

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 1-Methyl-3-(2-oxo-2*H*-chromen-3-yl)-1*H*-imidazol-3-ium picrate

#### Nguyen Van Tuyen,<sup>a</sup>\* Le Tuan Anh,<sup>b</sup> Alexey A. Festa,<sup>c</sup> Leonid G. Voskressensky<sup>c</sup> and Victor N. Khrustalev<sup>d</sup>

<sup>a</sup>Institute of Chemistry, Vietnam Academy of Science & Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, <sup>b</sup>Department of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, <sup>c</sup>Organic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklai St, 6, Moscow 117198, Russian Federation, and <sup>d</sup>X-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, B-334, Moscow 119991, Russian Federation Correspondence e-mail: ngvtuyen@hotmail.com

Received 25 April 2013; accepted 29 April 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.063; wR factor = 0.165; data-to-parameter ratio = 14.8.

The title salt,  $C_{13}H_{11}N_2O_2^+ \cdot C_6H_2N_3O_7^-$ , is the unexpected product of a domino reaction of 3-cyanomethyl-1-methylimidazolium chloride with salicylic aldehyde in the presence of picric acid. In the cation, the 1*H*-imidazole ring is twisted by 63.2 (1)° from the 2*H*-chromen plane. In the crystal, cations and anions are alternately stacked along the *a* axis through  $\pi$ - $\pi$  stacking interactions between the almost parallel aromatic rings [centroid–centroid distances = 3.458 (2) and 3.678 (2) Å]. The stacks are further linked by C–H···O hydrogen bonds into a two-tier layer parallel to (001).

#### **Related literature**

For a recent review on coumarin-based drug patents, see: Kontogiorgis *et al.* (2012). For analogous domino reactions, see: Voskressensky *et al.* (2012*a*,*b*). For related compounds, see: Yu *et al.* (2006); Morris *et al.* (2011).



**Experimental** 

 Crystal data

  $C_{13}H_{11}N_2O_2^+ \cdot C_6H_2N_3O_7^-$  c = 16.832 (3) Å

  $M_r = 455.34$   $\beta = 100.081$  (4)°

 Monoclinic,  $P2_1$  V = 925.3 (3) Å<sup>3</sup>

 a = 6.8142 (12) Å
 Z = 2 

 b = 8.1942 (14) Å
 Mo K $\alpha$  radiation

organic compounds

 $0.30 \times 0.21 \times 0.03 \text{ mm}$ 

10390 measured reflections

 $R_{\rm int} = 0.040$ 

1 restraint

 $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$ 

4415 independent reflections

3734 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.13 \text{ mm}^{-1}$ T = 100 K

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2003)  $T_{\rm min} = 0.961, T_{\rm max} = 0.996$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$   $wR(F^2) = 0.165$  S = 1.004415 reflections 299 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| C5-H5···O7 <sup>i</sup>     | 0.95 | 2.58                    | 3.349 (4)    | 138                       |
| C9−H9···O3                  | 0.95 | 2.33                    | 3.122 (5)    | 140                       |
| $C10-H10\cdots O9^{ii}$     | 0.95 | 2.51                    | 3.303 (5)    | 141                       |
| C11−H11···O3 <sup>iii</sup> | 0.95 | 2.42                    | 3.196 (5)    | 139                       |
| $C11 - H11 \cdots O5^{iii}$ | 0.95 | 2.51                    | 3.231 (5)    | 132                       |
| $C12 - H12A \cdots O2^{iv}$ | 0.98 | 2.58                    | 3.360 (5)    | 137                       |
| $C12 - H12B \cdots O2^{v}$  | 0.98 | 2.48                    | 3.448 (5)    | 171                       |
| $C12-H12C\cdots O3^{iv}$    | 0.98 | 2.39                    | 3.269 (4)    | 148                       |
| $C12-H12C\cdots O9^{iv}$    | 0.98 | 2.42                    | 3.160 (5)    | 132                       |
| $C17-H17\cdots O5^{vi}$     | 0.95 | 2.40                    | 3.345 (5)    | 172                       |

Symmetry codes: (i) -x + 2,  $y - \frac{1}{2}$ , -z + 2; (ii) x + 1, y - 1, z; (iii) x + 1, y, z; (iv) -x + 1,  $y - \frac{1}{2}$ , -z + 1; (v) x, y - 1, z; (vi) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Russian Foundation for Basic Research (project No. 12–03-93000-Viet-a) and the Vietnam Academy of Science and Technology (grant VAST·HTQT·NGA. 06/2012–2013) for the financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5268).

