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The dorsal raphe (DR) nucleus is involved in a myriad of physiological functions, such as
the control of sleep-wake cycle, motivation, pain, energy balance, and food intake. We
have previously demonstrated that in ad libitum fed rats the intra-DR administration of
phenylephrine, an a-1 receptor agonist, does not affect food intake, whereas clonidine,
an a-2 receptor agonist, potently stimulates food intake. These results indicated that
in fed rats an increased adrenergic tonus blocked food intake, since the activation of
a-2 auto-receptors, which decreases pre-synaptic release of adrenaline/noradrenaline,
affected food intake. Thus, in this study we assessed whether the response to
adrenergic stimuli would differ after overnight fasting, a situation of low adrenergic
activity in the DR. Intra-DR administration of adrenaline and noradrenaline blocked food
intake evoked by overnight fasting. Similarly, phenylephrine administration decreased
hunger-induced food intake. These changes in food intake were accompanied by
changes in other behaviors, such as increased immobility time and feeding duration.
On the other hand, intra-DR administration of clonidine did not affect food-intake or
associated behaviors. These results further support the hypothesis that in fed animals,
increased adrenergic tonus in DR neurons inhibiting feeding, while in fasted rats the
adrenergic tonus decreases and favors food intake. These data indicate a possible
mechanism through which adrenergic input to the DRN contributes to neurobiology
of feeding.

Keywords: dorsal raphe (DR), adrenergic receptor, hunger, food intake, phenylephrine

INTRODUCTION

The raphe nuclei are distinct brain loci composed of groups of neurons located along the brainstem
that have been implicated in many physiological functions such as the control of the sleep-wake
cycle, motivation, pain, energy balance, and food intake (Berger et al., 2009; Pytliak et al., 2011;
Schneeberger et al., 2019). One of these nuclei is the dorsal raphe nucleus (DR) which is located
beneath the cerebral aqueduct and constitutes a collection of neurons with distinct morphology,
projections, and neurochemical phenotypes (Adell et al., 2002). The DR sends neuronal projections
to many forebrain structures, including a robust innervation to the hypothalamus, an important
area that influences food intake (Muzerelle et al., 2016; Ren et al., 2019).

Several studies indicate that the DR has a pivotal role in feeding behavior (Stachniak et al., 2014;
Anderberg et al., 2017; Bruschetta et al., 2020). Immunohistochemical studies revealed that food
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intake triggers neural activity in this nucleus (Wu et al,, 2014).
Moreover, optogenetic activation of specific GABAergic DR
neurons has been shown to increase food intake, while activation
of glutamatergic DR neurons suppresses feeding (Nectow et al,,
2017). The DR is the main source of serotonin (5-HT) in the
central nervous system, a neurotransmitter associated with satiety
(Blundell and Latham, 1979; Blundell, 1991). Pharmacological
approaches demonstrated that injection of 5-HT or 8-OH-DPAT,
a 5-HTja receptor agonist, into the DR induces feeding in
satiated rats. These effects were attributed to the activation of
inhibitory DR 5-HT;a somatodendritic autoreceptors, which
may regulate 5-HT release (Hutson et al., 1986; Fletcher and
Davies, 1990).

DR neural activity is also sensitive to endogenous
catecholamines (Adell et al, 2002), receiving substantial
noradrenergic input, especially from the commissural part of
the nucleus of the solitary tract (A2) and the locus coeruleus
(A6) (Peyron et al., 1996). High levels of mRNA for the a-1
adrenoceptors are present in the DR (Pieribone et al., 1994;
Day et al,, 1997) and in DR 5-HT neurons (Day et al., 2004).
However, studies documented a only moderate presence of
a-2 adrenoceptors in the DR (Unnerstall et al., 1985; Rosin
et al., 1993; Talley et al., 1996) with no significant expression
of a-2 adrenoceptor mRNA. These data suggest that these
receptors are located presynaptically in noradrenergic terminals
in this nucleus (McCune et al.,, 1993; Nicholas et al., 1993;
Scheinin et al, 1994). Electrophysiological and microdialysis
experiments disclosed that activation of «-1 adrenoceptors
leads to an increase in local serotonin release and increase the
firing rate of DR 5-HT neurons, while the activation of a-2
adrenoceptors leads to a decrease of serotonin release in this
nucleus (Baraban and Aghajanian, 1980; Vandermaelen and
Aghajanian, 1983; Bortolozzi and Artigas, 2003; Pudovkina
et al., 2003). Moreover, lesions with DSP-4, a neurotoxin that
impairs noradrenergic projections, abolishes the effects of
local clonidine injection on 5-HT release, which suggests that,
when administered into the DR, it acts predominantly on a-2
autoreceptors (Bortolozzi and Artigas, 2003).

