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Abstract

used in learning with high statistical accuracy.

Background: Phosphorylation events direct the flow of signals and metabolites along cellular protein networks.
Current annotations of kinase-substrate binding events are far from complete. In this study, we scanned the entire
human protein sequences using the PROSITE domain annotation tool to identify patterns of domain composition in
kinases and their substrates. We identified statistically enriched pairs of strings of domains (signature pairs) in kinase-
substrate couples presented in the 2006 version of the PTM database.

Results: The signature pairs enriched in kinase - substrate binding interactions turned out to be highly specific to
kinase subtypes. The resulting list of signature pairs predicted kinase-substrate interactions in validation dataset not

Conclusions: The method presented here produces predictions of protein phosphorylation events with high accuracy
and mid-level coverage. Our method can be used in expanding the currently available drafts of cell signaling pathways
and thus will be an important tool in the development of combination drug therapies targeting complex diseases.

Background

Transient interactions of proteins with other proteins,
such as those that occur during phosphorylation events,
comprise a fundamental element of signal processing in
living cells [1]. Protein kinases constitute one of the larg-
est families of signaling proteins in eukaryotic cells [2].
Currently, there are more than 500 known protein
kinases in the human genome [3]. A phosphorylated
amino acid distinguishes itself from the unmodified resi-
due by having a large hydrophilic group with increased
hydrogen-bonding, hydration and salt-bridge formation
capability. Such modifications often result in switches
and altered lines of connections in signaling and meta-
bolic pathways of living cells [1]. Phosphorylation binding
interactions are important downstream in gene expres-
sion pathways in binding of transcription factors to their
substrate proteins [4].

Transient interactions between proteins often require
multiple sites of physical connection and may even
require a third party protein such as an adopter protein.
Catalytic phosphorylation events at active sites is facili-
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tated either by the utilization of protein recognition mod-
ules or the adaptation of docking interactions [5]. Recent
structural data indicates that specificity of binding
between a kinase and a substrate does not necessarily
arise from the active site but from substrate and the spe-
cific docking interactions [6]. Globular domain - motif
interactions accompany active site interactions in the
binding of tyrosine kinase to their substrates. Large num-
bers of such globular domain/linear motif interactions
have already been associated with protein-protein inter-
actions (PPI). Web tools such as PROSITE [7], Pfam [8],
PRINTS [9], ProDom [10], and InterPro [11] can be used
to annotate the globular domains and larger linear motifs
on the sequence of any given protein. Similarly, the web
tool ELM [12] annotates on protein sequences large num-
bers of linear motifs known to be involved in protein
interactions. Some of these motifs may play important
roles in virus-host interactions via a mechanism for
hijacking function [13,14].

Known annotations of domain-motif interactions on
protein partners often result in the prediction of large
numbers of false positives in PPI [13]. It is also becoming
clear that selectivity of docking sites in MAPK kinases
along with the catalytic motif is an important player in
identifying PPI [15]. An accurate method of PPI predic-
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tion based on interactions of short linear motifs on one
protein with large globular domains on the protein pair is
yet to be developed [16].

Computational prediction of PPI from primary
sequences of proteins poses a number of other challenges
to overcome including the noise in the training PPI data,
lack of a true negative training set, as well as problems
associated with 3D experimental and molecular modeling
of proteins in potentially binding configurations [17]. PPI
prediction methods that were developed in the last
decade include methods based on sequence homology
[18], feature vectors and machine learning methodology
[19], association studies [20] and knowledge guided infer-
ence of domain-domain interactions from incomplete
PPI networks [21]. Computational studies focusing on
extracting domain signature pairs associated with PPI
have utilized yeast datasets [20] or datasets spanning
across species [21].

The success achieved in computational association of
domain signature pairs with experimentally verified PPI
in these aforementioned studies prompted us to investi-
gate signature pair/PPI association in phosphorylation
events within the human proteome. We asked the ques-
tion whether modular composition of proteins (kinase
and their substrates), combined with a database of known
PP, could be sufficient in a statistical enrichment proce-
dure to predict known PPI not used in the training. The
choice of domains as features for predicting PPI made
sense because modular composition of proteins provides
insights into their interaction with up and downstream
proteins in cell signaling circuits [1,5].

