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Abstract

Nutrient-based meal recommendations have the potential to help individuals prevent or manage 

conditions such as diabetes and obesity. However, learning people’s food preferences and making 

recommendations that simultaneously appeal to their palate and satisfy nutritional expectations are 

challenging. Existing approaches either only learn high-level preferences or require a prolonged 

learning period. We propose Yum-me, a personalized nutrient-based meal recommender system 

designed to meet individuals’ nutritional expectations, dietary restrictions, and fine-grained food 

preferences. Yum-me enables a simple and accurate food preference profiling procedure via a 

visual quiz-based user interface and projects the learned profile into the domain of nutritionally 

appropriate food options to find ones that will appeal to the user. We present the design and 

implementation of Yum-me and further describe and evaluate two innovative contributions. The 

This work is licensed under a Creative Commons Attribution International 4.0 License.

HHS Public Access
Author manuscript
ACM Trans Inf Syst. Author manuscript; available in PMC 2018 November 19.

Published in final edited form as:
ACM Trans Inf Syst. 2017 August ; 36(1): . doi:10.1145/3072614.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://http://creativecommons.org/licenses/by-nc/4.0/


first contriution is an open source state-of-the-art food image analysis model, named FoodDist. We 

demonstrate FoodDist’s superior performance through careful benchmarking and discuss its 

applicability across a wide array of dietary applications. The second contribution is a novel online 

learning framework that learns food preference from itemwise and pairwise image comparisons. 

We evaluate the framework in a field study of 227 anonymous users and demonstrate that it 

outperforms other baselines by a significant margin. We further conducted an end-to-end 

validation of the feasibility and effectiveness of Yum-me through a 60-person user study, in which 

Yum-me improves the recommendation acceptance rate by 42.63%.

Additional Key Words and Phrases

Nutrient-based meal recommendation; personalization; visual interface; food preferences; online 
learning

CCS Concepts

● Information systems → Information retrieval; Users and interactive retrieval; Personalization

1. INTRODUCTION

Healthy eating plays a critical role in our daily well-being and is indispensable in preventing 

and managing conditions such as diabetes, high blood pressure, cancer, mental illnesses, 

asthma, and so on [5, 41]. In particular, for children and young people, the adoption of 

healthy dietary habits has been shown to be beneficial to early cognitive development [46]. 

Many applications designed to promote healthy behaviors have been proposed and studied 

[10, 12, 28, 29]. Among those applications, the studies and products that target healthy meal 

recommendations have attracted much attention [40, 56]. Fundamentally, the goal of these 

systems is to suggest food alternatives that cater to individuals’ health goals and help users 

develop healthy eating behavior by following the recommendations [67]. Akin to most 

recommender systems, learning users’ preferences is a necessary step in recommending 

healthy meals that users are more likely to find desirable [67]. However, the current food 

preference elicitation approaches, including (1) on-boarding surveys and (2) food journaling, 

still suffer from major limitations, as discussed below.

• Preferences elicited by surveys are coarse-grained. A typical on-boarding 

survey asks a number of multi-choice questions about general food preferences. 

For example, PlateJoy [40], a daily meal planner app, elicits preferences for 

healthy goals and dietary restrictions with the following questions:

1. How do you prefer to eat? No restrictions, dairy free, gluten free, kid 

friendly, pescatarian, paleo, vegetarian…

2. Are there any ingredients you prefer to avoid? avocado, eggplant, eggs, 

seafood, shellfish, lamb, peanuts, tofu….

While the answers to these questions can and should be used to create a 

rough dietary plan and avoid clearly unacceptable choices, they do not 
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generate meal recommendations that cater to each person’s fine-grained 

food preferences, and this may contribute to their lower-than-desired 

recommendation-acceptance rates, as suggested by our user testing 

results.

• Food journaling approach suffers from cold-start problem and is hard to 
maintain. For example, Nutrino [38], a personal meal recommender, asks users 

to log their daily food consumption and learn users’ fine-grained food 

preferences. As is typical of systems relying on user-generated data, food 

journaling suffers from the cold-start problem, where recommendations cannot 

be made or are subject to low accuracy when the user has not yet generated a 

sufficient amount of data. For example, a previous study showed that an active 

food-journaling user makes about 3.5 entries per day [13]. It would take a non-

trivial amount of time for the system to acquire sufficient data to make 

recommendations, and the collected samples may be subject to sampling biases 

as well [13, 32]. Moreover, the photo food journaling of all meals is a habit 

difficult to adopt and maintain and therefore is not a generally applicable 

solution to generate complete food inventories [13].

To tackle these limitations, we develop Yum-me, a meal recommender that learns fine-
grained food preferences without relying on the user’s dietary history. We leverage people’s 

apparent desire to engage with food photos1 to create a more user-friendly medium for 

asking visually based diet-related questions. The recommender learns users’ fine-grained 

food preferences through a simple quiz-based visual interface [59] and then attempts to 

generate meal recommendations that cater to the user’s health goals, food restrictions, as 

well as personal appetite for food. It can be used by people who have food restrictions, such 

as vegetarian, vegan, kosher, or halal. Particularly, we focus on the health goals in the form 

of nutritional expectations, for example adjusting calories, protein, and fat intake. The 

mapping from health goals to nutritional expectations can be accomplished by professional 

nutritionists or personal coaches and is out of the scope of this article. We leave it as future 

work. In designing the visual interface [59], we propose a novel online learning framework 

that is suitable for learning users’ potential preferences for a large number of food items 

while requiring only a modest number of interactions. Our online learning approach 

balances exploitation-exploration and takes advantage of food similarities through 

preference-propagation among locally connected graphs. To the best of our knowledge, this 

is the first interface and algorithm that learns users’ food preferences through real-time 

interactions without requiring specific diet history information.

For such an online learning algorithm to work, one of the most critical components is a 

robust food image analysis model. Towards that end, as an additional contribution of this 

work, we present a novel, unified food image analysis model, called FoodDist. Based on 

deep convolutional networks and multi-task learning [6, 33], FoodDist is the best-of-its-kind 

Euclidean distance embedding for food images, in which similar food items have smaller 

1Collecting, sharing, and appreciating high-quality, delicious-looking food images is growing in popularity in our everyday lives. For 
example, food photos are immensely popular on Instagram (#food has over 177M posts and #foodporn has over 91M posts at the time 
of writing).
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distances while dissimilar food items have larger distances. FoodDist allows the 

recommender to learn users’ fine-grained food preferences accurately via similarity 

assessments on food images. Besides preference learning, FoodDist can be applied to other 

food-image-related tasks, such as food image detection, classification, retrieval, and 

clustering. We benchmark FoodDist with the Food-101 dataset [6], the largest dataset for 

food images. The results suggest the superior performance of FoodDist over prior 

approaches [6, 35, 59]. FoodDist will be made available on Github on publication.

We evaluate our online learning framework in a field study of 227 anonymous users and we 

show that it is able to predict the food items that a user likes or dislikes with high accuracy. 

Furthermore, we evaluate the desirability of Yum-me recommendations end to end through a 

60-person user study, where each user rates the meal recommendations made by Yum-me 

relative to those made using a traditional survey-based approach. The study results show 

that, compared to the traditional survey based recommender, our system significantly 

improves the acceptance rate of the recommended healthy meals by 42.63%. We see Yum-

me as a complement to the existing food preference elicitation approaches that further filters 

the food items selected by a traditional onboarding survey based on users’ fine-grained taste 

for food and allows a system to serve tailored recommendations on the first use of the 

system. We discuss some potential use cases in Section 7.

The rest of the article is organized as follows. After discussing related work in Section 2, we 

introduce the structure of Yum-me and our backend database in Section 3. In Section 4, we 

describe the algorithmic details of the proposed online learning algorithm, followed by the 

architecture of FoodDist model in Section 5. The evaluation results of each component, as 

well as the recommender are presented in Section 6. Finally, we discuss the limitations, 

potential impact, and real-world applications in Section 7 and conclude in Section 8.