In a recent study, we demonstrated that injection of a-2
agonist clonidine into the DR of satiated rats evoked hyperphagia
(Flores et al., 2021). The feeding response induced by clonidine
was similar to that found after noradrenaline or adrenaline
injections into the DR, suggesting that this hyperphagia depends
on a-2 adrenoceptors activation, while injection of a specific
a-1 agonist did not affect food intake (Flores et al, 2021).
Based on these previous data, we hypothesized that injection
of a-adrenoceptor agonists into DR may also affect ingestive
responses in fasted animals. To better understand the functional
role of DR a-adrenoceptors in feeding behavior, this study
aims to evaluate the effects of pharmacological manipulations of
a-adrenergic agonists in the DR on food intake after fasting.

MATERIALS AND METHODS

Animals
Male Wistar rats (weighing 270-300 g at the time of surgery) were
group-housed in a temperature-controlled (21 £ 2°C) room,

12:12 light-dark cycle (lights on at 7:00 a.m.) with standard
rodent chow and water available ad libitum. The animals were
housed in groups of five per cage until the day of the experiments.
The experimental procedures were conducted in compliance
with the recommendations of the Ethics Committee for the use
of Experimental Animals (CEUA) of the Federal University of
Santa Catarina, SC, Brazil (CEUA protocol: PP0075). All efforts
were made to minimize the number of animals used and their
pain and discomfort.

Stereotaxic Surgery
Rats were anesthetized with a mixture of xylazine (13 mg
kg~ !) and ketamine (87 mg kg™~ !) injected intraperitoneally and
underwent stereotaxic surgery for implantation of guide cannula
for subsequent drug microinjection into the DR. The stainless
steel guide cannula (30 G, 18 mm) was implanted about 2 mm
dorsolateral to DR in order to not injure the DR, according
to the coordinates (anteroposterior to bregma: + 7.9 mm,
lateral: + 2.2 mm and dorsoventral:-4.8 mm) as described by
Paxinos and Watson (2005). The cannula was anchored to the
skull with dental cement and the implant stabilized with jeweler
screws. A removable stylet was introduced to keep the cannula
free from blockage until the day of the experiment. To prevent
the rupture of the superior sagittal sinus and obstruction of the
cerebral aqueduct during stereotaxic surgery, the stereotaxic bar
was tilted 20°.

After surgery, the rats were housed in groups of five with free
access to food and water for 1 week for post-surgical recovery.

Drugs and Injections

Drug or vehicle injections were performed using a needle (33G,
20 mm length) extending 2 mm beyond the ventral tip of the
guide cannula and connected by polyethylene tubing (PE10)
to a 1 pl SGE® syringe. The injected volumes (0.4 wl) were
administered over 60 s, followed by a further 60 s with the needle
still inside the guide cannula for better diffusion of the solution.
The adrenergic agonists adrenaline (AD) and noradrenaline (NA)
(Sigma Chemical Co., United States) were injected at doses of
6, 20, and 60 nmol. The a-1 adrenergic agonist phenylephrine
(PHE) and the a-2 adrenergic agonist clonidine (CLO) (Tocris,
United States) were injected at doses of 6 and 20 nmol. A sterile
solution of 0.9% NaCl (VEH) was used as a vehicle for drug
dilution or injected alone in the control groups. The drug
doses used were based on previous studies from our research
group (dos Santos et al, 2009; Mansur et al., 2010). Each
animal received only one injection: a dose of one drug or the
corresponding vehicle.