In addressing this question, we used the Post Transla-
tional Modification (PTM) database 2006 edition con-
taining 5602 PPIs to identify statistically enriched
signature pairs in kinase/substrate binding. Our ten-to-
one and two-to-one learning and testing procedures pro-
duced receiver operator characteristic curves reflecting
excellent accuracy in the identification of phosphoryla-
tion events. Additional verification included the use of
PPI in the PTM 2009 edition and in other databases not
included in PTM [22-24]. Our bioinformatics analysis
uncovered sets of domain clusters that are specifically
enriched in various kinases and kinase substrates. More-
over, we showed that pairs of such domain clusters
bridges kinase and kinase substrates with high specificity
and sensitivity.

The computational space in our model is large com-
pared to other approaches focusing only on the domain
annotation of proteins known to be interacting with each
other. In the present study we scanned the entire pro-
teome for domain annotation in order to develop back-
ground sets of randomly generated virtual protein pairs
to be used in statistical enrichment of domains in protein
subsets. Another feature specific to our method is the
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consideration of strings of domains as signatures for
binding predictions. This assumption facilitated us to
consider binding events between proteins involving mul-
tiple sets of domains. Results produced by our method
achieved better PPI prediction accuracy in phosphoryla-
tion on the average than other presently available compu-
tational methods for PPI. Our study illustrates the
dominance of a grammar based on interacting domain
signature pairs in the language of post modification inter-
actions between proteins in the human proteome.

Methods

PPI data for phosphorylation events

The learning dataset on kinase/substrate binding was
downloaded from the Post Translational Modification
database (PTM), version 2006 [25]. The dataset con-
tained 5602 phosphorylation events between 272 kinases
and 1432 kinase substrates. The independent testing
datasets consisted of phosphorylation events not
recorded in PTM 2006 but recorded in the PTM 2009
[24], the Human Protein Reference Database (HPRD)
[25], and the Biological General Repository for Interac-
tion Datasets (BioGRID) [23]. Predictions of our model
were used to match phosphorylated proteins in the Phos-
phoELM database [12] with candidate targeting kinases
for further experimental verification.

Scanning proteins for PROSITE domains and their
enrichment in protein subgroups

Database of protein domains, families and functional
sites named PROSITE [26] was downloaded to our Labo-
ratory's Blade Center. In this set up, the search engine for
PROSITE took protein FASTA sequences as inputs and
returned hits of PROSITE domains (D) as outputs.
Human protein sequences from the NCBI Gene Bank
were scanned and a column matrix indicating the pres-
ence (1) and absence (0) of domains were assigned for
each human protein. The dimension of these domain col-
umn matrices was equal to the number of domains (2102)
in the PROSITE Database.

Statistical enrichment of domains in protein subgroups

Statistical enrichment of domains in protein subgroups
(target group) was performed with respect to control
(background) group made of the entire protein kinase
group. Domain column matrices were determined for
each member of a target group and these matrices were
summed up over the membership of the subgroup. Next,
a set of proteins of the same number as the target group
was selected randomly from the background group and
the corresponding sum domain column matrix was com-
puted. This operation was repeated 10,000 times and the
p value for enrichment was computed by the fraction of
times the background group had more domains of a given
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identity than the target group. List of domains (domain
clusters) enriched in a kinase- or substrate subtype was
identified as the list of signatures that are enriched in the
target group, a kinase- or substrate subtype.

Score matrix for signature pairs in PPI

A score matrix was constructed for selecting signature
pairs strongly associated with known PPIs in tyrosine-
and serine/threonine phosphorylation subgroups. Specif-
ically we wanted to identify signature pairs (such as A-B)
such that presence of signature A in protein K and signa-
ture B in protein L would predict with high confidence a
PPI between K and L. For this purpose, for the known PPI
interactions in the learning dataset (EPPI), we generated a
score matrix whose rows and columns identified the
enriched signatures in tyrosine and serine/threonine
kinases (TK, S/TK) and their substrates (TKB, S/TKB).
Each element of the matrix corresponded to the number
of EPPI for which a signature pair (A-B) was present in
the opposing proteins of the pair. Another score matrix
for virtual PPI, VPPI (background), was generated by ran-
domly pairing proteins from the learning dataset, in
effect creating VPPI interactions equal in number to all
possible protein combinations from kinase and substrate
proteins in the PPI set. The p value for signature pair
enrichment in a given PPI subgroup was computed using
the hypergeometric test in the R Project for Statistical
Computing, based on the scores summed from the learn-
ing set and the background set. The resulting signature
pairs were ranked according to their p value, with the one
corresponding to the lowest p value ranked highest. The
highest p value used as cut-off in the analysis was p =
0.001.

