does 
not fully encode the complexity of VMAT dose delivery. In reality the 
simultaneous motions of MLC leaves and gantry lead to a complicated 
3D pattern of dose deposition; the MC engine used for the ground truth 
dose in this study indeed computes VMAT dose in this realistic fashion. 
The DL model does not represent this complexity, but rather averages 
out the effects of leaf motions and gantry rotation. As our model shows 
good gamma evaluation results these simplifications seem justified, 
however if yet higher accuracy would be required this could offer a point 
of improvement. 

In the training data set, segment shapes were re-used across beam 
energies and flattening filter settings. Also, MLC160 segments were 
constructed from MLC80 data by interpolating leaf positions. Accumu
lation of such segments would not lead to valid, conformal patient dose 
distributions. As the DL model was set up to reproduce per segment dose 
distributions, this still leads to an accurate and valid model. 

Visual inspection of the gamma value maps that were presented 
revealed mainly clinically irrelevant discrepancies at anomalies such as 
contrast agent or at the patient contour. Still, differences in the gamma 
distributions observed in the prostate and rectum cases were 

remarkable, as these share a seemingly similar patient anatomy. How
ever, segments for the rectum case were much larger, with MLC posi
tions further away from the beam axis contributing to the dose 
deposition. Different MLC positions can be expected to be associated 
with different residual modeling errors. 

Our model was written as a C++ module depending on LibTorch, 
allowing for easy integration with existing software solutions on Linux 
and Microsoft Windows platforms. In an on-line adaptive treatment 
setting the high computational speed allows to predict dose variations as 
a result of daily anatomical changes to high precision, potentially 
enabling real-time computation that can keep up with the dose delivery. 
For an on-line MR-linac work flow, GPUMCD at a 3 % accuracy was 
previously used, which should approximately be nine times faster than 
at 1 %, while our model showed 82 times speedup [13]. However, our 
model does not apply to dose delivery in presence of an external mag
netic field. This will be the subject of our next analyses. 

In summary, we have presented for the first time a GPU accelerated 
DL dose engine built using 2D network layers, capable of reproducing 
high quality MC dose distributions involving dynamic leaf and gantry 
motions. With its high speed and accuracy, it could become a valuable 
asset in a future online adaptive treatment setting. 
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