2. RELATED WORK

Our work benefits from, and is relevant to, multiple research threads: (1) healthy meal 

recommender system, (2) cold-start problem and preference elicitation, (3) pairwise 

algorithms for recommendation, and (4) food image analysis, which will be surveyed in 

detail next.

2.1. Healthy Meal Recommender System

Traditional food and recipe recommender systems learn users’ dietary preferences from their 

online activities, including ratings [17, 19, 20, 23], past recipe choices [21, 51], and 

browsing history [38, 54, 56]. For example, the authors of Reference [51] build a social 

navigation system that recommends recipes based on the previous choices made by the user; 

the authors of Reference [56] propose to learn a recipe similarity measure from crowd card-

sorting and make recommendations based on the self-reported meals; and the authors of 

References [17, 23] generate healthy meal plans based on user’s ratings towards a set of 

recipes and the nutritional requirements calculated for the person. In addition, previous 

recommenders also seek to incorporate users’ food consumption histories recorded by the 

food logging and journaling systems (e.g. taking food images [13] or writing down 

ingredients and meta-information [56]).
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The above systems, while able to learn users’ detailed food preference, share a common 

limitation; that is, they need to wait until a user generates enough data before their 

recommendations can be effective for this user (i.e., the cold-start problem). Therefore, most 

commercial applications, for example, Zipongo [68] and Shopwell [47] adopt onboarding 

surveys to more quickly elicit users’ coarse-grained food preferences. For instance, 

Zipongo’s questionnaires [68] ask users about their nutrient intake, lifestyle, habits, and food 

preferences and then make day-to-day and week-to-week healthy meals recommendations; 

ShopWell’s survey [47] is designed to avoid certain food allergens, for example, gluten, fish, 

corn, or poultry, and find meals that match to particular lifestyles, for example, healthy 

pregnancy or athletic training.

Yum-me fills a vacuum that the prior approaches were not able to achieve, namely a rapid 

elicitation of users’ fine-grained food preferences for immediate healthy meal 

recommendations. Based on the online learning framework [59], Yum-me infers users’ 

preferences for each single food item among a large food dataset and projects these 

preferences for general food items into the domain that meets each individual user’s health 

goals.

2.2. Cold-Start Problem and Preference Elicitation

To alleviate the cold-start problem mentioned above, several models of preference elicitation 

have been proposed in recent years. The most prevalent method of elicitation is to train 

decision trees to poll users in a structured fashion [15, 22, 42, 50, 66]. These questions are 

either generated in advance and remain static [42] or change dynamically based on real-time 

user feedback [15, 22, 50, 66]. Also, another previous work explores the possibility of 

eliciting item ratings directly from the user [11, 63]. This process can either be carried at 

item level [63] or within category (e.g., movies) [11].

The preference elicitation methods we mentioned above largely focus on the domain of 

movie recommendations [11, 42, 50, 63] and visual commerce [15] (e.g., cars, cameras) 

where items can be categorized based on readily available metadata. When it comes to real 

dishes, however, categorical data (e.g., cuisines) and other associated information (e.g., 

cooking time) possess a much weaker connection to a user’s food preferences. Therefore, in 

this work, we leverage the visual representation of each meal to better capture the process 

through which people make diet decisions.

2.3. Pairwise Algorithms for Recommendation

Pairwise approaches [25, 39, 44, 45, 57, 58, 60] are widely studied in recommender system 

literature. For example, Bayesian Personalized Ranking (BPR) [44, 45] and Weighted 

Approximate-Rank Pairwise (WARP) loss [57], which learn users’ and items’ 

representations from user-item pairs, are two representative and popular approaches in this 

category. Such algorithms have successfully powered many state-of-the-art systems [25, 58]. 

In terms of the cold-start scenario, the authors of Reference [39] developed a pairwise 

method to leverage users’ demographic information in recommending new items.

Compared to previous methods, our problem setting fundamentally differs in the sense that 

Yum-me elicits preferences in an active manner where the input is incremental and 
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contingent on the previous decisions made by the algorithm, while prior work focuses on the 

static circumstances where the training data is available up-front, and there is no need for the 

system to actively interact with the user.

2.4. Food Image Analysis

The tasks of analyzing food images are very important in many ubiquitous dietary 

applications that actively or passively collect food images from mobile [13] and wearable [1, 

36, 52] devices. The estimation of food intake and its nutritional information is helpful to 

our health [37] as it provides detailed records of our dietary history. Previous work mainly 

conducted the analysis by leveraging the crowd [37, 53] and computer vision algorithms [6, 

35].

Noronha et al. [37] crowdsourced nutritional analysis of food images by leveraging the 

wisdom of untrained crowds. The study demonstrated the possibility of estimating a meal’s 

calories, fat, carbohydrates, and protein by aggregating the opinions from a large number of 

people; the authors of Reference [53] elicit the crowd to rank the healthiness of several food 

items and validate the results against the ground truth provided by trained observers. 

Although this approach has been justified to be accurate, it inherently requires human 

resources that restrict it from scaling to large number of users and providing real-time 

feedback.

To overcome the limitations of crowds and automate the analysis process, numerous articles 

discuss algorithms for food image analysis, including classification [4, 6, 30, 35], retrieval 

[31], and nutrient estimation [9, 24, 35, 49]. Most of the previous work [6] leveraged hand-

crafted image features. However, traditional approaches were only demonstrated in special 

contexts, such as in a specific restaurant [4] or for particular types of cuisine [30], and the 

performance of the models might degrade when they are applied to food images in the wild.

In this article, we designed FoodDist using deep convolutional neural network based 

multitask learning [8], which has been shown to be successful in improving model 

generalization power and performance in several applications [14, 64]. The main challenge 

of multitask learning is to design appropriate network structures and sharing mechanisms 

across tasks. With our proposed network structure, we show that FoodDist achieves superior 

performance when applied to the largest available real-world food image dataset [6] and 

when compared to prior approaches.

3. YUM-ME: PERSONALIZED NUTRIENT-BASED MEAL 

RECOMMENDATIONS

Our personalized nutrient-based meal recommendation system, Yum-me, operates over a 

given inventory of food items and suggests the items that will appeal to the users’ palate and 

meet their nutritional expectations and dietery restrictions. A high-level overview of Yum-

me’s recommendation process is shown in Figure 1 and briefly described as follows:
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• Step 1: Users answer a simple survey to specify their dietary restrictions and 

nutritional expectations. This information is used by Yum-me to filter food items 

and create an initial set of recommendation candidates.

• Step 2: Users then use an adaptive visual interface to express their fine-grained 

food preferences through simple comparisons of food items. The learned 

preferences are used to further re-rank the recommendations presented to them.

In the rest of this section, we describe our backend large-scale food database and 

aforementioned two recommendation steps: (1) a user survey that elicits user’s dietary 

restrictions and nutritional expectations and (2) an adaptive visual interface that elicits users’ 

fine-grained food preferences.

3.1. Large Scale Food Database

To account for the dietary restrictions in many cultures and religions, or people’s personal 

choices, we prepare a separate food database for each of the following dietary restrictions:

No restrictions, Vegetarian, Vegan, Kosher, Halal2—For each diet type, we pulled 

over 10,000 main dish recipes along with their images and metadata (ingredients, nutrients, 

tastes, etc.) from the Yummly API [62]. The total number of recipes is around 50,000. To 

customize food recommendations for people with specific dietary restrictions, for example, 

vegetarian and vegan, we filter recipes by setting the allowedDiet parameter in the search 

API. For kosher or halal, we explicitly rule out certain ingredients by setting 

excludedIngredient parameter. The lists of excluded ingredients are shown below:

• Kosher: pork, rabbit, horse meat, bear, shellfish, shark, eel, octopus, octopuses, 

moreton bay bugs, frog.