Prediction accuracy for string pairs

The signature pairs thus identified via statistical enrich-
ment, were used to predict new PPI events. A protein pair
was considered as undergoing phosphorylation interac-
tion if they expressed at least one of the signature pairs
determined by the enrichment analysis. Consider a pro-
tein pair (L, K) that is associated with a statistically
enriched signature pair (A-B). Assumption that the pres-
ence of A-B means the presence of a phosphorylation PPI
between L and K (PPPI) may lead to false positives. The
prediction accuracy was evaluated by computing the
probability that the match between predicted and experi-
mental PPI sets to have occurred randomly. Consider
there are N VPPI events that can be generated randomly
from n kinases and m kinase substrates. Among the N
VPPI, M have already been annotated as EPPI. Let the
signature pair A-B predict Y number of PPPI, W of which
have been verified as EPPI. The hypergeometric test than
tests the probability of randomly choosing at least W
EPPI by selecting Y PPPI out of a possible N VPPI. Lower
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the p value, higher is the accuracy of the PPI prediction
method presented in this study.

Sensitivity, specificity, precision, recall

In addition to p values, prediction accuracy was evaluated
using parameters for defining accuracy and coverage:
Specificity (Sp) and Sensitivity (Se). Let TP, TN, FP, and
EN represent, respectively, the true positives, true nega-
tives, false positives, and false negatives determined with
the use of known PPI in the predicted set. Sp and Se were
defined as follows:

Sp=TN /(TN +FP),Se=TP /(TP +FN)

The higher the value of Sp, the lower is the error for
assuming PPI between L and K based on the presence of
the enriched signature pair (A-B). Parameter Se is a mea-
sure of the coverage, namely the size of the PPI pool
potentially predicted by A-B.

We also used precision and recall to evaluate the statis-
tical enrichment of experimental PPI in our predicted PPI
set. Precision (Pr) was defined as TP/(TP + FP). Recall
(Re) is the same as the sensitivity parameter Se.

Cross validation and validation with independent datasets
We used training and testing sets at 2-fold and 10-fold
cross validation to test the accuracy of our predictions in
100 iterations using statistical enrichment with p values
varying from zero to one [27]. After each set of training
and testing we determined the specificity and sensitivity.
We plotted the receiver operating characteristics (ROC)
curve using the average values of specificity and sensitiv-
ity over 100 iterations. The area under the ROC curve
(AUC) quantified the likelihood that one can identify a
kinase-substrate interaction using the method described
above.

In addition, we used multiple validation processes to
evaluate the performance of our model. The first process
was to check the accuracy of the enriched signature pairs
in predicting PPI among the random protein pairs
derived from proteins in the learning data set. A p value,
representing the probability of randomly generated pre-
diction was computed for the PPI predicted by each sig-
nature pair by using the hypergeometric test.

Next, we compared the PPI predictions based on PTM
2006 learning database with PPI not present in PTM 2006
but present in PTM 2009 and in two other databases
(HPRD, BioGrid). We identified the phosphorylation PPI
in the HPRD and BioGrid databases as those PPI made of
a kinase and a substrate partner of the same type
(tyrosine or serine/threonine) as listed in Gene Ontology
[28]. For each comparison, we computed the number of
PPI predicted, number of PPI matched, and the maxi-
mum number of virtual PPI that could be generated using
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the testing PPI dataset. These numbers yielded p values
for random prediction using the hypergeometric test.

Comparison with other computational models

We tested the accuracy of PPI predictions of the present
model, with two previously published domain based
methods: correlated sequence-signature markers (CSSM)
[20] and the knowledge-guided inference of domain-
domain interactions (K-GIDDI) [21]. Using the algo-
rithms and data presented in these papers, we identified
the enriched domain pair signatures and the resulting
numbers of predicted PPI as well as the number of
matched PPI (matching already annotated PPI) within the
randomly generated PPI set from PTM 2006 as well as the
validation datasets used for our model. We used the
hypergeometric test, sensitivity, and specificity as
described above to identify the accuracy of prediction.