Experimental Procedures and Behavioral

Assessment

After the post-surgical period, rats were habituated to the
recording box for two consecutive days (60 min each day) before
the experimental session. On the day before the experiment,
30 min before the light was turned off, food was removed
from home cages. Rats remained approximately 14-16 h without
access to food, but with free access to water. Immediately after
microinjections, rats were placed in a recording box containing
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rodent pellet chow (Nuvilab CR-1, regular diet: 3.85 kcal/g,
10% kcal fat, 20% kcal protein, and 70% kcal carbohydrate;
Nuvital, Brazil) in a feeder and water in a bottle placed outside
the test box with a spout that projected through the wall of
the box. The digital recording of the session (60 min) was
initiated with a webcam perpendicularly located 60 cm above
the recording chamber floor, and the amount of food and
water intake was recorded by the difference between food
or water weight at the beginning and at the end of the
recording period. At the end of the recording period, any
food that occasionally spilled on the cage floor was recovered
and weighed with the food that remained in the feeder. The
recording box has measures of length and width similar to
those of the home cages (49 x 34 cm), but with higher
sides (40 cm) to prevent escapes. A researcher blinded to
the experimental groups was designated to analyze the video-
recorded behavioral parameters using EthoLog 2.2.5 software
(Ottoni, 2000).

The variables analyzed for food intake were the amount of
chow consumed, the latency to start the behavior (in seconds),
the frequency (number of times that the animal exhibited the
feeding behavior), and the total duration of behavior (in seconds)
during the 60 min of recording. For fluid intake, the amount
of water drunk was analyzed. For non-ingestive behaviors
(locomotion, grooming, rearing and immobility) the duration
of these parameters was analyzed. The behavioral categories
were defined in previous studies by Halford et al. (1998) and
are described in Table 1. To avoid the influence of variation
of the time during the day, all experimental procedures were
started 1 h after the lights turned on, from 8:00 am to 10:00
am (light cycle).

Histological Confirmation of Drug

Injection Site

At the end of each experiment, rats were deeply anesthetized
with a mixture of xylazine (13 mg kg~!) and ketamine (87 mg
kg~!) injected intraperitoneally and then transcardially perfused
with saline (0.9% NaCl) followed by 10% formalin. Brains
were removed, kept in formalin and sliced in coronal plane
(50 wm) using a cryostat. Sections were stained with cresyl
violet and the position of the injection was assessed using a
light microscope. The Paxinos and Watson rat atlas (Paxinos
and Watson, 2005) was used to verify the injection sites (DR).
Only data from rats with cannula correctly placed in the DR

were included in the study (approximately 85% of the total of
implanted animals).

Statistical Analysis

Behavioral data were analyzed by one-way ANOVA followed by
Tukey post hoc analysis. Correlations between the amount of
food intake and the amount of water intake were performed
using Pearson’s parametric correlation. Results are expressed as
mean =+ standard error of the mean (SEM). In all statistical
analyses, only p < 0.05 were accepted as statistically significant.
The statistical analysis was performed with the GraphPad Prism
6.01 software (GraphPad Software, Inc., 2012).

RESULTS

All rats included in statistical analyses (n = 112) had injection sites
confirmed to be in the DR by histological analysis (Figures 1A,B).

Changes in Feeding and Non-feeding
Behaviors After Injection of Adrenaline
(AD) Into the DR of Fasted Rats

AD injection of 20 and 60 nmol doses into the DR decreased food
intake in fasted rats [F(3, 22) = 22.30, p < 0.0001] (Figure 2A),
as well as feeding duration [F(3, 24) = 21.12, p < 0.0001], when
compared with the control group (vehicle injection; Table 2).
Feeding frequency and latency to start feeding were not affected
by AD injection (Table 2). Water intake also decreased after
injection of AD 60 nmol [F(3, 22) = 7.97, p = 0.0009] (Figure 2B).
In addition, there was a positive correlation (r = 0.82; p < 0.0001)
between the amount of water intake and the amount of food
consumed (Figure 2C). The duration of immobility behavior was
increased [F(3, 21) = 26.40, p = 0.01] after AD injection of 20 and
60 nmol doses (Table 3). Other non-ingestive behaviors were not
changed by AD treatment (Table 3).

