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Country‑level factors dynamics 
and ABO/Rh blood groups 
contribution to COVID‑19 mortality
Alfonso Monaco1,6, Ester Pantaleo1,2,3,6, Nicola Amoroso1,4, Loredana Bellantuono1,2, 
Alessandro Stella5* & Roberto Bellotti1,3

The identification of factors associated to COVID‑19 mortality is important to design effective 
containment measures and safeguard at‑risk categories. In the last year, several investigations have 
tried to ascertain key features to predict the COVID‑19 mortality tolls in relation to country‑specific 
dynamics and population structure. Most studies focused on the first wave of the COVID‑19 pandemic 
observed in the first half of 2020. Numerous studies have reported significant associations between 
COVID‑19 mortality and relevant variables, for instance obesity, healthcare system indicators such 
as hospital beds density, and bacillus Calmette‑Guerin immunization. In this work, we investigated 
the role of ABO/Rh blood groups at three different stages of the pandemic while accounting for 
demographic, economic, and health system related confounding factors. Using a machine learning 
approach, we found that the “B+” blood group frequency is an important factor at all stages of the 
pandemic, confirming previous findings that blood groups are linked to COVID‑19 severity and fatal 
outcome.

The first information on a cluster of cases of “‘pneumonia of unknown cause” or “‘viral pneumonia” was noti-
fied to WHO’s country offices in the People’s Republic of China on December 31st  20191. Since then, as of April 
19th 2021, 141,642,813 global COVID-19 cases have been recorded with more than 3 million  deaths2. While 
these numbers would lead to a rough estimate of the case fatality rate (CFR) of around 2.1% worldwide, wide 
differences are observed in country-specific death rates. As an example, in the same previously mentioned date 
of April 19th 2021 the CFR ranged from 9.21% in Mexico to 0.05% in  Singapore3. The reason for this diver-
sity in country specific CFRs has only recently been investigated. Among factors under scrutiny there were 
comorbidities such as  obesity4,  diabetes4–6, high blood  pressure7, general indicators of the quality of healthcare 
systems including the number of hospital beds per  thousands8 or the number of tests per  thousands9, and the 
age population structure with specific reference to the percentage of residents aged >70 where a higher CFR 
has been generally  observed10. The large majority of studies published so far, have investigated the contribution 
of these factors during the first wave of the COVID-19 pandemic. However, two further waves of cases with 
their load of casualties have been experienced since the release of these first reports. Further, large collaborative 
studies on COVID-19 cases enrolled during the first wave of the pandemic have identified the first set of genetic 
loci possibly responsible for the observed wide variation in symptoms  severity11–14. After the initial outbreak 
in China, the most severely hit countries were those with a high gross domestic product (GDP) per capita and 
well-established healthcare systems. In contrast, COVID-19 casualties appeared to be lower in selected world 
regions such as the Middle East, South Eastern Asia and lower income countries. Several factors can explain 
the observed differences in the first wave of COVID-19, including but not limited to under-reporting of cases, 
inadequate testing, challenges in the attribution of the cause of death. Some studies have shown how the observed 
differences depend on rather intuitive factors such as the age structure of the country population, the prevalence 
of comorbidities and societal  dynamics15. Other studies have considered less obvious factors: virus  strains16,17, 
differences in genetic  background18–21, bacillus Calmette-Guerin trained  immunity22–25 and also air  pollution26–28 
or the political  regime29. In this study, we aimed to investigate the role of ABO/Rh blood groups in the different 
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waves of the pandemic and to assess how these factors’ contribution changed over time, while accounting for 
the main demographic, economic and health system related confounding factors. For this purpose we used an 
approach based on artificial intelligence which is capable of integrating the effects of several factors and their 
interactions in a multivariate nonlinear model. Using the total deaths per million caused by COVID-19 (TDPM) 
and indicators such as demographic, economic, health system related and genetic factors, this work provides a 
quantitative analysis of the SARS-CoV-2 pandemic in several countries through a longitudinal study sampled at 
three different times: June, September and December 2020. Next, we determined the specific contribution of dif-
ferent features to the pandemic severity. Noticeably, the B+ blood histotype became more important as pandemic 
progressed while “diabetes prevalence” and “cardiovascular death rate” lost importance. As far as we know, our 
study is one of the first that combines different kinds of features, genetic and non genetic, in a complex forecast-
ing model that exploits the potential of machine learning to study different waves of the COVID-19 pandemic. 
The reported results show that factors contribution to the COVID-19 spreading could change over time and 
depend on the pandemic stage. While we acknowledge that additional variables are important to explain the large 
variability in TDPM across countries we nonetheless believe that our analysis can help in better understanding 
COVID-19, its spreading, and in developing effective measures to reduce its death toll.