Results

PROSITE domains enriched in kinase and their substrates
Our computations showed that kinases and their sub-
strates express statistically enriched protein domains that
are largely subtype specific. We scanned the human pro-
tein sequences in the NCBI database through the PROS-
ITE web tool and identified the domains/signatures
expressed on their sequences (Figure 1A). We then used
statistical enrichment as described in the methods sec-
tion to identify those domains enriched in a target kinase
(substrate) subtype group against all kinase (kinase sub-
strates) with enrichment p < 0.05. This enrichment pro-
cedure was carried out for the ten kinase subtypes
described in Manning's paper. Figure 1B shows that
domains enriched in a certain kinase (substrate) subtype
are largely mutually exclusive to the subtype under con-
sideration. The subtype specificity of domains expressed
by kinase and substrates reduced drastically the number
of domain signature pairs that needed to be considered
for PPI prediction.

Next we considered the groups of enriched domains
expressed by kinases and their substrates, grouped in two
major subgroups: tyrosine and serine/threonine kinase
(substrates). Many of these proteins expressed more than
one subtype-specific enriched domain as shown in Figure
2. In other words, not only domains but domain strings
were also enriched in tyrosine and serine/threonine
kinase groups and their substrates. Therefore, each such
enriched string of domains could be considered to consti-
tute a signature. Additional File 1 contains the domains
enriched in kinase and substrate subtypes along with the
p values for enrichment. On the average, tyrosine kinase
and their substrates have more protein domains than ser-
ine/threonine kinase and their substrates. This observa-
tion is consistent with the known preferred mode of
interaction between tyrosine kinase and their substrates
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(domain-motif interactions) versus the docking site inter-
actions employed in serine/theorine kinase [5].

Score Matrices for identifying domain signature sets
enriched in known kinase protein interactions
A score matrix in our analysis has m rows and n columns
with each row corresponding to one of the m enriched
signatures (domains or string of domains) in a kinase cat-
egory (TK or S/TK). Each column indicates one of the n
enriched signatures in the corresponding substrate cate-
gory (TKB or S/TKB) (Figure 3A). Elements of the target
PPI score matrix show the number of times a signature
pair is found in PPI in the PTM 2006 database. Elements
of the virtual PPI score matrix show similarly the num-
bers of correlated signatures in this much larger pool of
randomly generated protein pairs from the PTM 2006
proteins in PPI. Let M be the number of PPI under con-
sideration and let N be the number of randomly gener-
ated protein pairs (including the actual PPI pairs), then
hypergeometric test can be used to estimate the probabil-
ity of a PPI score matrix element having the value m by
chance when the corresponding value in virtual PPI score
matrix is #. The negative logarithms of these p values for
the correlated signature pairs are shown in Figure 3A on
the score matrix heat maps for TK PPI (top) and S/TK
PPI (bottom). Note that the smaller the p value, the
darker is the matrix element corresponding to a signature
pair. We have listed the identities of the signature pairs
shown enriched in Figure 3A as Additional File 2. The file
contains the pairs of signatures (in terms of PROSITE
domain identity), their identity number along the hori-
zontal axis of Figure 2, and the p value of enrichment.
The signature pairs presented in additional file 2 pre-
dicted nearly 80 percent of the PPI used in identifying the
correlated signature pairs. Note that on the average each
signature pair is correlated with ten PPI, suggesting that
domain compositions of proteins involved in phosphory-
lation are indicative of their potential for binding. The p
value shown in Table 1 training part for this case indi-
cates the efficiency of our score matrix approach in corre-
lating signature pairs with phosphorylation PPI events.