Changes in Feeding and Non-feeding
Behaviors After Injection of

Noradrenaline (NA) Into the DR of Fasted
Rats

NA injection of 60 nmol dose into the DR decreased food
intake in fasted rats [F(3, 22) = 9.85, p = 0.0003] (Figure 2D),
as well as feeding duration [F(3, 22) = 11.20, p = 0.0001],
when compared with control group (vehicle injection; Table 2).

TABLE 1 | The behavioral categories used for behavioral analysis.

Behavior Description

Eating Biting, gnawing, or swallowing food from Petri dish directly or from front paws.

Drinking Licking the spout water bottle.

Grooming Licking of the body, feet, and genitals. Scratching of coat or head with hind leg. Stroking whiskers with paws. Biting of the tail.
Rearing Front paws raised from the box floor and either placed on the side of the box or placed in front of the body.

Locomotion Walking around the box or circling. Movements involving all four limbs.

Immobility Relaxed position with head curled to body or resting on the bottom of the box, stretched out either on side or belly. Animal Inactive.

Based on Halford et al. (1998).
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of each injection site.

FIGURE 1 | Confirmation of injection sites into DR of fasted rats. (A) Photomicrograph of a stained section, showing injection site into the DR. (B) Injection sites at
the bregma level:7, 80 mm; other injection sites were located at-7.32 t0-8.04 mm to bregma. Ag, aqueduct; DR, dorsal raphe nucleus; DMPAG, dorsomedial
periaqueductal gray; LPAG, lateral periaqueductal gray; VLPAG, ventrolateral periaqueductal gray; mif, medial longitudinal fasciculus. Scale bar = 100 pm. *, location

Bregma: -7,80 mm
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FIGURE 2 | Food and water intake after injection of adrenaline (AD) or noradrenaline (NA) into DR of fasted rats. (A) Changes in the amount of food intake after
injection with vehicle (VEH) or AD at 6, 20, and 60 nmol doses into DR of fasted rats. (B) Changes in the amount of water intake after treatment with VEH or AD at 6,
20, and 60 nmol doses into DR of fasted rats. (C) Correlation between water and food intake after administration of AD (6, 20, 60 nmol) or VEH into DR.

, and 60 nmol doses into DR of fasted rats. (E) Changes in the amount of water
intake after injection with VEH or NA at 6, 20, and 60 nmol doses into DR of fasted rats. (F) Correlation between water and food intake after administration of NA (6,
20, 60 nmol) or VEH into DR. In all experiments, separate rats were used for each dose; each rat received only a single injection of drug or vehicle. Data represent
the mean £+ SEM *p < 0.05 vs. vehicle group. One-way ANOVA followed by Tukey’s post hoc test (n = 6-8 per group). Pearson’s correlation test *p < 0.05.

NA dose nmol

Feeding frequency and latency to start feeding were not affected
by NA injection (Table 2). Water intake was also decreased after
injection of NA 60 nmol dose [F(3, 22) = 3.69, p = 0.0273]
(Figure 2E) with a positive correlation (r = 0.82; p < 0.0001)

between the amount of water intake and the amount of food
consumed (Figure 2F). Lower doses of NA did not affect ingestive
behaviors or water intake. The duration of immobility [F(3,
19) = 22.26, p = 0.01] and grooming [F(3, 19) = 5.56, p = 0.006]
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TABLE 2 | Feeding duration, feeding frequency and feeding latency during 60 min
of recording after injection of adrenaline (AD), noradrenaline (NA), phenylephrine
(PHE), clonidine (CLO), or vehicle (VEH) into DR of fasted rats.