• Halal: pork, blood sausage, blood, blood pudding, alcohol, grain alcohol, pure 

grain alcohol, ethyl alcohol.

One challenge in using a public food image API is that many recipes returned by the API 

contain non-food images and incomplete nutritional information. Therefore, we further filter 

the items with the following criteria: The recipe should have (1) nutritional information of 

calories, protein, and fat and (2) at least one food image. To automate this process, we build 

a binary classifier based on a deep convolutional neural network to filter out non-food 

images. As suggested in Reference [35], we treat the whole training set of Food-101 dataset 

[6] as one generic food category and sampled the same number of images (75,750) from the 

ImageNet dataset [16] as our non-food category. We took the pretrained VGG CNN model 

[48] and replaced the final 1,000-dimensional softmax with a single logistic node. For the 

validation, we use the Food-101 testing dataset along with the same number of images 

sampled from ImageNet (25,250). We trained the binary classifier using the Caffe 

framework [27], and it reached 98.7% validation accuracy. We applied the criteria to all the 

datasets, and the final statistics are shown in Table I.

2Our system is not restricted to these five dietary restrictions, and we will extend the system functionalities to other categories in the 
future.
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Figure 2 shows the visualizations of the collected datasets. For each of the recipe images, we 

embed it into a 1,000-dimensional feature space using FoodDist (described later in Section 

5) and then project all the images onto a two-dimensional (2D) plane using t-Distributed 

Stochastic Neighbor Embedding(t-SNE) [55]. For visibility, we further divide the 2D plane 

into several blocks, from each of which we sample a representative food image residing in 

that block to present in the figure. Figure 2 demonstrates the large diversity and coverage of 

the collected datasets. Also, the embedding results clearly demonstrate the effectiveness of 

FoodDist in grouping similar food items together while pushing dissimilar items away. This 

is important to the performance of Yum-me, as discussed in Section 6.3.

3.2. User Survey

The user survey is designed to elicit user’s high-level dietary restrictions and nutritional 

expectations. Users can specify their dietary restrictions among the five categories 

mentioned-above and indicate their nutritional expectations in terms of the desired amount 

of calories, protein, and fat. We choose these nutrients for their high relevance to many 

common health goals, such as weight control [18], sports performance [7], and so on. We 

provide three options for each of these nutrients, including reduce, maintain, and increase. 

The user’s diet type is used to select the appropriate food dataset, and the food items in the 

dataset are further ranked by their suitability to users’ health goals based on the nutritional 

facts.

To measure the suitability of food items given users’ nutritional expectations, we rank the 

recipes in terms of different nutrients in both ascending and descending order, such that each 

recipe is associated with six ranking values, that is, rcalories,a, rcalories,d, rprotein,a, rprotein,d, 

rfat,a, and rfat,d, where a and d stand for ascending and descending, respectively. The final 

suitability value for each recipe given the health goal is calculated as follows:

u = ∑
n ∈ 𝕌

αn, arn, a + ∑
n ∈ 𝕌

αn, drn, d, (1)

where 𝕌 = calories, protein, fat . The indicator coefficient αn,a = 1 ⇔ nutrient n is rated as 

reduce and αn,d = 1 ⇔ nutrient n is rated as increase. Otherwise αn,a = 0 and αn,d = 0. If 

user’s goal is to maintain all nutrients, then all recipes are given equal rankings. Eventually, 

given a user’s responses to the survey, we rank the suitability of all the recipes in the 

corresponding database and select top-M items (around top 10%) as the candidate pool of 

healthy meals for this user. In our initial prototype, we set M = 500.

3.3. Adaptive Visual Interface

Based on the food suitability ranking, a candidate pool of healthy meals is created. However, 

not all the meals in this candidate pool will suit the user’s palate. Therefore, we design an 

adaptive visual interface to further identify recipes that cater to the user’s taste through 

eliciting their fine-grained food preferences. We propose to learn users’ fine-grained food 

preferences by presenting users with food images and ask them to choose ones that look 

delicious.
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Formally, the food preference learning task can be defined as follows: Given a large target 
set of food items 𝕊, we represent user’s preferences as a distribution over all the possible 

food items, that is, p = [p1, …, p 𝕊 ], ∑i pi = 1 where each element pi denotes the user’s 

favorable scale for item i. Since the number of items, 𝕊 , is usually quite large and 

intractable to elicit individually from the user,3 the approach we take is to adaptively choose 

a specific and much smaller subset 𝕍  to present to the user and propagate the users’ 

preferences for those items to the rest items based on their visual similarity. Specifically, as 

Figure 1 shows, the preference elicitation process can be divided into two phases:

Phase I: In each of the first two iterations, we present 10 food images and ask users to tap on 

all the items that look delicious to them.

Phase II: In each of the subsequent iterations, we present a pair of food images and ask users 

to either compare the food pair and tap on the one that looks delicious to them or tap on 

“Yuck” if neither of the items appeal to their taste.

To support the preference elicitation process, we design a novel exploration-exploitation 

online learning algorithm built on a state-of-the-art food image embedding model, which 

will be discussed in the Section 4 and Section 5, respectively.

4. ONLINE LEARNING FRAMEWORK

We model the interaction between the user and our backend system at iteration t, 

(t ∈ ℛ+, t = 1, 2, …, T) as Figure 3 shows. The symbols that will be used in our algorithms are 

defined as follows:

• 𝒦t: Set of food items that are presented to user at iteration t (𝒦0 = Ø). 

∀k ∈ 𝒦t, k ∈ 𝕊,

• ℒt−1: Set of food items that are user prefer(select) among k k ∈ 𝒦t − 1 . 

ℒt − 1 ⊆ 𝒦t − 1;

• pt = [p1
t , …, p 𝕊

t ]: User’s preference distribution on all food items at iteration t, 

where ‖pt‖1 = 1. p0 is initialized as pi
0 = 1

𝕊 ;

• ℬt: Set of food images that have been already explored until iteration t (ℬ0 = Ø). 

ℬi ⊆ ℬ j(i < j);

• ℱ = f (x1), …, f (x 𝕊 ) : Set of feature vectors of food images xi(i  = 1, …, 𝕊 )

extracted by a feature extractor, denoted by f. We use FoodDist as the feature 

extractor. More details about FoodDist appear in Section 5.

3The target set is often the whole food database that different applications use. For example, the size of Yummly database can be up to 
1 million [62].
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Based on the workflow depicted in Figure 3, for each iteration t, the backend system updates 

vector pt−1 to pt and set ℬt − 1 to ℬt based on users’ selections ℒt−1 and previous image set 

𝒦t − 1. After that, it decides the set of images that will be immediately presented to the user 

(i.e., 𝒦t). Our food preference elicitation framework can be formalized in Algorithm. 1. The 

core procedures are update and select, which will be described in the following subsections 

for more details.

ALGORITHM 1

Food Preference Elicitation Framework.

4.1. User State Update

Based on user’s selections ℒt−1 and the image set 𝒦t − 1 1, the update module renews user’s 

state from ℬt − 1, pt − 1  to ℬt, pt . Our intuition and assumption behind following design 

is that people tend to have close preferences for similar food items.

Preference vector pt—Our strategy of updating preference vector pt is inspired by the 

Exponentiated Gradient Algorithm in bandit settings (EXP3) [3]. Specifically, at iteration t, 

each pi
t in vector pt is updated by

pi
t pi

t − 1 × e

βui
t − 1

pi
t − 1

, (2)

where β is the exponentiated coefficient that controls update speed and 

ut − 1 = u1
t − 1, …, u 𝕊

t − 1  is the update vector used to adjust each preference value.