Cross validation and additional validation with
independent experimental datasets

Approximately 75 percent of known kinase-substrate
interactions occurred between proteins with at least one
annotated PROSITE domain on their primary sequence.
For cross validation, we used the kinase-substrate pair list
in PTM 2006 and took its subset made of protein couples
with both proteins expressing at least one annotated
PROSITE domain. This restriction was necessary since
our prediction method is based on existence of certain
domain pairs (signature pairs) in interacting proteins. As
described in the methods section, we used 10-fold and 2-
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Figure 1 Protein domains enriched in kinase- and substrate subtypes. Example of protein domains annotated on the amino acid sequences of
kinases and their substrates using PROSITE web tool screen shot (A), their statistical enrichment among kinase and substrate subtypes (B). The hori-
zontal axis in B identifies the kinase (substrate) subtype (agc, atp, camk, ck1, cmngc, other, rg¢, ste, TK; tkl) in the notation [2]. The vertical axes on the
left refer to the identity index of statistically enriched domains in these subgroups of proteins (see Additional File 1 for key to the index). The scale on
the right shows the - log p value of statistical enrichment of domains in these protein subgroups.

fold cross validation in 100 iterations and generated accuracy in 2-fold cross validation. The areas under the

receiver operating characteristic (ROC) curves for pre-
dicting tyrosine kinase and serine/threonine kinase inter-
actions (Figure 3B). The figure indicates excellent
accuracy at 10-fold cross validation and slightly lower

ROC curves (AUC) for these cases are reported in the fig-
ure.

Next we compared our predicted PPI set with those
phosphorylation PPI sets that have not been used in our
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TKand S/TK identify tyrosine and serine threonine kinases, respectively. TKB and S/TKB are their substrates.

statistical enrichment processes. Three PPI databases,
BioGrid, HPRD, and PTM 2009, have contained hun-
dreds of kinase/substrate phosphorylation events as
shown in Table 1 testing part. We used the signature pairs
listed in additional file 2 to predict PPI events among the
proteins in the PPI events shown in Tablel testing set.
The p values for the match between our predictions and
the known PPI events not used in our enrichment proce-
dures ranged from 9*10 -12to 7#10 -7 for PPI presented in
HPRD and BioGrid database whereas we had higher but
still significant p values when predicting PTM 2009.

Next we compared the experimental data shown in
Table 1 with the corresponding predictions that could be
made using the domain based methods recently pub-
lished (CSSM & K-GIDDI). These comparisons yielded p
values that were larger than the ones for our method. In
particular, the p values showed no significance for model
CSSM predicting PTM 2009 and the serine/threonine
binding data from BioGrid. The reason why our model

yielded better results than CSSM could be due to our
grammar differentiating between proteins with different
domain string expression. Another reason maybe our use
of randomly generated background PPI databases in our
enrichment method rather than an analytical equation
based only on data for PPI. Note also that CSSM model
was for the yeast proteome and we used not their pub-
lished results but generated PPI predictions using their
procedure here for comparison with experimental data
for the human proteome.

K-GIDDI simulation also yielded in higher p values
than our method when compared with the human pro-
tein interactive data shown in Table 1. The comparison
maybe unfavorable to K-GIDDI since the model incorpo-
rates PPI events from multiple species during training
phase and therefore might miss some PPI events specific
to human. Nevertheless, the fact that all these three
approaches gave statistically significant predictions for at
least the HPRD database indicates the validity of domain
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(AUQ) is also shown for the ROC curves in the figure.




Liu and Tozeren BMC Bioinformatics 2010, 11:349
http://www.biomedcentral.com/1471-2105/11/349

Page 8 of 11

Table 1: Accuracy and coverage of the present approach for predicting kinase - substrate interactions