Methods
Data. Our aim was to explore whether ABO and Rhesus blood group frequencies could predict the total 
deaths per million caused by COVID-19 (TDPM). We explored this relationship at three different time points, 
June 15 2020, September 15 2020, and December 15 2020, which cover the second half of 2020, i.e. the period 
corresponding to the end of the first pandemic wave, the beginning of the second outbreak, and the apex of 
this second stage. To build a prediction model we used a set of 10 indicators of ABO and Rhesus blood group 
frequencies, or “genetic”  features30. In addition we included a set of 12 “non-genetic” features downloaded from 
 OWID31 and updated to 2020 including demographic, economic, medical, and life style indicators. Table 1 con-
tains a complete list of the input features used to build a predictive model of the TDPM. To get a wide and varied 
perspective we used data from 75 worldwide countries listed in Table 2 (35 European, 21 Asian, 7 African, 6 
North American, 4 South American, 2 Oceanian countries). The study was carried out in accordance with the 
relevant national and international guidelines.

Data analysis. For the prediction of the TDPM we used a machine learning approach based on a versatile 
and non linear machine learning algorithm, the Random Forest (RF) model. The data analysis procedure is sum-
marized in Fig. 1. Given the relatively high mutual correlation of the chosen predictors (see Fig. 2), we fed the RF 
algorithm with a subset of the whole set of features. We used the Boruta wrapper to select relevant features. This 
is a typical and widely used scheme in machine learning analysis: first selecting the features that maximize model 
performances through a wrapper algorithm; then passing as input to the algorithm only the most informative 
features to reduce the noise. This approach minimizes the risk of incurring in typical machine learning problems 
such as overfitting and underfitting. The choice of the Random Forest algorithm in the first place is motivated by 
the same reason. In RFs individual decision trees are characterized by high variance and low bias, but by averag-
ing over the variance of tree outputs, RFs have low bias and moderate  variance32. To prove the robustness of our 
results we also tested a linear multivariate model for comparison. The results and plots presented in this article 
were obtained using R version 4.0.5.

Feature selection. We performed feature selection using a robust and efficient algorithm called  Boruta33, 
which is a wrapper method based on the Random Forest algorithm (described in the next section). Briefly, 
Boruta (Boruta is a god of the forest in the Slavic mythology) exploits the same idea that originates the Ran-
dom Forest method: it perturbs the system with elements of randomness and computes results from the set of 
randomized samples, thus decreasing the negative upshot of random instabilities and correlations inherent in a 
classification or a forecasting algorithm.

During the training phase, Boruta enlarges independent Random Forest trees on different bagging samples 
building shadow features, or copies of the original features with shuffled values, and compares the importance 
of the original features with the importance of their random shuffled copies. In other word it uses a permutation 
procedure to validate the importance assigned to the features by the RF algorithm, increasing the robustness of 
the methodology: shadow attributes play the role of reference values for deciding which attributes are important. 

Table 1.  List of input features. We used five kinds of features: genetic, demographic, economic, medical, and 
life style indicators.