To calculate update vector u, we formalize the user’s selection process as a data labeling 

problem [65] where for item i ∈ ℒt−1, label yi
t − 1 = 1, and for item j ∈ 𝒦t − 1\ℒt − 1, label 

y j
t − 1 = − 1. Thus the label vector yt − 1 = yi

t − 1, …, y 𝕊
t − 1  provided by the user is
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yi
t − 1 =

1 : i ∈ ℒt − 1
0 : i ∉ 𝒦t − 1
−1 : i ∈ 𝒦t − 1\ℒt − 1

. (3)

For update vector u, we expect that it is close to label vector y but with smooth propagation 

of label values to nearby neighbors (for convenience, we omit superscript that denotes 

current iteration). The update vector u can be regarded as a soften label vector compared 

with y. To make the solution more computationally tractable, for each item i with yi ≠ 0, we 

construct a locally connected undirected graph Gi as Figure 4 shows: ∀ j ∈ 𝕊, add an edge (i, 

j) if ||f (xi) − f (xj)|| ≤ δ. The labels yi for vertices sj in graph Gi are calculated as 

y j
i = 0( j = 1, …, 𝕊 \i), yi

i = yi.

For each locally connected graph Gi, we fix ui
i value as ui

i = yi
i and propose the following 

regularized optimization method to compute other elements ( ∀u j
i , j ≠ 1) of update vector ui, 

which is inspired by the traditional label propagation method [65]. Consider the problem of 

minimizing following objective function Q(ui):

min
ui ∑

j = 1, j ≠ i

𝕊
wi j(yi

i − u j
i )2 + ∑

j = 1, j ≠ i

𝕊
(1 − wi j)(u j

i − y j
i )2 . (4)

In Equation (4), wij represents the similarity measure between food item si and sj:

wi j = e
− 1

2α2 f (xi) − f (x j)
2

: f (xi) − f (x j) ≤ δ

0 : f (xi) − f (x j) > δ
, (5)

where, α2 = 1
𝕊 2 ∑i, j ∈ 𝕊 f (xi) − f (x j)

2

The first term of the objective function Q(ui) is the smoothness constraint, as the update 

value for similar food items should not change too much. The second term is the fitting 
constraint, which makes ui close to the initial labeling assigned by user (i.e., yi). However, 

unlike in Reference [65], in our algorithm, the tradeoff between these two constraints is 

dynamically adjusted by the similarity between item i and j where similar pairs are weighed 

more with smoothness and dissimilar pairs are forced to be close to initial labeling.
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ALGORITHM 2

User State Update Algorithm.

With Equation (4) being defined, we can take the partial derivative of Q(ui) with respect to 

different u j
i  as follows:

∂Q(ui)
u j, j ≠ i

i = 2wi j(u j
i − ui

i) + 2(1 − wi j)(u j
i − y j

i ) = 0. (6)

As u j
i − yi

i, then

u j
i = wi jui

i = wi jyi
i( j = 1, 2, …, 𝕊 ) . (7)

After all ui are calculated, the original update vector u is then the sum of ui, that is, 

u = ∑iu
i The pseudo code for the algorithm of updating preference vector is shown in 

Algorithm. 2 for details.

Explored food image set ℬt—To balance the exploitation and exploration in image 

selection phase, we maintain a set ℬt that keeps track of all similar food items that have 

already been visited by user and the updating rule for ℬt is as follows

ℬt ℬt − 1 ∪ i ∈ 𝕊 min j ∈ 𝒦t − 1
f (xi) − f (x j) ≤ δ (8)
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With the algorithms designed for updating preference vector pt and explored image set ℬt, 

the overall functionality of procedure update is shown in Algorithm 2.

4.2. Images Selection

After updating user state, the select module then picks food images that will be presented in 

the next round. To trade off between exploration and exploitation in our algorithm, we 

propose different images selection strategies based on current iteration t.

4.2.1. Food Exploration—For each of the first two iterations, we select ten different food 

images by using k-means++ [2] algorithm, which is a seeding method used in k-means 
clustering and can guarantee that selected items are evenly distributed in the feature space. 

For our use case, the k-means++ algorithm is summarized in Algorithm 3.

4.2.2. Food Exploitation-Exploration—Starting from the third iteration, users are asked 

to make pairwise comparisons between food images. To balance the Exploitation and 

Exploration, we always select one image from the area with higher preference value based 

on current pt and another one from unexplored area, that is, 𝕊\ℬt. (Both selections are 

random in a given subset of food items.) With the above explanations, the image selection 

method we propose in this application is shown in Algorithm 4.

ALGORITHM 3

k-means++ Algorithm for Exploration.
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ALGORITHM 4

Images Selection Algorithm - select

5. FOODDIST: FOOD IMAGE EMBEDDING

Formally, the goal of FoodDist is to learn a feature extractor (embedding) f such that given 

an image x, f(x) projects it to an N dimensional feature vector for which the Euclidean 

distance to other such vectors will reflect the similarities between food images, as Figure 5 

shows. Formally speaking, if image x1 is more similar to image x2 than image x3, then ‖f(x1) 

– f(x2)‖ < ‖f(x1) – f(x3)‖.

We build FoodDist based on recent advances in deep Convolutional Neural Networks 

(CNN), which provide a powerful framework for automatic feature learning. Traditional 

feature representations for images are mostly hand-crafted and were used with feature 

descriptors, such as Scale Invariant Feature Transform [34], which aims for invariance to 

changes in object scale and illumination, thereby improving the generalizability of the 

trained model. However, in the face of highly diverse image characteristics, the one-size-fits-

all feature extractor performs poorly. In contrast, deep learning adapts the features to 

particular image characteristics and extracts features that are most discriminative in the 

given task [43].

As we present below, a feature extractor for food images can be learned through 

classification and metric learning, or through multitask learning, which concurrently 

performs these two tasks. We demonstrate that the proposed multitask learning approach 

enjoys the benefits of both classification and metric learning and achieves the best 

performance.

5.1. Learning with Classification

One common way to learn a feature extractor for labeled data is to train a neural network 

that performs classification (i.e., mapping input to labels) and takes the output of a hidden 

layer as the feature representations; specifically, using a feedforward deep CNN with n-

layers (as the upper half of the Figure 6 shows),
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F(x) = gn gn − 1 …gi(…g1(x)…) , (9)

f (x) = gn − 1 …gi(…g1(x)…) . (10)

Usually, the last few layers will be fully connected layers, and the last layer gn(.) is roughly 

equivalent to a linear classifier that is built on the features f(x) [26]. Therefore, f(x) is 

discriminative in separating instances under different categorical labels, and the Euclidean 

distances between normalized feature vectors can reflect the similarities between images.

5.2. Metric Learning

Differing from the classification approach, where the feature extractor is a by-product, 

metric learning proposes to learn the distance embedding directly from the paired inputs of 

similar and dissimilar examples. Prior work [59] used a Siamese network to learn a feature 

extractor for food images. The structure of a Siamese network resembles that in Figure 6 but 

without the Class label, Fully connected, 101, and Softmax Loss layers. The inputs to the 

Siamese network are pairs of food images x1, x2. The images pass through CNNs with 

shared weights, and the output of each network is regarded as the feature representation, that 

is, f(x1) and f(x2), respectively. Our goal is for f(x1) and f(x2) to have a small distance value 

(close to 0) if x1 and x2 are similar food items; otherwise, they should have a larger distance 

value. The value of contrastive loss is then back-propagated to optimize the Siamese 

network:

ℒ(x1, x2, l) = 1
2 lD2 + 1

2(1 − l) max (0, m − D)2, (11)

where similarity label l ∈ {0, 1} indicates whether the input pair of food items x1, x2 are 

similar (l = 1 for similar, l = 0 for dissimilar), m > 0 is the margin for dissimilar items, and D 
is the Euclidean distance between f(x1) and f(x2) in embedding space. Minimizing the 

contrastive loss will pull similar pairs together and push dissimilar pairs farther away (larger 

than a margin m), and it exactly matches the goal.