Drug Dose (nmol) Feeding Feeding frequency Feeding
duration (s) (episodes/60 min) latency (s)

AD  VEH 2136 + 89 8+ 1 220 + 39
6 nmol 2073 £ 222 7+1 284 + 56
20 nmol 1024 £ 172 8+ 1 431 £ 114

60 nmol 587 + 81* 8+ 1 202 + 54

NA  VEH 2196 + 238 9+1 193 + 46
6 nmol 1987 + 256 8+ 1 233 + 55

20 nmol 1707 + 269 8+ 1 174 £ 37

60 nmol 536 + 110* 7+1 223 + 32

PHE VEH 1762 £ 199 71 251 + 49
6 nmol 1297 + 266 641 216 + 42

20 nmol 579 4+ 96* 6+05 230 + 31

CLO VEH 1892 + 186 7+05 238 + 42
6 nmol 1451 + 272 7+1 245 + 53

20 nmol 1933 4+ 315 641 296 + 50

In all experiments, separate rats used for each dose; each rat received only a single
injection of drug or vehicle. Data represent the mean + SEM, *p < 0.05 vs. vehicle
group. One-way ANOVA followed by Tukey’s post hoc test (n = 6-8 per group).

TABLE 3 | Duration of non-ingestive behaviors during 60 min of recording after
injection of adrenaline (AD), noradrenaline (NA), phenylephrine (PHE), clonidine
(CLO), or vehicle (VEH) into DR of fasted rats.

Drug Dose Locomotion Rearing Grooming Immobility
(nmol) duration (s) duration (s) duration (s) duration (s)
AD VEH 319+ 64 95+ 24 143 + 46 390 + 108
6 nmol 322 + 47 148 £ 43 218 £ 38 508 + 114
20 nmol 386 + 34 129 +£ 18 233 + 64 1158 + 147*
60 nmol 428 + 46 137 £ 16 307 + 38 1754 £ 127~
NA VEH 334 +£ 70 110 £+ 30 150 + 39 365 + 90
6 nmol 290 + 47 120 + 43 245 + 38 610 £ 114
20 nmol 401 + 102 163 + 59 210+ 35 615+ 182
60 nmol 371 +£25 132 +9 333 + 46* 1718 £ 101*
PHE VEH 426 + 58 119+ 14 209 + 42 438 + 87
6 nmol 400 + 61 115+ 18 287 + 159 831 + 159
20 nmol 403 £+ 21 1832 £ 9 397 + 63 1718 £ 101~
CLO VEH 450 + 78 108 + 21 230 + 26 482 + 67
6 nmol 412 + 46 113+ 13 200 + 38 495 + 60
20 nmol 287 £ 23 109 + 18 229 + 36 381+ 19

In all experiments, separate rats used for each dose; each rat received only a single
injection of drug or vehicle. Data represent the mean + SEM, *p < 0.05 vs. vehicle
group. One-way ANOVA followed by Tukey'’s post hoc test (n = 6-8 per group).

behaviors were increased after NA injection of 60 nmol dose
(Table 3). Other non-ingestive behaviors were not affected by NA
treatment (Table 3).

Changes in Feeding and Non-feeding
Behaviors After Injection of
Phenylephrine (PHE) Into the DR of

Fasted Rats

PHE injection of 20 nmol dose into the DR decreased food
intake in fasted rats [F(2, 19) = 6.13, p = 0.0088] (Figure 3A),

as well as feeding duration [F(2, 19) = 8.97, p = 0.0018]
(Table 2). Similar to the results found in the AD and NA
experiments, feeding frequency and latency to start feeding were
also not affected by PHE injection (Table 2). Water intake
(Figure 3B) decreased after PHE injection of 6 and 20 nmol
doses [F(2, 19) = 13.34, p = 0.0002] with a positive, albeit small,
correlation (r = 0.68; p = 0.0005) between the amount of water
intake and the amount of food intake. Regarding non-ingestive
behaviors, the duration of immobility behavior was increased
after PHE injection of 20 nmol dose [F(2, 19) = 31.49, p = 0.004]
(Table 3). Other non-ingestive behaviors were not affected by
PHE treatment (Table 3).