Genetic features Demographic indicators Medical indicators Economic indicators Life style indicators

O+
A+
B+
AB+
O−
A−
B−
AB−
O/non O
Rh−/Rh+

Population density Life expectancy at birth GDP per capita Percentage of female 
smokers

Median age of the popula-
tion Cardiovascular death rate Total healthcare expenditure Percentage of male smokers

Population aged 65 or older Diabetes prevalence Hospital beds per thousand 
inhabitants

Population aged 70 or older
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Tentative features have an importance that is so close to their best shadow features that Boruta cannot make a 
decision with the desired confidence. By design, Boruta selects all features which are relevant to the outcome 
variable prediction and the selected features yield a minimal forecasting error. Specifically, Boruta performs the 
following  steps34:

• Permute each feature Xj to generate a shadow feature X(s)
j ;

• Fit a Random Forest using both the original and the shadow features;
• Compute importance of each feature Xj and X(s)

j  by means of Mean Decrease Accuracy. Then compute a Z 
score from the ratio between the mean accuracy loss and the standard deviation of the same distribution;

• Find the maximum Z score among shadow attributes (MZSA);

Table 2.  List of input countries.

Countries

Austria Belgium Bosnia and Herzegovina

Bulgaria Cyprus Croatia

Czechia Denmark Estonia

Finland France Germany

Greece Hungary Iceland

Ireland Italy Lithuania

Luxembourg Malta Moldova

Montenegro Netherlands Norway

Poland Portugal Romania

Russia Serbia Slovakia

Slovenia Spain Sweden

Ukraine United Kingdom Armenia

Bangladesh Bahrain China

India Indonesia Iran

Israel Japan Lebanon

Myanmar Malaysia Nepal

Philippines Singapore Saudi Arabia

South Korea Thailand Turkey

United Arab Emirates Yemen Ethiopia

Ghana Kenya Mauritius

Morocco South Africa Zimbabwe

Canada Costa Rica DominicanRepublic

Jamaica Mexico United States

Brazil Chile Colombia

Ecuador New Zealand Australia

Figure 1.  Flowchart of the proposed methodology. We fed the learning algorithm with selected features to 
forecast the TDPM. Microsoft Power Point was used to generate the figure.
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• Call Xj important for a single run if its Z score is higher than the Z score of MZSA;
• Apply a two-sided statistical test for all features with null hypothesis that the variable importance is equal 

to the maximal importance of the MZSA. For each feature Xj the algorithm counts how many times, on M 
runs, the importance of Xj is higher than MZSA (a hit is recorded for the variable). The expected number 
of hits, according to a binomial distribution with p = q = 0.5 is E(M) = 0.5M with standard deviation 
S =

√
(0.25M) . Then Xj is tagged as important when the number of hits is significantly higher than E(M), 

and tagged as unimportant when the number of hits is significantly lower than E(M).
• Repeat the previous steps for a predefined number of iterations, or until all attributes are tagged.

Learning model. A Random Forest (RF) is composed by an ensemble of classification/regression trees 
made by means of bootstrapping of the training  dataset35. To improve forecast accuracy, RF combines multiple 
weak models to produce a powerful ensemble. Due to a randomization process of the input variables in the 
training phase, the RF trees have low mutual correlation. In fact, in the building step of the trees, at each node 
a subset of features is randomly selected. Furthermore, RFs have some characteristics that make them ideal in 
many machine learning analyses. For instance, they are simple to tune as most of the times they only require 
modulation of two parameters: the number of trees n and m the number of features sampled to grow each leaf 
within a tree. Furthermore RF can evaluate the importance of each input feature during the training phase by 
means of the mean decrease of impurity, averaging over the whole forest of  trees35. Moreover the RF algorithm 
is robust against overfitting and through an out-of-bag procedure it provides an unbiased estimate of the gen-
eralization error. Because it uses decision trees, the RF algorithm can capture non linear relationships with the 
input features.

In the present work we implemented a standard configuration in which each forest is composed by n = 500 
trees and m is chosen to give the lowest RMSE. The optimal m is 2 at all time points.