#### References

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kontogiorgis, C., Detsi, A. & Hadjipavlou-Litina, D. (2012). *Expert Opin. Ther. Pat.* **22**, 437–454.
- Morris, J. C., McMurtrie, J. C., Bottle, S. E. & Fairfull-Smith, K. E. (2011). J. Org. Chem. 76, 4964–4972.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Voskressensky, L. G., Festa, A. A., Sokolova, E. A., Khrustalev, V. N. & Varlamov, A. V. (2012b). Eur. J. Org. Chem. pp. 6124–6126.
- Voskressensky, L. G., Festa, A. A., Sokolova, E. A. & Varlamov, A. V. (2012a). *Tetrahedron*, 68, 5498–5504.
- Yu, T.-Z., Zhao, Y.-L. & Fan, D.-W. (2006). J. Mol. Struct. 791, 18-22.

# supplementary materials

Acta Cryst. (2013). E69, o839 [doi:10.1107/S1600536813011690]

# 1-Methyl-3-(2-oxo-2H-chromen-3-yl)-1H-imidazol-3-ium picrate

# Nguyen Van Tuyen, Le Tuan Anh, Alexey A. Festa, Leonid G. Voskressensky and Victor N. Khrustalev

#### Comment

Coumarin derivatives are known to possess a range of different biological activities (Kontogiorgis *et al.*, 2012). The title compound,  $C_{13}H_{11}N_2O_2^+$ .  $C_6H_2N_3O_7^-$  (I), is the unexpected product of Knoevenagel condensation of 3-(cyanomethyl)-1- methylimidazolium chloride with salicylic aldehyde followed by the hydrolysis of imino-group and the formation of ammonium salt with picric acid (Fig. 1; Voskressensky *et al.*, 2012*a,b*).

The cation and anion of I form a tight ionic pair by the C9—H9···O3 hydrogen bond (Table 1) as well as the  $\pi$ - $\pi$  stacking interactions between the almost parallel aromatic moieties [the dihedral angle between the mean planes of the 2*H*-chromen (cation) and benzene (anion) fragments is 3.55 (7)°; the shortest C8···C17 distance is 3.280 (5) Å; Fig. 2]. The 1*H*-imidazole ring is twisted at 63.2 (1)° from the 2*H*-chromen plane. In the crystal, the tight ionic pairs form stacks along the *a* axis by the  $\pi$ - $\pi$  stacking interactions (Fig. 3). The stacks are further bound by the C—H···O hydrogen bonds into two-tier layers parallel to (001) (Fig. 4).

#### Experimental

A solid Na<sub>2</sub>CO<sub>3</sub> (67.0 mg, 0.63 mmol) was added to a stirred solution of 3-(cyanomethyl)-1-methylimidazolium chloride (500 mg, 3.2 mmol) and salicylic aldehyde (350 mg, 2.9 mmol) in a mixture of methanol (4 ml) and water (1 ml) at reflux. The reaction mixture was heated at reflux for 1 h. Then picric acid (870 mg, 3.8 mmol) was added to the solution. The formed precipitate was filtered-off and washed with acetone (3x) to give 630 mg of yellow crystals of **I**. The yield is 48%. *M*.p. = 459 K (decomp.). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz):  $\delta$  = 4.04 (3*H*, s, Me), 7.54 (1*H*, t, *J* = 7.5 Hz, H6'), 7.63 (1*H*, d, *J* = 8.3 Hz, H5'), 7.79–7.85 (1*H*, m, H7'), 7.87–7.92 (1*H*, m, H8'), 7.98–8.01 (1*H*, m, H5), 8.16–8.19 (1*H*, m, H4), 8.61 (2*H*, s, picric acid CH), 8.70 (1*H*, s, H4'), 9.71 (1*H*, bs, H2); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 100 MHz):  $\delta$  = 36.2, 116.4, 117.6, 121.6, 122.5, 123.7, 124.2, 125.1 (2 C), 125.5, 129.4, 133.5, 137.3, 137.5, 141.8, 152.4 (2 C), 156.1, 160.8. Anal. Calcd for C<sub>13</sub>H<sub>11</sub>N<sub>2</sub>O<sub>2</sub>.C<sub>6</sub>H<sub>2</sub>N<sub>3</sub>O<sub>7</sub>: C 50.12, H 2.88, N 15.38; found: C 50.34, H 3.01, N 15.53.

#### Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å (CH) and 0.98 Å (CH<sub>3</sub>) and refined in the riding model with fixed isotropic displacement parameters [ $U_{iso}$ (H) = 1.5 $U_{eq}$ (C) for the CH<sub>3</sub> group and 1.2 $U_{eq}$ (C) for the CH groups].

#### **Computing details**

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



#### Figure 1

The domino reaction of 3-(cyanomethyl)-1-methylimidazolium chloride with salicylic aldehyde.



#### Figure 2

The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed line indicates the  $(N)C(N^+)$ —H···O<sup>-</sup> hydrogen bond between cation and anion.



### Figure 3

A portion of crystal packing of the title compound demonstrating the stacks along the a axis. Dashed lines indicate the intermolecular C—H…O hydrogen bonds.



### Figure 4

The two-tier layers of the title compound parallel to (001). Dashed lines indicate the intermolecular C—H…O hydrogen bonds.

### 1-Methyl-3-(2-oxo-2H-chromen-3-yl)-1H-imidazol-3-ium picrate

| Crystal data                                |                                                                     |
|---------------------------------------------|---------------------------------------------------------------------|
| $C_{13}H_{11}N_2O_2^+ \cdot C_6H_2N_3O_7^-$ | F(000) = 468                                                        |
| $M_r = 455.34$                              | $D_{\rm x} = 1.634 {\rm Mg} {\rm m}^{-3}$                           |
| Monoclinic, <i>P</i> 2 <sub>1</sub>         | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å               |
| Hall symbol: P 2yb                          | Cell parameters from 3018 reflections                               |
| a = 6.8142 (12)  Å                          | $\theta = 2.5 - 30.2^{\circ}$                                       |
| b = 8.1942 (14)  Å                          | $\mu = 0.13 \text{ mm}^{-1}$                                        |
| c = 16.832 (3) Å                            | T = 100  K                                                          |
| $\beta = 100.081 \ (4)^{\circ}$             | Plate, yellow                                                       |
| $V = 925.3 (3) Å^3$                         | $0.30 \times 0.21 \times 0.03 \text{ mm}$                           |
| Z = 2                                       |                                                                     |
| Data collection                             |                                                                     |
| Bruker APEXII CCD                           | 10390 measured reflections                                          |
| diffractometer                              | 4415 independent reflections                                        |
| Radiation source: fine-focus sealed tube    | 3734 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                      | $R_{\rm int} = 0.040$                                               |
| $\varphi$ and $\omega$ scans                | $\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$ |
| Absorption correction: multi-scan           | $h = -9 \rightarrow 9$                                              |
| (SADABS; Bruker, 2003)                      | $k = -10 \rightarrow 10$                                            |
| $T_{\min} = 0.961, \ T_{\max} = 0.996$      | $l = -22 \rightarrow 22$                                            |
|                                             |                                                                     |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.063$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.165$                               | neighbouring sites                                         |
| S = 1.00                                        | H-atom parameters constrained                              |
| 4415 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0754P)^2 + 1.86P]$            |
| 299 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 1 restraint                                     | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x          | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|------------|-------------|--------------|-----------------------------|
| 01   | 0.8777 (4) | 0.6678 (3)  | 0.68430 (15) | 0.0183 (5)                  |
| O2   | 0.8003 (4) | 0.5232 (4)  | 0.57153 (15) | 0.0233 (6)                  |
| N1   | 0.9223 (4) | 0.2275 (4)  | 0.64703 (18) | 0.0166 (6)                  |
| N2   | 0.8021 (5) | 0.0278 (4)  | 0.57071 (17) | 0.0166 (6)                  |
| C2   | 0.8643 (5) | 0.5224 (5)  | 0.6430 (2)   | 0.0168 (7)                  |
| C3   | 0.9351 (5) | 0.3784 (5)  | 0.6911 (2)   | 0.0161 (7)                  |
| C4   | 1.0105 (5) | 0.3861 (5)  | 0.7702 (2)   | 0.0171 (7)                  |
| H4   | 1.0561     | 0.2899      | 0.7992       | 0.021*                      |
| C4A  | 1.0217 (5) | 0.5408 (5)  | 0.8103 (2)   | 0.0165 (7)                  |
| C5   | 1.0926 (5) | 0.5595 (5)  | 0.8937 (2)   | 0.0178 (7)                  |
| Н5   | 1.1365     | 0.4666      | 0.9257       | 0.021*                      |
| C6   | 1.0989 (5) | 0.7124 (5)  | 0.9295 (2)   | 0.0205 (8)                  |
| H6   | 1.1461     | 0.7240      | 0.9857       | 0.025*                      |
| C7   | 1.0352 (6) | 0.8501 (5)  | 0.8821 (2)   | 0.0223 (8)                  |
| H7   | 1.0420     | 0.9552      | 0.9063       | 0.027*                      |
| C8   | 0.9623 (6) | 0.8333 (5)  | 0.8001 (2)   | 0.0208 (8)                  |
| H8   | 0.9169     | 0.9257      | 0.7681       | 0.025*                      |
| C8A  | 0.9570 (5) | 0.6794 (5)  | 0.7661 (2)   | 0.0172 (7)                  |
| C9   | 0.7529 (5) | 0.1610 (5)  | 0.6077 (2)   | 0.0163 (7)                  |
| H9   | 0.6218     | 0.2018      | 0.6064       | 0.020*                      |
| C10  | 1.0046 (6) | 0.0076 (5)  | 0.5862 (2)   | 0.0198 (7)                  |
| H10  | 1.0772     | -0.0786     | 0.5671       | 0.024*                      |
| C11  | 1.0826 (5) | 0.1338 (5)  | 0.6341 (2)   | 0.0200 (7)                  |
| H11  | 1.2195     | 0.1536      | 0.6546       | 0.024*                      |
| C12  | 0.6615 (6) | -0.0810 (5) | 0.5195 (2)   | 0.0218 (8)                  |
| H12A | 0.5247     | -0.0517     | 0.5245       | 0.033*                      |