The major advantage of metric learning is that the network will be directly optimized for our 

final goal, that is, a robust distance measure between images. However, as shown in the 

model benchmarks, using the pairwise information alone does not improve the embedding 

performance as the process of sampling pairs loses the label information, which is arguably 

more discriminative than (dis)similar pairs.

5.3. Multitask Learning: Concurrently Optimize Both Tasks

Both methods above have their pros and cons. Learning with classification leverages the 

label information, but the network is not directly optimized to our goal. As a result, although 

the feature vectors are learned to be separable in the linear space, the intra- and inter- 
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categorical distances might still be unbalanced. On the other hand, metric learning is 

explicitly optimized for our final objective by pushing the distances between dissimilar food 

items apart beyond a margin m. Nevertheless, sampling the similar or dissimilar pairs loses 

valuable label information. For example, given a pair of items with different labels, we only 

consider the dissimilarity between the two categories they belong to, but overlook the fact 

that each item also differs from the remaining n − 2 categories, where n is the total number 

of categories.

To leverage the benefits of both tasks, we propose a multitask learning design [26] for 

FoodDist. The idea of multitask learning is to share part of the model across tasks to 

improve the generalization ability of the learned model [26]. In our case, as Figure 6 shows, 

we share the parameters between the classification network and Siamese network and 

optimize them simultaneously. We use the base structure of the Siamese network and share 

the upper CNN with a classification network where the output of the CNN is fed into a 

cascade of a fully connected layer and a softmax loss layer. The final loss of the whole 

network is the weighted sum of the softmax loss ℒsoftmax and contrastive loss ℒcontrastive:

ℒ = ωℒsoftmax + (1 − ω)ℒcontrastive (12)

Our benchmark results (Section 6.2) suggest that the feature extractor built with multitask 

learning achieves the best of both worlds: It achieves the best performance for both 

classification and Euclidean distance-based retrieval tasks.

6. EVALUATION

• H1: Our online learning framework learns more accurate food preference profile 

than baseline approaches.

• H2: FoodDist generates better similarity measure for food images than state-of-

the-art embedding models.

• H3: Yum-me makes more accurate nutritionally appropriate meal 

recommendations than traditional surveys, as it integrates coarse-grained item 

filtering (provided by a survey) with fine-grained food preference learned 

through adaptive elicitation.

In this section, we first present user testing results for the online learning framework in 

Section 6.1 and then the offline benchmark FoodDist model with a large-scale real-world 

food image dataset in Section 6.2 and, finally, discuss the results of end-to-end user testing 

in Section 6.3.

6.1. User Testing for Online Learning Framework

To evaluate the accuracy of our online learning framework, we conducted a field study 

among 227 anonymous users recruited from social networks and university mailing lists. 

The experiment was approved by Institutional Review Board (ID: 1411005129) at Cornell 
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University. All participants were required to use this system independently 3 times. Each 

time the study consisted of following two phases:

• Training Phase. Users conducted the first T iterations of food image 

comparisons, and the system learnt and elicited preference vector pT based on 

the algorithms proposed in this article or baseline methods, which will be 

discussed later. We randomly picked T from set {5, 10, 15} at the beginning but 

made sure that each user experienced different values of T only once.

• Testing Phase. After T iterations of training, users entered the testing phase, 

which consisted of 10 rounds of pairwise comparisons. We picked testing images 

based on preference vector pT that were learned from online interactions: One of 

them was selected from food area that user liked (i.e., item with top 1% 

preference value) and the other one from the area that user disliked (i.e., item 

with bottom 1% preference value). Both of the images were picked randomly 
among unexplored food items.

6.1.1. Prediction Accuracy—To evaluate the effectiveness of user state update and 

images selection methods, respectively, we conduct a 2-by-2 experiment in this section. For 

the user state update method, we compare the proposed Label propagation, Exponentiated 
Gradient (LE) algorithm to Online Perceptron (OP), and for the images selection method, 

we compare the proposed Exploration-Exploitation (EE) algorithm to the Random Selection 
(RS). Specifically, four frameworks presented below are evaluated. Users encountered them 

randomly when they logged into the system.

LE+EE: This is the online learning algorithm proposed in this article that combines the 

ideas of Label propagation, the Exponentiated Gradient algorithm for user state update, and 

Exploitation-Exploration strategy for images selection.

LE+RS: This algorithm retains our method for user state update (LE) but Random Select 

images to present to user without any exploitation or exploration.

OP+EE: As each item is represented by a 1,000-dimensional feature vector, we can adopt 

the idea of regression to tackle this online learning problem (i.e., learning weight vector w 
such that w f(xi) is higher for item i that user prefer). Hence, we compare our method with 

Online Perceptron algorithm that updates w whenever it makes error, that is, if yiw f(xi) ≤ 0, 

then assign w ← w + yiw f(xi), where yi is the label for item i (pairwise comparison is 

regarded as binary classification such that the food item that user select is labeled as +1 and 

otherwise −1). In this algorithm, we retain our strategy of images selection (i.e., EE).

OP+RS: The last algorithm is the Online Perceptron mentioned above but with Random 

images Selection strategy.

Of the 227 participants in our study, 58 of them finally used algorithm LE+EE and 57 used 

OP+RS. For the rest of the users (112), half of them (56) tested OP+EE and the other half 

(56) tested LE+RS. Overall, the participants for different algorithms are totally random so 

the performances of different models are directly comparable.
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After all users go through the training and testing phases, we calculate the prediction 

accuracy of each individual user and aggregate them based on the context that they 

encountered (i.e. the number of training iterations T and the algorithm settings mentioned 

above). The prediction accuracies and their cumulative distributions are shown in Figures 7, 

8, and 9 respectively.

Length effects of training iterations: As shown in Figure 7 and Figure 8, the prediction 

accuracies of our online learning algorithm are all significantly higher than the baselines. 

The algorithm performance is further improved with longer training period. As is clearly 

shown in Figure 8, when the number of training iterations reaches 15, about half of the users 

will experience the prediction accuracy that exceeds 80%, which is fairly promising and 

decent considering the small number of interactions that the system elicited from scratch. 

The results above justify that the online preference learning algorithm can adjust itself to 

explore users’ preference area as more information is available from their choices. For the 

task of item-based food preference bootstrapping, our system can efficiently balance the 

exploration-exploitation while providing reasonably accurate predictions.

Comparisons across different algorithms: As mentioned previously, we compared our 

algorithm with several obvious alternatives. As shown in Figure 7 and Figure 9, none of 

these algorithms works very well and the accuracy of prediction is actually decreasing as the 

user provides more information. Additionally, as is shown in Figure 9, our algorithm has 

particular advantages when users are making progress (i.e., the number of training iterations 

reaches 15). The reason why these techniques are not suited for our application is mainly 

due to the following limitations:

Random Selection: Within a limited number of interactions, random selection cannot 

maintain the knowledge that it has already learned about the user (exploitation) or explore 

unknown areas (exploration). In addition, it is more likely that the system will choose food 

items that are very similar to each other and thus hard for the user to make decisions. 

Therefore, after short periods of interactions, the system is messed up, and the performance 

degrades.

Underfitting: The algorithm that will possibly have the underfitting problem is the online 

perceptron (OP). For our application, each food item is represented by a 1,000-dimensional 
feature vector, and OP is trying to learn a separate hyperplane based on a limited number of 

training data. As each single feature is directly derived from a deep neural network, the 

linearity assumptions made by the perceptron might yield wrong predictions for the dishes 

that have not been explored before.