Figure 2.  Correlation matrix of all variables (both dependent and independent). As expected “Median age of 
the population”, “Population aged 65 or older”, and “Population aged 70 or older” have mutual correlation close 
to 1; also the genetic features are highly correlated with each other. The TDPMs at the three different dates are 
also highly correlated with each other, as expected. Notably, the “B+” predictor has the highest (and negative) 
linear correlation with the TDPM at all three dates. R package corrplot 0.90 was used to generate the 
figure.
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Cross validation and performance metrics. To increase the robustness of our procedure and minimize 
overfitting issues, we adopted a 5-fold classification framework. In other words, we divided the initial dataset of 
75 nations into 5 random subsets without repetition. We used the union of 5 minus 1 subsets as training set and 
the remaining set for validation and repeated this procedure five times, which gave us five different training and 
validation sets, and therefore five models with their respective performances. The average of these five perfor-
mance values is a reliable indicator of the overall model performance.

We measured performances in terms of coefficient of determination between predicted and actual values 
( R2 ). In addition we evaluated the root mean square error (RMSE):

and the mean absolute error (MAE):

where At and Ft are the actual and the forecast values, respectively. Both data processing and statistical analyses 
were performed in R version 3.6.136.

Results
We run the Boruta algorithm on the set of 22 input features to predict the TDPM at the three different time 
points. In all cases, many features assumed similar importance, and tentative and important features were difficult 
to discern as they were distributed similarly to shadow features (see Supplementary Fig. 1 in the Supplementary 
Information where shadow features are represented in blue, and tentative and important features in yellow and 
green, respectively). Noticeably, feature “B+”, or frequency of blood group “B+”, unambiguously stood out as the 
most important feature, well above other features in June, September and December.

Given the random nature of the Boruta algorithm, to establish which features to select as important among 
similarly important/tentative features, we run it 500 times with different random seeds and computed the dis-
tribution of the Boruta importance measure. At each time point we selected features using a cut-off criterion 
as follows. First, we excluded features having median of the Z score distribution below the median of the Z 
score distribution of the MZSA variable called “Shadow Max” in Fig. 3. Then, among the remaining features, 
we selected only features whose lower quartile was bigger that the upper quartile of the “Shadow Max” variable 
(drawn in red in Fig. 3). Using this procedure, we selected frequency of “B+”, “Diabetes Prevalence”, and “Car-
diovascular death rate” in June, “B+” and “AB+” in September (“AB+” was not selected in June because, despite 
having median importance higher than “Shadow Max”’s median, it did not satisfy the chosen criterion), and six 
features in December, namely “B+”, “O−”, “A−”, “Rh−/Rh+”, “Percentage of female smokers”, and “Population 
density”. With this procedure we overcome a limitation of the Boruta algorithm, i.e. that its output can depend 
on the value of the random seed. To verify the stability of the algorithm with respect to the set of important 
features selected, we also performed Boruta 100 times (with different random seeds) over the whole dataset and 
counted the number of times each feature was selected as important by Boruta. Results show that the selected 
features are stable (see Table 3).

We then evaluated the RF regression model with the selected features in terms of R2 , RMSE, and MAE with a 
5-fold CV procedure. Results are shown in Table 4. Figure 4 shows the average importance, within the RF model, 
of each of the selected features with the respective error bars.
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Furthermore we used the selected Boruta features as input to a multivariate linear model, to check that the 
RF improves upon the linear model by adding a level of complexity (compare Tables 4 and 5), and to compare 
significant features. According to a Kruskal-Wallis  test37 performances metrics of two implemented methods 
(specially R2 and RMSE) are significantly different (p-value < 1%).

Table 3.  Given the random nature of the Boruta algorithm we performed 100 runs of this algorithm on the 
same dataset with different seeds, then counted how many times each feature was selected by Boruta and 
reported counts in this table. Column “Type” has value “g” and “n” for “genetic” and “non genetic” features, 
respectively.

Name Type

Percentage of times selected in

   June    September December

B+ g 100 100 100

Diabetes prevalence n 100 0 0

Cardiovascular death rate n 98 20 0

O− g 93 4 100

AB+ g 91 100 0

Rh−/Rh+ g 42 1 100

A− g 25 49 100

Total healthcare expenditure n 4 0 0

O+ g 0 2 0

Percentage of female smokers n 0 0 100

Population density n 0 0 100

B− g 0 0 75

A+ g 0 0 1

GDP per capita n 0 0 0

Hospital beds per thousand n 0 0 0

Life expectancy at birth n 0 0 0

Median age n 0 0 0

Aged 65 or older n 0 0 0

Aged 70 or older n 0 0 0

Percentage of male smokers n 0 0 0

AB− g 0 0 0

O/non O g 0 0 0

Table 4.  Performance measures of the RF regression model at each selected time point, using the selected 
Boruta features and averaged over 5 runs of cross validation (with the respective standard deviations).