| 0.6878     | -0 1942                                                                                                                                                                                                                                  | 0 5369                                               | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.6784     | -0.0694                                                                                                                                                                                                                                  | 0.5507                                               | 0.033*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0784     | 0.0094                                                                                                                                                                                                                                   | 0.4032                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4485 (4) | 0.3812 (3)                                                                                                                                                                                                                               | 0.67659 (15)                                         | 0.0185 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.7273 (4) | 0.1650 (4)                                                                                                                                                                                                                               | 0.85805 (18)                                         | 0.0293 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4224 (5) | 0.1338 (4)                                                                                                                                                                                                                               | 0.79424 (19)                                         | 0.0310 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6970 (5) | 0.6752 (4)                                                                                                                                                                                                                               | 1.02204 (16)                                         | 0.0283 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5824 (4) | 0.8942 (3)                                                                                                                                                                                                                               | 0.95546 (17)                                         | 0.0245 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4486 (4) | 0.8736 (3)                                                                                                                                                                                                                               | 0.66647 (16)                                         | 0.0239 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.2690 (4) | 0.6684 (4)                                                                                                                                                                                                                               | 0.61602 (16)                                         | 0.0257 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5653 (5) | 0.2192 (4)                                                                                                                                                                                                                               | 0.82445 (19)                                         | 0.0197 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6210 (5) | 0.7472 (4)                                                                                                                                                                                                                               | 0.95962 (18)                                         | 0.0183 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.3876 (5) | 0.7341 (4)                                                                                                                                                                                                                               | 0.67024 (19)                                         | 0.0185 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4738 (5) | 0.4649 (4)                                                                                                                                                                                                                               | 0.7400 (2)                                           | 0.0134 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5419 (5) | 0.3960 (5)                                                                                                                                                                                                                               | 0.8190 (2)                                           | 0.0173 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5962 (5) | 0.4837 (4)                                                                                                                                                                                                                               | 0.8896 (2)                                           | 0.0155 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6481     | 0.4310                                                                                                                                                                                                                                   | 0.9391                                               | 0.019*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5717 (5) | 0.6527 (5)                                                                                                                                                                                                                               | 0.8853 (2)                                           | 0.0159 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5037 (5) | 0.7321 (5)                                                                                                                                                                                                                               | 0.8138 (2)                                           | 0.0161 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4908     | 0.8476                                                                                                                                                                                                                                   | 0.8125                                               | 0.019*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.4542 (5) | 0.6419 (5)                                                                                                                                                                                                                               | 0.7437 (2)                                           | 0.0170 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 0.6878<br>0.6784<br>0.4485 (4)<br>0.7273 (4)<br>0.4224 (5)<br>0.6970 (5)<br>0.5824 (4)<br>0.2690 (4)<br>0.5653 (5)<br>0.6210 (5)<br>0.3876 (5)<br>0.5419 (5)<br>0.5962 (5)<br>0.6481<br>0.5717 (5)<br>0.5037 (5)<br>0.4908<br>0.4542 (5) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 0.6878 $-0.1942$ $0.5369$ $0.6784$ $-0.0694$ $0.4632$ $0.4485$ (4) $0.3812$ (3) $0.67659$ (15) $0.7273$ (4) $0.1650$ (4) $0.85805$ (18) $0.4224$ (5) $0.1338$ (4) $0.79424$ (19) $0.6970$ (5) $0.6752$ (4) $1.02204$ (16) $0.5824$ (4) $0.8942$ (3) $0.95546$ (17) $0.4486$ (4) $0.8736$ (3) $0.66647$ (16) $0.2690$ (4) $0.6684$ (4) $0.61602$ (16) $0.553$ (5) $0.2192$ (4) $0.82445$ (19) $0.6210$ (5) $0.7472$ (4) $0.95962$ (18) $0.3876$ (5) $0.7341$ (4) $0.67024$ (19) $0.4738$ (5) $0.4649$ (4) $0.7400$ (2) $0.5962$ (5) $0.4837$ (4) $0.8896$ (2) $0.6481$ $0.4310$ $0.9391$ $0.5717$ (5) $0.6527$ (5) $0.8138$ (2) $0.4908$ $0.8476$ $0.8125$ $0.4542$ (5) $0.6419$ (5) $0.7437$ (2) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0207 (13) | 0.0180 (13) | 0.0157 (12) | 0.0025 (11)  | 0.0020 (9)   | -0.0013 (10) |
| O2  | 0.0339 (16) | 0.0201 (14) | 0.0150 (12) | -0.0014 (12) | 0.0016 (11)  | 0.0006 (11)  |
| N1  | 0.0142 (14) | 0.0172 (15) | 0.0181 (14) | -0.0001 (12) | 0.0019 (11)  | -0.0001 (12) |
| N2  | 0.0237 (16) | 0.0131 (14) | 0.0130 (13) | -0.0004 (12) | 0.0036 (11)  | -0.0013 (11) |
| C2  | 0.0155 (17) | 0.0147 (16) | 0.0212 (17) | 0.0007 (14)  | 0.0062 (13)  | 0.0011 (14)  |
| C3  | 0.0155 (16) | 0.0133 (16) | 0.0195 (17) | 0.0007 (13)  | 0.0035 (13)  | -0.0003 (14) |
| C4  | 0.0178 (16) | 0.0163 (17) | 0.0175 (16) | 0.0021 (14)  | 0.0042 (13)  | 0.0010 (14)  |
| C4A | 0.0121 (16) | 0.0192 (18) | 0.0181 (16) | -0.0026 (14) | 0.0024 (13)  | -0.0024 (14) |
| C5  | 0.0141 (17) | 0.0206 (18) | 0.0175 (17) | 0.0014 (14)  | -0.0002 (13) | 0.0014 (14)  |
| C6  | 0.0167 (17) | 0.022 (2)   | 0.0212 (18) | -0.0030 (14) | -0.0002 (13) | -0.0036 (15) |
| C7  | 0.0167 (18) | 0.022 (2)   | 0.028 (2)   | -0.0007 (15) | 0.0040 (15)  | -0.0101 (16) |
| C8  | 0.0208 (19) | 0.0158 (18) | 0.0256 (19) | 0.0011 (14)  | 0.0038 (15)  | -0.0010 (14) |
| C8A | 0.0176 (17) | 0.0215 (18) | 0.0117 (15) | -0.0002 (14) | 0.0010 (12)  | -0.0012 (14) |
| C9  | 0.0165 (16) | 0.0163 (17) | 0.0157 (16) | 0.0008 (14)  | 0.0018 (12)  | -0.0001 (13) |
| C10 | 0.0222 (18) | 0.0217 (19) | 0.0169 (16) | 0.0009 (15)  | 0.0072 (13)  | 0.0022 (14)  |
| C11 | 0.0163 (17) | 0.0250 (19) | 0.0192 (18) | 0.0025 (15)  | 0.0047 (13)  | 0.0031 (14)  |
| C12 | 0.029 (2)   | 0.0186 (19) | 0.0155 (17) | -0.0051 (15) | -0.0025 (14) | -0.0030 (14) |
| O3  | 0.0197 (13) | 0.0201 (13) | 0.0150 (12) | 0.0018 (11)  | 0.0011 (9)   | -0.0049 (11) |
| O4  | 0.0266 (15) | 0.0243 (15) | 0.0361 (16) | 0.0091 (12)  | 0.0032 (12)  | 0.0054 (13)  |
| O5  | 0.0455 (18) | 0.0140 (14) | 0.0279 (15) | -0.0041 (13) | -0.0089 (13) | 0.0022 (11)  |
| O6  | 0.0429 (17) | 0.0229 (15) | 0.0172 (13) | -0.0014 (13) | 0.0000 (12)  | -0.0038 (11) |
| O7  | 0.0348 (15) | 0.0170 (14) | 0.0207 (13) | -0.0002 (12) | 0.0022 (11)  | -0.0069 (11) |
| 08  | 0.0346 (16) | 0.0162 (13) | 0.0212 (13) | -0.0008 (12) | 0.0061 (11)  | 0.0041 (11)  |
| 09  | 0.0310 (15) | 0.0231 (14) | 0.0195 (13) | 0.0036 (12)  | -0.0057 (11) | -0.0036 (11) |
| N3  | 0.0268 (17) | 0.0144 (15) | 0.0179 (15) | 0.0034 (13)  | 0.0041 (12)  | 0.0003 (12)  |
| N4  | 0.0204 (15) | 0.0182 (16) | 0.0172 (15) | -0.0036 (12) | 0.0060 (12)  | -0.0042 (12) |
|     |             |             |             |              |              |              |