Training Testing
PTM 2006 HPRD BioGrid PTM 2009

TK S/TK TK S/TK TK S/TK TK S/TK

Data EPPI 886 2925 137 199 111 166 33 237
Kinase 56 176 60 104 41 67 15 61

Substrate 274 881 32 44 26 44 21 90

VPPI 15344 155056 1920 4576 1066 2948 315 5490

Present PPPI 1132 7133 43 204 36 69 27 193
MPPI 617 1876 18 26 17 15 6 16

p value 0 0 9.0E-12 1.3E-07 1.0E-09 7.0E-07 0.014 0.0038

Se 69.6 64.1 13.14 13.07 15.32 0.04 18.18 6.75

Sp 96.6 95.4 97.76 95.54 96.62 97.66 91.43 96.48

CSSM PPPI 14496 122975 763 1411 433 836 234 4462
MPPI 826 2815 84 67 64 53 26 160

p value 0.9416 0 3.79E-08 0.0096 4.33E-05 0.128 0.204 1

Se 93.23 96.24 61.31 33.67 57.66 31.93 78.79 67.51

Sp 5.44 20.69 60.26 69.17 59.38 71.64 25.71 18.72

K-GIDDI PPPI 1491 1557 117 75 88 68 33 65
MPPI 206 42 19 6 17 5 2 11

p value 0 0.0098 1.32E-04 0.0432 0.0025 0.1814 0.7 0.0002

Se 23.25 1.44 13.87 3.02 15.32 3.01 6.06 4.64

Sp 90.28 99 93.9 98.36 91.74 97.69 89.52 98.81

EPPI: Number of Experimental PPI; PPPI: Number of predicted PPI; MPPI: Number of matches between PPPI and EPPPI; VPPI: Number of Virtual
PPl used in p value computations. Also shown is the prediction coverage and accuracy of two previously published approaches (CSSM, K-

GIDDI).

based approaches in predicting phosphorylation events.
Sensitivity and specificity parameters were also com-
puted for three approaches across different dataset. Pres-
ent study shows same accuracy level of specificity as K-
GIDDI and better coverage, CSSM show much better
coverage but much less specificity.

Overall, our approach predicts 8837 kinase-substrate
interactions from a pool of 186,715 virtual interactions
and matches 2591 PPI out of the experimentally verified
4694 PPI. The p value for the match is zero and precision
and recall are equal to 0.293 and 0.552, respectively. Pre-
dictions for tyrosine kinase mediated phosphorylation
PPI is better in terms of precision than those PPI involv-
ing serine-theronine kinases (Table 2), but, nevertheless,
both predictions match experimental data with zero p
value for random match.

Matching kinase with substrates in expanding previously
annotated cellular pathways

Nearly 30 percent of our predictions match experimen-
tally verified phosphorylation PPI. We screened the sub-
strates in the remaining 70 percent for their presence in
the PhosphoELM [12] database. We found that an addi-
tional 30 percent of our predictions involved kinase sub-
strates for which kinase partners are yet to be identified.
for this reason, we wanted to see if our PPI prediction
method could be used to revise and possibly expand pre-
viously annotated cellular pathways involved in signaling.
Consider, for example, KEGG MAPK signaling pathway
[29] showing a chain of phosphorylation events starting
at the cell surface concluding with transcription factors
that interact with DNA. A large number of the nodes in
the figure are kinase substrates and our DDI based pre-
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Table 2: Efficiency of the present score matrix enrichment in matching known phosphorylation PPI
PPPI EPPI MPPI VPPI Precision Recall p value
Overall 8837 4694 2591 186715 29.3 55.2 0
TK 1238 1167 658 18645 53.2 56.4 0
S/TK 7599 3527 1933 168070 254 54.8 0

dictions of the corresponding kinase matches with those
in the KEGG pathway (Figure 4). Nodes marked in red in
the pathway are listed in PhosphoELM [12] as kinase sub-
strates with unknown kinase identity. Our predicted
kinase for those nodes has been added to the KEGG dia-
gram. Out of the 11 predicted kinase/substrate interac-
tions added to the KEGG pathway, 6 appear in HPRD or
BioGrid databases, indicating that any expansions to pre-
viously established protein interactomes using our
approach will likely be biologically relevant.

Discussion

Binding interactions of proteins with other proteins are at
the foundations of cellular networks. Phosphorylation is
responsible for the flow of signals and metabolites along
the protein pathways [17]. Dynamic binding interactions,
such as those that occur in phosphorylation events,
appear prominently in signaling pathways in health and
in disease including hypertension, diabetes, HIV infec-
tion, and cancer [2,30]. Although kinases have long been
considered as drug targets, compounds targeting kinases
(kinase inhibitors and natural substances) have been
found to be more promiscuous than originally antici-
pated, which can potentially lead to side effects [31]. It is
important to identify potential phosphorylation partners
of kinases in order to assess its range of impact on the
flow of signals and metabolites along cellular pathways.
Recent methods of mapping dynamic protein interactions
in kinase signaling using live-cell fluorescence fluctuation
spectroscopy and imaging already produced promising
results [32] and kinase morphisms have been directly
linked to population subtypes in disease states [33].
These new experimental approaches will benefit from the
ongoing efforts in predicting dynamic protein interac-
tions based on existing data and learning/testing/valida-
tion approaches. Our study produces this type of
computational prediction sets of protein-protein interac-
tions for experimental validation.