Time point R
2 RMSE MAE

June 0.47 ± 0.13 135 ± 10 85 ± 11

September 0.25 ± 0.19 192 ± 37 129 ± 24

December 0.34 ± 0.04 312 ± 48 241 ± 39

Table 5.  Performance metrics of a linear multivariate model applied to the set of features selected by Boruta 
at each time point, using all countries, averaged over 5 runs of cross validation (with the respective standard 
deviations). The last column reports only significant features. Significance codes: ‘***’ 0.001, ‘**’ 0.01, and ‘*’ 
0.05. The multivariate linear model found feature “B+” to be significant at all three time points, and also found 
“Cardiovascular death rate” to be significant but only in June. The significance of these features is higher in 
June and lower but similar in September and December, however most of the linearity is explained by the 
intercept of the linear model.

Time point R
2 RMSE MAE significant features

June 0.31 ± 0.10*** 138 ± 49 105 ± 36 B+ **, Cardiovascular death rate **

September 0.32 ± 0.15*** 184 ± 36 149 ± 34 B+ **

December 0.29 ± 0.17*** 329 ± 64 260 ± 44 B+ *
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Also the linear model finds “B+” important, at a 0.01 significance level, but doesn’t find the other features 
significant except for “Cardiovascular death rate” in June, while the overall multivariate linear model is highly 
significant with an R-squared ranging between 0.29 and 0.32 (see Table 5). 

Figure 3.  Boxplot of the distribution of the Boruta importance measure for input variables with median higher 
than variable “Shadow Max”. The distribution was obtained from 500 runs of the algorithm on the complete 
set of features using June, September, and December 2020 TDPM data. Using as cut-off the upper quartile of 
“Shadow Max”, we colored in yellow excluded variables and in green variables selected for further analysis. R 
base package graphics 4.0.5 was used to generate the figure.
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Figure 4.  Average importance of the variables used in the RF model over 100 runs of the RF algorithm, with 
the respective standard deviations. R base package graphics 4.0.5 was used to generate the figure.
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Discussion
In the first wave of the COVID-19 pandemic, striking differences were reported in the case fatality rate of dif-
ferent countries. While many factors can confound the identification of potential determinants of the death 
rates caused by COVID-19, several studies have been released in the past months addressing the contribution 
of different elements to the wide variability in country-specific CFRs.

We decided to investigate the number of fatalities due to COVID-19 in relation to the entire population of 
analyzed countries (i.e., the total deaths/1 million population, TDPM) rather than the more frequently used case 
fatality ratio (i.e., mortality, CFR). These two parameters are influenced in different ways by multiple variables 
such as the number and type of diagnostic tests performed in each country or the modalities used to impute 
deaths to COVID-19. Since the CFR strictly relies on the number of tests performed in each country, and testing 
has not been homogeneously performed in different countries, we decided to focus on the TDPM parameter.

Features selected as input in our model were a combination of demographic, health and economic indica-
tors, and frequencies of ABO and Rh blood groups. We chose ABO and Rh since several reports have indicated 
that both blood groups could influence the probability to progress to severe COVID-19 disease in SARS-CoV-2 
infected  subjects18,38–42. Further, while additional genetic loci have been identified in genome wide association 
studies, ABO and Rh blood groups offer the advantage of having frequencies available for almost all countries 
in the world. Figure 5 shows maps of TDPM at the three considered time points and the worldwide distribution 
of selected blood group frequencies.