In order to determine if this finding is specific for correct
injections in the DR, an additional group of rats received
injections of PHE 20 nmol in the decussation of the superior
cerebellar peduncle (xscp), a mesopontine area located between
the DR and median raphe nucleus (MR). Statistical analyses
revealed that PHE 20 nmol injection in the xscp did not affect
ingestive behaviors when compared to the intra-DR vehicle group
(Figures 3C,D). Previous work reported that PHE injection of
20 nmol dose into median raphe nucleus (MR) decreased food
intake in fasted rats (Ribas et al., 2012). Thus, the effects on food
intake could be the sum of the drug effects in these two nuclei due
the close localization in the mesopontine tegmentum. However,
the lack of effect on food intake of PHE injections into the xscp
indicates that the possibility of diffusion of the drug from DR
to MR is unlikely.

Changes in Feeding and Non-feeding
Behaviors After Injection of Clonidine
(CLO) Into the DR of Fasted Rats

Ingestive and non-ingestive behaviors were not significantly
affected by CLO injection into the DR at either 6 and 20 nmol
doses (Figure 3E and Tables 2, 3). Also, water intake remained
unchanged after CLO treatment in the DR when compared to the
control group (Figure 3F).

DISCUSSION

In the present study, we investigated the effects of
pharmacological manipulations of a-adrenergic agonists in
the DR on food intake in fasted rats. Overall, we observed
that acute injections of NA or AD into DR evoked reduced
food intake in fasted rats. a-adrenoceptors are present in the
DR, therefore our assumption is that the decrease in food
consumption after NA or AD infusions might be due to the
activation of these receptors. Strengthening this notion, injection
of specific a-1 agonists PHE into DR of fasted rats decreased
food intake similarly to response induced by NA or AD injection.
The injection of specific a-2 agonist CLO into DR does not
affect feeding, indicating that the activation of a-1 postsynaptic
adrenoceptors in this nucleus has an inhibitory influence on
feeding in fasted rats.

Interestingly, in a previous study opposite feeding responses
were induced by injection of a-adrenoceptors agonists into the
DR of satiated rats. In the fed state, AD, NA, or CLO injection
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FIGURE 3 | Food and water intake after injection of the a-1 adrenoceptor agonist phenylephrine (PHE) or the a-2 adrenoceptor agonist clonidine (CLO) into DR of
fasted rats. (A) Changes in the amount of food intake after injection with vehicle (VEH) or PHE at 6 and 20 nmol doses into DR of fasted rats. (B) Changes in the
amount of water intake after treatment with VEH or PHE at 6 and 20 nmol doses into DR of fasted rats. (C,D) Effect of the PHE 20 nmol injection into the
decussation of the superior cerebellar peduncle (xscp) on food intake in fasted rats. MR = median raphe nucleus; Aq = cerebral aqueduct; DR = dorsal raphe
nucleus; NS = non-significant. (E) Changes in the amount of food intake after injection with VEH or CLO at 6 and 20 nmol doses into DR of fasted rats. (F) Changes
in the amount of water intake after injection with VEH or CLO at 6 and 20 nmol doses into DR of fasted rats. In all experiments, separate rats were used for each
dose; each rat received only a single injection of drug or vehicle. Data represent the mean + SEM *p < 0.05 vs. vehicle group. One-way ANOVA followed by Tukey’s
post hoc test (n = 6-8 per group).

increased food intake while PHE treatment did not change
feeding behavior (Flores etal., 2021). Based on these findings,
the hyperphagic effect was attributed to the inhibition of NA

release in DR noradrenergic terminals by the activation of a-
2 presynaptic auto-receptors. This activation removes a possible
endogenous a-1 adrenergic stimulatory tone on DR serotonergic
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FIGURE 4 | Proposed role of noradrenergic circuits in the DR in food intake regulation in rats. In the fed state, there is a tonic activation of a-1 adrenoceptors into
this nucleus, which facilitates the release of a signal that inhibits food intake (possibly via 5-HT release into proensephalic areas) into prosencephalic areas. On the
other hand, in fasted rats the intensity of this endogenous noradrenergic activity seems to decline. We also speculate that peripheral satiety signals, such as CCK,
could indirectly modify neuronal activity in the DR through noradrenergic neurons located in the NTS that send neuronal input to DR neurons. DR, dorsal raphe

nucleus; NTS, nucleus of the solitary tract; AD, adrenaline; NA, noradrenaline; CLO, clonidine; PHE, phenylephrine.