6.1.2. System Efficiency—As another two aspects of online preference elicitation 

system, computing efficiency and user experience are also very important metrics for system 

evaluation. Therefore, we recorded the program execution time and user response time as a 

lens into the real-time performance of the online learning algorithm. As shown in Figure 

10(b), the program execution time is about 0.35s for the first two iterations and less than 

0.025s for the iterations afterwards.4 Also, according to Figure 10(a), the majority of users 

can make their decisions in less than 15s for the task of comparison among 10 food images 
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while the payload for the pairwise comparison is less than 2 to 3s. As a final cumulative 

metric for the system overhead, it is shown in Table II that even for 15 iterations of training, 

users can typically complete the whole process within 53s, which further justify that our 

online learning framework is lightweight and user friendly in efficiently eliciting food 

preference.

6.1.3. User Qualitative Feedback—After the study, some participants send us emails 

regarding their experiences towards the adaptive visual interface. Most of the comments 

reflect the participants’ satisfactions and that our system is able to engage the user 

throughout the elicitation process, for example, “Now I’m really hungry and want a grilled 
cheese sandwhich!,” “That was fun seeing tasty food at top of the morning,” and “Pretty 
cool tool.” However, they also highlight some limitations of our current prototype, for 

example, “I am addicted to spicy food and it totally missed it. There may just not be enough 
spicy alternatives in the different dishes to pick up on it” points out that the prototype is 

limited in the size of the food database.

6.2. Offline Benchmarking for FoodDist

We develop FoodDist and baseline models (Section 5) using the Food-101 training dataset, 

which contains 75,750 food images from 101 food categories (750 instances for each 

category) [6]. To the best of our knowledge, Food-101 is the largest and most challenging 

publicly available dataset for food images. We implement models using Caffe [27] and 

experiment with two CNN architectures in our framework: AlexNet [33], which won first 

place at the ILSVRC2012 challenge, and VGG [48], which is the state-of-the-art CNN 

model. The inputs to the networks are image crops of sizes 224 × 224 (VGG) or 227 × 227 

(AlexNet). They are randomly sampled from a pixelwise mean-subtracted image or its 

horizontal flip. In our benchmark, we train four different feature extractors: AlexNet

+Learning with classification (AlexNet+CL), AlextNet+Multitask learning (AlexNet+MT), 

VGG+Learning with classification (VGG+CL), and VGG+Multitask learning (VGG+ML, 
FoodDist). For the multitask learning framework, we sample the similar and dissimilar 

image pairs with 1:10 ratio from the Food-101 dataset based on the categorical labels to be 

consistent with the previous work [59]. The models are fine-tuned based on the networks 

pre-trained with the ImageNet data. We use Stochastic Gradient Decent with a mini-batch 

size of 64, and each network is trained for 10 × 104 iterations. The initial learning rate is set 

to 0.001, and we use a weight decay of 0.0005 and momentum of 0.9.

We compare the performance of four feature extractors, including FoodDist, with the state-

of-the-art food image analysis models using the Food-101 testing dataset, which contains 

25,250 food images from 101 food categories (250 instances for each category). The 

performance for the classification and retrieval tasks are evaluated as follows:

• Classification: We test the performance of using learned image features for 

classification. For the classification deep neural network in each of the models 

above, we adopt the standard 10-crop testing. that is, the network makes a 

prediction by extracting 10 patches (the four corner patches and the center patch 

4Our web system implementation is based on Amazon EC2 t2-micro Linux 64-bit instance
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in the original images and their horizontal reflections) and averaging the 

predictions at the softmax layer. The metrics used in this article are Top-1 

accuracy and Top-5 accuracy.

• Retrieval: We use a retrieval task to evaluate the quality of the Euclidean 

distances between extracted features. Ideally, the distances should be smaller for 

similar image pairs and larger for dissimilar pairs. Therefore, as suggested by 

previous work [59, 61], we check the nearest k-neighbors of each test image, for 

k = 1, 2, …, N, where N = 25, 250 is the size of the testing dataset, and calculate 

the Precision and Recall values for each k. We use mean Average Precision 

(mAP) as the evaluation metric to compare the performance. For every method, 

the Precision/Recall values are averaged over all the images in the testing set.

The classification and retrieval performance of all models are summarized in Table III and 

Table IV, respectively. FoodDist performs the best among four models and is significantly 

better than the state-of-the-art approaches in both tasks. For the classification task, the 

classifier built on FoodDist features achieves 83.09% Top-1 accuracy, which significantly 

outperforms the original RFDC [6] model and the proprietary GoogLeNet model [35]; for 

the retrieval task, FoodDist doubles the mAP value reported by previous work [59] that only 

used the AlexNet and Siamese network architecture. The benchmark results demonstrate that 

FoodDist features possess high generalization ability and the Euclidean distances between 

feature vectors reflect the similarities between food images with great fidelity. In addition, as 

we can observe from both tables, the multitask learning-based approach always performs 

better than learning with classification for both tasks no matter which CNN is used. This 

further justifies the proposed multitask learning approach and its advantage of incorporating 

both label and pairwise distance information that makes the learned features more 

generalizable and meaningful in the Euclidean distance embedding.

6.3. End-to-End User Testing

We conducted end-to-end user testing to validate the efficacy of Yum-me recommendations. 

We recruited 60 participants through the university mailing list, Facebook, and Twitter. The 

goal of the user testing was to compare Yum-me recommendations with a widely used user 

onboarding approach, that is, a traditional food preference survey (a sample survey used by 

PlateJoy is shown in Figure 13). As Yum-me is designed for scenarios where no rating or 

food consumption history is available (which is common when the user is new to a platform 

or is visiting a nutritionist’s office), a collaborative filtering algorithm that has been adopted 

by many state-of-the-art recommenders is not directly comparable to our system.

In this study, we used a within-subjects study design in which each participant expressed 

their opinions regarding the meals recommended by both of the recommenders, and the 

effectiveness of the systems were compared on a per-user basis.

6.3.1. Study Design—We created a traditional recommendation system by randomly 

picking N of M meals in the candidate pool to recommend to the users. The values of N and 

M are controlled such that N = 10, M = 500 for both Yum-me and the traditional baseline. 

The user study consists of three phases, as Figure 11 shows: (1) Each participant was asked 
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to indicate his or her diet type and health goals through our basic user survey. (2) Each 

participant was then asked to use the visual interface. (3) Twenty meal recommendations 

were arranged in a random order and presented to the participant at the same time, where 10 

of them are made by Yum-me, and the other 10 are generated by the baseline. The 

participant was asked to express their opinion by dragging each of the 20 meals into either 

the Yummy or the No way bucket. To overcome the fact that humans would tend to balance 

the buckets if their previous choices were shown, the food item disappeared after the user 

dragged it into a bucket. In this way, users were not reminded of how many meals they had 

put into each bucket.

The user study systems were implemented as web services and participants accessed the 

study from desktop or mobile browsers. We chose a web service for its wide accessibility to 

the population, but we could easily fit Yum-me into other ubiquitous devices, as mentioned 

earlier.

6.3.2. Participants—The most common dietary choice among our 60 participants was No 
restrictions (48), followed by Vegetarian (9), Halal (2), and Kosher (1). No participants 

chose Vegan. Participant preferences in terms of nutrients are summarized in Table V. For 

Calories and Fat, the top two goals were Reduce and Maintain. For Protein, participants 

tended to choose either Increase or Maintain. For health goals, the top four participant 

choices were Maintain calories-Maintain protein-Maintain fat (20), Reduce calories-
Maintain protein-Reduce fat (10), Reduce calories-Maintain protein-Maintain fat (10) and 

Reduce calories-Increase protein-Reduce fat (5). The statistics match well with the common 

health goals among the general population, that is, people who plan to control weight and 

improve sports performance tend to reduce the intake calories and fat and increase the 

amount of protein.