In our study we explored the relationship between the total number of deaths per million caused by COVID-
19 (TDPM), assessed in three different stages of the pandemic, a set of 12 selected country-level determinants 
and ABO and Rh blood group frequencies. The factors we analyzed do not represent an exhaustive collection of 

Figure 5.  Map of the TDPM in June, September, and December 2020 on the left. Maps of some of the input 
features on the right. Countries not included in the analysis are colored in gray. R package Rworldmap 1.36 
was used to generate the maps.
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all possible variables that may play a role in the pandemics spreading but were selected for their relevance and 
diversity among the available variables in one of the largest, free, and daily updated databases on COVID-1931. 
Previous reports have analyzed the correlation of several variables with national case fatality rates but were 
limited to the first outbreak of COVID-19 (first half of 2020). To investigate putative predictors of TDPM, we 
used a non linear machine learning model combined with a feature selection procedure. In particular we imple-
mented a typical machine learning framework based on the Boruta wrapper method to select only important 
features; a machine learning algorithm to forecast the TDPM; a cross validation procedure to make our results 
more robust. Furthermore, by running Boruta several times, changing the seed of the random generator at 
each run, we have obtained a more stable and reliable set of important features. We chose the Boruta feature 
selection method because the features of our model are highly correlated (see Fig. 2). A naive feature selection 
algorithm, for instance an algorithm that only keeps the ’minimal-optimal’ set of features, would discard one of 
two correlated variables. Boruta instead throws out only attributes that have no value to the classifier and keeps 
the ’all-relevant’ set of attributes. Our model shows that the frequency of “B+” in the population is an important 
predictor of the TDPM in June, September, and December 2020. A multivariate linear model confirmed the 
significance of the “B+” frequency predictor as protective against death by COVID-19. The “B+” is protective 
because it is negatively correlated with the TDPM as displayed in Fig. 2. RF outperformed the linear model as it 
can be deduced comparing Tables 4 and 5, which proves the existence of a complex (and not just linear) relation-
ship between the input features and the outcome variable. Other factors emerged also as important to predict the 
TDPM although the model found them less important than frequency of “B+” and also their ability to predict 
the TDPM was not consistent over time: “Diabetes prevalence” and “Cardiovascular death rate” were important 
in June but not in September and December, in September frequency of “A−” switched from being tentative to 
being important, and stayed important in December together with “O−”, the ratio “Rh−/Rh+”, “Percentage of 
female smokers”, and “Population density” .

Interestingly, as the pandemic progressed, the number of important features predicted by Boruta grew to 
6 in December (Fig. 3). Once more, the “B+” blood type frequency was the only feature always present, “A−” 
frequency was present twice, while no other feature had multiple occurrences. Thus, the putative role of ABO 
and Rh blood groups as determinants of countries TDPM seems to become more important with the progres-
sion of the pandemic (Fig. 4).

The ABO gene locus encodes for a protein responsible for the different ABO blood types. In fact, functional 
A and B alleles at the ABO genetic locus express A or B transferases (AT and BT respectively) which are able to 
add a different glycosyl group to the H antigene. The O allele lacks this enzymatic activity due to a truncating 
mutation. Very recently, the ABO plasma protein levels have been associated with COVID-19 susceptibility and 
 severity43. Worthy of note, with a single exception, the genome-wide association studies published so far have 
been all concordant in indicating significant association with the ABO locus on chromosome 9 (9q34)18,19,38,43–45.