neurons of fed animals, leading to a decrease in 5-HT release in
projection areas, which could favor ingestive behaviors (Flores
et al,, 2021). In fact, 5-HT release decreases after CLO injection
into DR, and lesion with DSP-4 abolishes these effects (Bortolozzi
and Artigas, 2003). These data are, in part, corroborated by the
experiments in the present work. The hypophagia caused by PHE
injection into the DR of fasted rats is comparable to hypophagia
induced by NA or AD injections. On the other hand, injection of
CLO does not change food intake in these rats, suggesting that
the action of AD or NA is mediated by a-1 adrenoceptors in this
case. Due to this difference in feeding depending on whether the
animal is fed or not, we believe the intensity of this endogenous

noradrenergic activity, mediated by a-1 adrenoceptors in the DR,
seems to decline in fasted rats.

Several studies demonstrated that 5-HT acts as a satiety
signal in hypothalamic nuclei, such as the arcuate and the
paraventricular nuclei, as well as other areas such as the
parabrachial nucleus and nucleus of the solitary tract (Voigt and
Fink, 2015). Stimulation of DR neurons increases extracellular
5-HT levels in the hypothalamus (De Fanti et al, 2000) and
manipulation of adrenoceptor activity in the DR induces FOS
expression in discrete populations of arcuate and paraventricular
nucleus neurons (Flores et al., 2021). Thus, it is possible that
activation of DR «-1 adrenoceptors by PHE results in 5-HT
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release in fasted animals, since facilitatory control of 5-HT
release is attributed to these receptors (Bortolozzi and Artigas,
2003). In agreement with this suggestion, a study demonstrated
that PHE injections into the median raphe nucleus (MR),
another major serotonergic cell group with o-adrenoceptors
(Adell and Artigas, 1999), also evoked hypophagia in fasted
rats (Ribas et al, 2012). Also, serotonergic activity is low in
food restricted rats and, especially in the DR, food restriction
decreases the optical density of 5-HT positive neurons when
compared to fed rats (Haider and Haleem, 2000; Kang et al.,
2001). Therefore, our hypothesis is that in fasted animals
the effect of AD or NA injection into the DR is mainly
mediated by «-1 adrenoceptor, stimulating 5-HT release in
the projection areas and consequently decreasing food intake
(Figure 4). However, further experiments using adrenergic
antagonists in fasted and fed rats are necessary to better
understand the role of these DR adrenergic receptors in
feeding behavior.

DR is a neurochemically heterogeneous structure containing
distinct clusters of 5-HT neurons and several other differentially
distributed major neurotransmitters and neuropeptides (Calizo
et al., 2011). Some DR subregions display large proportions
of GABAergic, dopaminergic, glutamatergic and neurons with
a mixed glutamatergic/serotonergic phenotype (Hioki et al,
2010; Calizo et al., 2011; Soiza-Reilly and Commons, 2011). It
has been reported that ICV injection of AD 20 nmol evoked
serotonergic and non-serotonergic neuronal activation in the DR
(Flores et al.,, 2018). In a recent study conducted by Nectow
et al. (2017), treatments that enhance GABAergic tone within
DR lead to an increase in food intake, while activation of DR
glutamatergic neurons decreases feeding. a-1 adrenoceptors have
been reported to be robustly expressed only in 5-HT DR neurons
and in a small population of DR GABAergic neurons that
expresses the type a-1b receptor (Day et al., 2004). There was
no evidence, until the present study, that a-adrenoceptors are
expressed in glutamatergic DR neurons. However, the functional
data presented in this work does not support activation through
GABAergic a-1b receptors, since these neurons stimulate food
intake when activated. These observations further support the
idea that decreased food intake involves the participation of
5-HT DR neurons.