We used large-scale bioinformatics databases and tools
and developed a methodology for predicting phosphory-
lation binding events that are yet to be fully annotated.
Our method benefits from the hypothesis and assump-
tions of the previous computational methods of PPI pre-

diction and specifically utilizes the concept of correlated
sequence signatures as markers of protein-protein inter-
action developed by Sprinzak and Margalit (2001). The
two new elements in our approach consist of (a) expand-
ing the definition of signature to strings of domains
rather than a single domain and (b) the use of background
composed of random pairing of kinase and substrates in
the statistical processes for identifying signature pairs
indicative of phosphorylation events. The first assump-
tion is consistent with our observation that certain
strings of domains are highly statistically enriched in
kinase subtypes and their substrates compared to the rest
of the kinase interactome. The second assumption,
requirement of statistical enrichment, against highly dif-
ferentiating background sets, allowed us to further
reduce the set of correlated sequence signatures obtained
solely on the data involving PPI. The list of signature pairs
developed in the present study, when used in predicting
kinase/substrate interactions in phosphorylation events,
produced results that are largely matched with experi-
mental data not used in statistical enrichments for signa-
ture identification. The p values associated with our
predictions and their comparison to independent experi-
mental data ranged from a low of 10 -1 to 0.0038,
depending on the kinase subtype and the database used
for comparison.

Thousands of human proteins have been identified as
undergoing phosphorylation binding interactions in the
PhosphoELM database but the identity of the kinases
responsible for these phosphorylation events are yet to be
quantified. Our method produced candidate kinases tar-
geting these substrates. The resulting list turned out to be
consistent with literature not yet included into the Phos-
phoELM database. In all cases, the partnering between
the substrate and the kinase predicted in this study can
serve as a guide for kinase identification studies involving
known kinase substrates. Another important use of our
method will be in expanding and revising existing litera-
ture on cellular pathways decorated with phosphorylation
events. Such revisions will be useful in identifying the
consequences of small drug interventions on a kinase in
terms of its interaction with immediate neighbors. Last
but not least, our observation that domains expressed by
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Figure 4 KEGG MAPK Pathway revised by adding predicted phosphorylation events. Brackets lined with red identify those nodes in the existing
KEGG diagram occupied by a kinase substrate whereas the blue lined brackets identify those occupied by kinases. The proteins that act both as kinases
and substrates are shown in purple. The oval shaped nodes are our predictions of kinases that also phosphorylate existing nodes in the KEGG diagram.

kinase proteins and their substrates are largely subtype-
specific drastically reduces the upper bound for the num-
ber of experiments one has to conduct for quantifying a
major subset of transient binding interactions between
protein pairs associated with phosphorylation.

One important disadvantage of our method is the bias
toward the discovery of PPI with proteins having similar
domain composition. This feature is also persistent in PPI
prediction methods based on sequence homology. This
tendency is observable in our prediction of new results
included in PTM 2009 based on the PTM 2006 dataset.
Although our match is statistically significant, the p val-
ues we get for this comparison is significantly larger than
comparison with HPRD and BioGrid. It is expected that
our methodology will pick up more PPI events correctly
as we learn more about the protein sequence grammar
that relates domain expression with protein-protein
interaction patterns.

Conclusions

Protein phosphorylation events redirect and redistribute
the flow of signals and metabolites in cellular pathways.
Kinases that phosphorylate multiple substrates have been
favorable targets for drug development against many dis-
ease types. In this study, we developed a high throughput
method that predicts potential binding partners for
kinases using existing domain annotation tools and inter-
actome databases for the human proteome. The method,
when tested against independent databases, yields pre-
dictions with high statistical accuracy. Results indicate
that domains expressed by any two proteins constitute a
strong determinant of the potential for phosphorylation
related binding interactions between them. Our expan-
sion of the MAPK pathway using the prediction method
outlined in the study presented results compatible with
research literature.
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Additional material

Additional file 1 PROSITE domains that are statistically enriched in
subtypes of kinases and substrates. Columns of the table represent
domain index used in Figure 1B, domain name, domain PROSITE ID Num-
ber as well as the kinase groups for which the domain is enriched.

Additional file 2 The list of domain-strings pairs used in predicting
phosphorylation PPl with high specificity (SP > 0.91). DSIK: Domain
string index for the kinase in PPI; DSIS: Domain string index for the substrate

in PP
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