However, it is still unclear how the ABO protein modifies the COVID-19 risk. One hypothesis stems from 
in vitro experimental evidences showing that the interaction between the ACE2 protein and the SARS-CoV spike 
protein was inhibited by anti-A antibodies when the S protein was produced in cells capable of synthesizing the 
A blood group  antigen46. More recently, the SARS-CoV-2 spike protein expressed in respiratory cells has been 
demonstrated to be specifically tagged with the corresponding A, B or H glycan epitopes of host  cells47. Thus, 
the possibility that anti-ABO antibodies could play a role in protecting from infection and reducing the viral 
load is valuable and should not be overlooked. While in most publications the O blood group appears to confer 
a lower risk of COVID-19 compared to non-O blood groups (reviewed  in48), the B blood group correlated with 
decreased risk of death in one of the first studies on the association between COVID-19 severity and blood 
 type42, in a meta-analysis that systematically reviewed many studies on this  topic49, and in a recent analysis of 
the association of ABO blood type with the early dynamics of the COVID-19  pandemic50. Also, it is worth-
while mentioning a recent study which documented that the ABO blood group-related histo-incompatibility 
might substantially reduce SARS-CoV-2 transmission. Importantly, the risk associated with a specific blood 
type changed, at population levels, depending on the epidemic phase (late vs early) and on the heterogeneity of 
blood type composition within specific populations or  communities51. A report published while this work was 
under review, emphasizes the importance of blood histo-incompatibility demonstrating, in six different geo-
graphic regions, the dependency of the infection rate from country-specific blood groups  distribution52. Hence, 
the results obtained in this work are in line with those described in recent studies with different methodologies 
and datasets. A second possible link between ABO and COVID-19 severity can be found in several studies 
documenting association of ABO blood groups with thromboembolic  disease53. The intragenic rs505922 SNP 
has been shown to be responsible for differential ABO protein levels with an increasing effect for allele “C” and 
diminishing levels for allele “T”54,55. rs505922 is in LD with the O blood group SNP rs8176719, which has been 
repeatedly associated with an increased risk of venous  thromboembolism56–59. The rs8176719 polymorphism has 
been also associated to Factor VIII  levels60,  malaria61,62, venous  thromboembolism63, vWF  levels60. In this scenario 
the ABO antigens would modulate the intravascular disseminated coagulation and endothelial dysfunction that 
earmark the severe form of COVID-19.

Similarly, recent findings suggest that the Rh blood group might be associated with severity of COVID-19, 
with “Rh−” having a protective  role41,42. The increasing predominance of B+ as negatively associated to COVID-
19 deaths, was paralleled by the disappearing of factors such as “diabetes prevalence” or “cardiovascular death 
rate”. Thus, it might be possible that in the initial phase of the pandemic, severe COVID-19 was targeting cat-
egories with favoring comorbidities. In later waves of the pandemic, with increasing acquired immunization 
possibly protecting this group of subjects, individual genetics could have played a larger role in the fatal outcome 
of COVID-19. Further, recent work reported that both B and Rh+ were protective against influenza due to 
identified zoonotic or pandemic influenza  virus64. B was also protective against pneumonia due to S. pneumo-
niae. Also, the B blood group has a decreasing gradient of frequency from East Asia going westward. Thus, it is 
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possible that the B allele has been under positive selection pressure by an ancient viral epidemic, which shaped 
the ancestral eastern Asian  genome65.

This study has some limitations. We limited our analyses to determinants included in the OWID series, 
hence it is possible that additional factors not analyzed in our study might contribute to the TDPM differences 
observed between countries. As an example, vaccination against Bacillus Calmette-Guerin (BCG) has been 
recently reported as protective against severe COVID-19  infection22,66–68. However, a recent work has reported 
that, similarly with several determinants we investigated, BCG vaccination exerted a strong protective effect 
against COVID-19 in the early stage of the pandemic while fading in later  stages23. Finally, we investigated only 
the ABO and Rhesus blood groups amongst many genetic loci that have been recently identified in genome wide 
association studies (GWAS)14,19, or more focused  approaches11,12,14,38. However, ABO and Rh are part of a very 
limited group of genetic loci for which frequencies of the different phenotypic classes are available for almost 
all countries in the world. For the vast majority of SNPs only ethnic-specific frequencies can be extracted from 
available databases. In conclusion, differently from previous studies, in our investigation, the influence of genetic 
and non-genetic factors on the TDPM has been evaluated in different stages of the COVID-19 pandemic. Our 
findings suggest that in more advanced stages of the pandemic, individual genetic factors, and specifically the 
overall distribution of ABO and Rh blood groups distribution in the specific population, might exert a stronger 
influence on COVID-19 transmissibility and severity.

Data availibility
The source code and data used to produce the results and analyses presented in this manuscript are available 
from Git repository https:// github. com/ ester panta leo/ covid_ morta lity.
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