In addition to the effects observed on food intake, AD, NA
and PHE significantly decreased water intake. Generally, water
intake occurs in conjunction with food intake, i.e., animals often
drink fluids during or right after a meal (Kissileff, 1969; Mecawi
et al,, 2015). Indeed, in this study water and food intake after
AD and NA microinjections were strongly correlated. However,
intra-DR PHE administration affected water intake in the smaller
dose used, which was not sufficient to affect food intake. This
result indicates that activation of a-1 receptors within the DR
may inhibit water intake irrespective of food intake. Previous
studies have shown that electrolytic lesion of the DR or depletion
of 5-HT synthesis induce water intake in rats. This increase
in water intake is accompanied by decreased urinary volume,
and several endocrine alterations that culminate with water
retention, indicating participation of DR serotoninergic systems

in hydromineral balance (Reis et al., 1994). Additionally, acute
administration of a 5-HT1a agonist, which decreases endogenous
5-HT release, potently induced water intake in rats (Fonseca et al.,
2009). These studies indicate that activation of DR 5-HT neurons
decreases water intake. Thus, the effects of PHE administration to
decrease water intake further supports the idea that a-1 activation
increases the activity of DR 5-HT neurons that, in turn, affects the
ingestive behaviors in rats.

Binding studies also demonstrated that NA shows some
affinity for dopaminergic receptors, with a low to moderate
potency to bind and activate D4-class receptors (Lanau et al.,
1997; Newman-Tancredi et al., 1997; Sdnchez-Soto et al., 2016).
In contrast, some authors report low to moderate levels of
D2 receptor expression in DR 5-HT neurons (Dawson et al.,
1986; Mansour et al., 1990; Meador-Woodruff et al.,, 1991;
Ferré and Artigas, 2006). Despite the possibility of NA acting
on D2 receptors, the similarity between the responses evoked
after NA injection and the specific a-1 agonist PHE, support
the hypothesis that the effects of NA are mediate by a-1
receptors. Additionally, although some activity via D2 receptors
is possible, NA shows higher affinity for a and p adrenoceptors;
consequently, the probability of NA acting at these receptors is
greater. Furthermore, to our knowledge, there is no evidence that
DR dopaminergic receptors affect feeding behavior in rats.

Manipulations that interfere with the serotonergic system
can potentially influence a variety of behaviors in addition to
food intake (Lucki, 1998). However, DR injections of adrenergic
agonists only modified immobility behavior. The neurochemical
mechanism by which AD or NA may reduce food intake during
food deprivation can be attributed to an anticipation of satiety
signals, a result consistent with the postulated inhibitory role
for 5-HT in controlling eating behavior (Hutson et al., 1986;
Blundell, 1991; Leibowitz and Alexander, 1998; Wirtshafter,
2001). Therefore, these results indicate that the treatments
used may have anticipated the behavioral sequence of satiety,
which is characterized by the increase in immobility after food
consumption (Halford et al., 1998), thus inducing the end
of the meal. Adrenergic agonist injections into DR decreased
feeding duration and this response has been linked to changes
in mechanisms that end the meal (Ritter and Epstein, 1975;
Blundell, 1986). Several studies have documented increased
neuronal activation in A2/C2 catecholaminergic neurons in
the brainstem in response to anorexic peptides such as
cholecystokinin (Rinaman et al., 1993; Blevins et al., 2003). As
previously mentioned, the DR receives robust NTS noradrenergic
input (Peyron et al., 1996). Based on these findings, peripheral
satiety signals from gut could induce satiety via an increase in
the activity of NTS noradrenergic neurons that innervate the DR
(Figure 4). However, further studies using specific chemogenetic
or optogenetic approaches are required to better understand the
neural circuits involved.

In conclusion, the data presented in this study indicate that
activation of a-1 receptors in the DR reduces food intake in
hungry animals, while activation of a-2 does not affect hunger-
induced food intake. Interestingly, these effects differ from
those observed in ad libitum fed rats, in which a-2 activation
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induces food intake. Taken together, these results suggest that
an endogenous release of adrenalin/noradrenalin by DR neurons
mediates satiety in fed rats, while in the overnight fasted rats the
intensity of this endogenous noradrenergic activity mediated by
a-1 adrenoceptors seems to decline.
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