6.3.3. Quantitative Analysis—We use a quantitive approach to demonstrate that (1) 

Yum-me recommendations yield higher meal acceptance rates than traditional approaches 

and (2) meals recommended by Yum-me satisfy users’ nutritional needs.

To show higher meal acceptance rates, we calculated the participant acceptance rate of meal 

recommendations as

#Meals in Yummy bucket
#Recommended meals .

The cumulative distribution of the acceptance rate is shown in Figure 12, and the average 

acceptance rate, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) of each 

approach are presented in Table VI. The results demonstrate that Yum-me significantly 

improves the quality of the presented food items. The per-user acceptance rate difference 

between two approaches was normally distributed,5 and a paired Student’s t-test indicated a 

significant difference between the two methods (p < 0.0001).6

5A Shapiro Wilk W test was not significant (p = 0.12), which justifies that the difference is normally distributed.
6We also performed a non-parametric Wilcoxon signed-rank test and found a comparable result.
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To quantify the improvement provided by Yum-me, we calculated the difference between the 

acceptance rates of the two systems, that is, difference = Yum-me acceptance rate − baseline 
acceptance rate. The distribution and average values of the differences are presented in 

Figure 14 and Table VI, respectively. It is noteworthy that Yum-me outperformed the 

baseline by 42.63% in terms of the number of preferred recommendations, which 

demonstrates its utility over the traditional meal recommendation approach. However, 

another observed phenomenon in Figure 14 is that there are 12 users (20%) with zero 

acceptance rate differences, which may due to the following two reasons: (1) Yum-me is not 

effective to this set of users, and it does not improve their preferences towards recommended 

food items. (2) As we did not conduct participant control and filtering, some participants 

may not be well involved in the study and randomly select or drag items.

To examine meal nutrition, we compare the nutritional facts of paticipants’ favorite meals 

with those of meals recommended (by Yum-me) and accepted (items dragged into the 

yummy bucket) by the user. As shown in Figure 15, for users with the same nutritional needs 

and no dietary restrictions, we calculate the average amount of protein, calories, and fat (per-

serving) in (1) their favorite 20 meals (as determined by our online learning algorithm) and 

(2) their recommended and accepted meals, respectively. The mean values presented in 

Figure 15 are normalized by the average amount of corresponding nutrients in their favorite 

meals. The results demonstrate that by using a relatively simple nutritional ranking 

approach, Yum-me is able to satisfy most of the nutritional needs set by the users, including 

reduce, maintain and increase calories, increase protein, and reduce fat. However, our system 

fails to meet two nutritional requirments, that is, maintain protein and maintain fat. Our 

results also show where Yum-me recommendations result in unintended nutritional 

composition. For example, the goal of reducing fat results in the reduction of protein and 

calories, and the goal of increasing calories ends up increasing the protein in meals. This is 

partially due to the inherent inter-dependence between nutrients, and we leave further 

investigation of this issue to future work.

6.3.4. Qualitative Analysis—To qualitatively understand the personalization mechanism 

of Yum-me, we randomly pick three participants with no dietary restrictions and with the 

health goal of reducing calories. For each user, we select top-20 general food items the user 

likes most (inferred by the online learning algorithm). These food items played important 

roles in selecting the healthy meals to recommend to the user. To visualize this relationship, 

among these top-20 items, we further select two food items that are most similar to the 

healthy items Yum-me recommended to the users and present three such examples in Figure 

16. Intuitively, our system is able to recommend healthy food items that are visually similar 
to the food items a user like, but the recommended items are of lower calories due to the use 

of healthier ingredients or different cooking styles. These examples showcase how Yum-me 

can project users’ general food preferences to the domain of the healthy options and find the 

ones that can most appeal to users.

6.3.5. Error Analysis—Through a closer examination of the cases where our system 

performed, or did not perform, well, we observed a negative correlation between the entropy 

of the learned preference distribution p7 and the improvement of Yum-me over the baseline 
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(r = −0.32, p = 0.026). This correlation suggests that when user’s preference distributions are 

more concentrated, the recommended meals tend to perform better. This is not too 

surprising, because the entropy of the preference distribution roughly reflects the degree of 

confidence the system has in the users’ preferences, where the confidence is higher if the 

entropy is lower and vice versa. In Figure 17, we show the evolution of the entropy value as 

the users are making more comparisons. The results demonstrate that the system becomes 

more confident about user’s preferences as users provide more feedback.

7. DISCUSSION

In this section, we discuss the limitations of the current prototype and study and present real-

world scenarios where Yum-me and its sub-modules can be used.

7.1. Limitations of the Evaluations

In evaluating the online learning framework, because there is no previous algorithm that can 

end-to-end solve our preference elicitation problem, the baselines are constructed by 

combining methods that intuitively fit user state update and images selection modules, 

respectively. This introduces potential biases in baseline selections. Additionally, in the end-

to-end user testing, the participants’ judgements of whether the food is Yummy or No way is 

potentially influenced by the image quality and the health concerns. These may be 

confounding factors in measuring users’ preferences towards food items and can be 

eliminated by explicitly instructing the participants to not consider these factors. We leave 

further evaluations as future work.

7.2. Limitations of Yum-me in Recommending Healthy Meals

The ultimate effectiveness of Yum-me in generating healthy meal suggestions is contingent 

on the appropriateness of the nutritional needs input by the user. To conduct such 

recommendations for people with different conditions, Yum-me could be used in the context 

of personal health coaches, nutritionists, or coaching applications that provide reliable 

nutritional suggestions based on the user’s age, weight, height, exercise, and disease history. 

For instance, general nutritional recommendations can be calculated using online services 

built on the guidelines from National Institutes of Health, such as weight-success8 and 

active.9 Also, although we have demonstrated the feasibility of building a personalized meal 

recommender catering to people’s fine-grained food preference and nutritional needs, the 

current prototype of Yum-me assumes a relatively simple strategy to rank the nutritional 

appropriateness, and is limited in terms of the available options for nutrition. Future work 

should investigate more sophisticated ranking approaches and incorporate options relevant to 

the specific application context.

7Entropy of preference distribution: H(p) = − ∑i pilogpi .
8http://www.weighing-success.com/NutritionalNeeds.html.
9http://www.active.com/fitness/calculators/nutrition.
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7.3. Yum-Me for Real-World Dietary Applications

We envision that Yum-me has the potential to power many real-world dietary applications. 

For example, (1) User onboarding. Traditionally, food companies, for example, Zipongo and 

Plated, address the cold start problem by asking each new user to answer a set of pre-defined 

questions, as shown in Section 6.3, and then recommend meals accordingly. Yum-me can 

enhance this process by eliciting user’s fine-grained food preference and informing an 

accurate dietary profile. Service providers can customize Yum-me to serve their own 

businesses and products by using a specialized backend food item database and then use it as 

a step after the general questions. (2) Nutritional assistants. While visiting a doctor’s office, 

patients are often asked to fill out standard questionnaires to indicate food preferences and 

restrictions. Patients’ answers are then investigated by the professionals to come up with 

effective and personalized dietary suggestions. In such a scenario, the recommendations 

made by Yum-me could provide a complementary channel for communicating the patient’s 

fine-grained food preferences to the doctor to further tailor suggestions.

7.4. FoodDist for a Wide Range of Food Image Analysis Tasks

FoodDist provides a unified model to extract features from food images so they are 

discriminative in the classification and clustering tasks, and its pairwise Euclidean distances 

are meaningful in reflecting similarities. The model is rather efficient (<0.5s/f on eight-core 

commodity processors) and can be ported to mobile devices with the publicly available 

caffe-android-lib framework.10

In addition to enabling Yum-me, we released the FoodDist model to the community (https://

github.com/ylongqi/FoodDist), so it can be used to fuel other nutritional applications. For 

the sake of space, we only briefly discuss two sample use cases below:

• Food/Meal recognition: Given a set of labels, for example, food categories, 

cuisines, and restaurants, the task of food and meal recognition could be 

approached by first extracting food image features from FoodDist and then 

training a linear classifier, for example, logistic regression or SVM, to classify 

the food images that are beyond the categories given in the Food-101 dataset.

• Nutrition Facts estimation: With the emergence of large-scale food item or 

recipe databases, such as Yummly, the problem of nutritional fact estimation 

might be converted to a simple nearest-neighbor retrieval task: Given a query 

image, we find its closest neighbor in the FoodDist based on Euclidean distance 

and use that neighbor’s nutritional information to estimate the nutrition facts of 

the query image [35].

8. CONCLUSION AND FUTURE WORK

In this article, we propose Yum-me, a novel nutrient-based meal recommender that makes 

meal recommendations catering to users’ fine-grained food preferences and nutritional 

needs. We further present an online learning algorithm that is capable of efficiently learning 

10https://github.com/sh1r0/caffe-android-lib.
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food preference and FoodDist, a best-of-its-kind unified food image analysis model. The 

user study and benchmarking results demonstrate the effectiveness of Yum-me and the 

superior performance of the FoodDist model.

Looking forward, we envision that the idea of using visual similarity for preference 

elicitation may have implications to the following research areas. (1) User-centric 
modeling: the fine-grained food preference learned by Yum-me can be seen as a general 

dietary profile of each user and be projected to other domains to enable more dietary 

applications, such as suggesting proper meal plans for diabetes patients. Moreover, a 

personal dietary API can be built on top of this profile to enable sharing and 

improvementment across multiple dietary applications. (2) Food image analysis API for 
deeper content understanding: With the release of the FoodDist model and API, many 

dietary applications, in particular the ones that capture a large number of food images, might 

benefit from a deeper understanding of their image contents. For instance, food journaling 

applications could benefit from the automatic analysis of food images to summarize the day-

to-day food intake or trigger timely reminders and suggestions when needed. (3) Fine-
grained preference elicitation leveraging visual interfaces. The idea of eliciting users’ 

fine-grained preference via visual interfaces is also applicable to other domains. The key 

insight here is that visual contents capture many subtle variations among objects that text or 

categorical data cannot capture, and the learned representations can be used as an effective 

medium to enable fine-grained preferences learning. For instance, the IoT, wearable, and 

mobile systems for entertainments, consumer products, and general content deliveries might 

leverage such an adaptive visual interface to design an onboarding process that learn users’ 

preferences in a much shorter time and potentially provide a more pleasant user experience 

than traditional approaches.
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Fig. 1. 
Overview of Yum-me. This figure shows three sample scenarios in which Yum-me can be 

used: desktop browser, mobile, and smart watch. The fine-grained dietary profile is used to 

re-rank and personalize meal recommendations.
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Fig. 2. 
Overview of two sample databases: (a) Database for users without dietary restrictions and 

(b) Database for vegetarian users.
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Fig. 3. 
User-system interaction at iteration t.
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Fig. 4. 
Locally connected graph with item i.
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Fig. 5. 
Euclidean embedding of FoodDist. This figure shows the pairwise Euclidean distances 

between food images in the embedding. A distance of 0.0 means two food items are 

identical and a distance of 2.0 represents that the image contents completely differ. For this 

example, if the threshold is set to 1.0, then all the food images can be correctly classified.
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Fig. 6. 
Multitask learning structure of FoodDist. Different types of layers are denoted by different 

colors. The format of each type of layer: Convolution layer: [receptive field size:step size …, 

#channels]; Pooling layer: [pooling size:step size …]; Fully connected layer: […, output 

dimension].
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Fig. 7. 
Prediction accuracy for different algorithms in various training settings (asterisks represent 

different levels of statistical significance: ***: p < 0.001, **: p < 0.01, *: p < 0.05).
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Fig. 8. 
Cumulative distribution of prediction accuracy for LE+EE algorithm (Numbers in the legend 

represent the number of training iterations (i.e., values of T)).
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Fig. 9. 
Comparison of cumulative distribution of prediction accuracy across different algorithms.
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Fig. 10. 
Timestamp records for user response time and system execution time.
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Fig. 11. 
User study workflow for personalized nutrient-based meals recommendation system. We 

compare Yum-me (blue arrows) with the baseline method (violet arrow) that makes 

recommendations solely based on nutritional facts and dietary restrictions.
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Fig. 12. 
Cumulative distribution of acceptance rate for both recommender systems.
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Fig. 13. 
The survey used for user onboarding of PlateJoy. The questions are up to date at the time of 

the writing of this article, and we only include top four questions for illustration purpose.
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Fig. 14. 
Distribution of the acceptance rate differences between two recommender systems.
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Fig. 15. 
Nutritional facts comparison between paticipants’ favorite meals and recommended (Yum-

me) and accepted meals. The meal is accepted if it is dragged into the yummy bucket. The 

mean values are normalized by the average amount of corresponding nutrient in the favorite 

meals (orange bar). (Only seven of nine nutritional goals are used by at least one partipant.)
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Fig. 16. 
Qualitative analysis of personalized healthy meal recommendations. Images on the left half 

are sampled from users’ top-20 favorite meals learned from Yum-me; images on the right 

half are the meals presented to the user. The number under each food image represents the 

amount of calories for the dish, unit: kcal/serving.
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Fig. 17. 
Entropy of preference distributions in different iterations of online learning. (Data are from 

48 users with no dietary restrictions.)
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Table I

Sizes of Databases that Catered to Different Diet Types. Unit: Number of Unique Recipes

Database Original size Final size

No restriction 9,405 7,938

Vegetarian 10,000 6,713

Vegan 9,638 6,013

Kosher 10,000 4,825

Halal 10,000 5,002
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Table II

Average Time to Complete Training Phase

# Iter: 5 # Iter: 10 # Iter: 15

28.75s 39.74s 53.22s
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Table III

Model Performance of Classification Task.

Method Top-1 ACC (%) Top-5 ACC(%)

RFDC* [6] 50.76% —

GoogleLeNet* [35] 79% —

AlexNet+CL 67.63% 89.02%

AlexNet+MT 70.50% 90.36%

VGG+CL 82.48% 95.70%

VGG+MT (FoodDist) 83.09% 95.82%

*
Represents State-of-the-Art Approach and Bold Text Indicates the Method with the Best Performance
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Table IV

Model Performance of Retrieval Task.

Method mean Average Precision (mAP)

Food-CNN* [59] 0.3084

AlexNet+CL 0.3751

AlexNet+MT 0.4063

VGG+CL 0.6417

VGG+MT (FoodDist) 0.6670

*
Represents State-of-the-Art Approach and Bold Text Indicates the Method with the Best Performance

Note: The mAP value that we report for food-cnn is higher because we use pixel-wise mean subtraction while the original paper only used per-
channel mean subtraction.
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Table V

Statistics of Health Goals Among 60 Participants. Unit: Number of Participants

Nutrient Reduce Maintain Increase

Calories 30 28 2

Protein 1 44 15

Fat 23 36 1
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Table VI

Average Acceptance Rates (Avg. Acc.), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) 

between two Systems. Paired t-test P-value (Avg. Acc.): 8.58 × 10−10

Metric Mean SEM

Yum-me Avg. Acc. 0.7250 0.0299

Baseline Avg. Acc. 0.5083 0.0341

Yum-me MAE 0.2750 0.0299

Baseline MAE 0.4916 0.0341

Yum-me RMSE 0.4481 0.0355

Baseline RMSE 0.6649 0.0290
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