# supplementary materials

| N5  | 0.0173 (15) | 0.0213 (16) | 0.0170 (15) | 0.0028 (13)  | 0.0036 (12) | -0.0008 (12) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C13 | 0.0079 (16) | 0.0186 (18) | 0.0135 (15) | -0.0004 (12) | 0.0015 (12) | -0.0022 (12) |
| C14 | 0.0168 (17) | 0.0131 (17) | 0.0212 (18) | 0.0002 (14)  | 0.0011 (13) | 0.0017 (14)  |
| C15 | 0.0147 (17) | 0.0144 (17) | 0.0184 (17) | -0.0013 (13) | 0.0051 (13) | -0.0006 (13) |
| C16 | 0.0157 (16) | 0.0160 (17) | 0.0159 (16) | -0.0011 (14) | 0.0023 (12) | -0.0057 (14) |
| C17 | 0.0129 (16) | 0.0159 (17) | 0.0205 (17) | -0.0002 (14) | 0.0062 (13) | -0.0020 (14) |
| C18 | 0.0148 (17) | 0.0170 (18) | 0.0182 (17) | -0.0003 (14) | 0.0002 (13) | 0.0003 (14)  |

Geometric parameters (Å, °)

| 01-C2      | 1.374 (5) | C10—C11       | 1.361 (6) |
|------------|-----------|---------------|-----------|
| O1—C8A     | 1.391 (4) | C10—H10       | 0.9500    |
| O2—C2      | 1.206 (5) | C11—H11       | 0.9500    |
| N1—C9      | 1.342 (5) | C12—H12A      | 0.9800    |
| N1—C11     | 1.383 (5) | C12—H12B      | 0.9800    |
| N1—C3      | 1.437 (5) | C12—H12C      | 0.9800    |
| N2—C9      | 1.328 (5) | O3—C13        | 1.255 (4) |
| N2         | 1.369 (5) | O4—N3         | 1.232 (4) |
| N2         | 1.472 (5) | O5—N3         | 1.235 (4) |
| C2—C3      | 1.464 (5) | O6—N4         | 1.237 (4) |
| C3—C4      | 1.342 (5) | O7—N4         | 1.232 (4) |
| C4—C4A     | 1.433 (5) | O8—N5         | 1.222 (4) |
| C4—H4      | 0.9500    | O9—N5         | 1.232 (4) |
| C4A—C8A    | 1.387 (5) | N3—C14        | 1.458 (5) |
| C4A—C5     | 1.410 (5) | N4            | 1.460 (4) |
| C5—C6      | 1.387 (6) | N5-C18        | 1.452 (5) |
| С5—Н5      | 0.9500    | C13—C14       | 1.445 (5) |
| C6—C7      | 1.405 (6) | C13—C18       | 1.458 (5) |
| С6—Н6      | 0.9500    | C14—C15       | 1.383 (5) |
| C7—C8      | 1.389 (6) | C15—C16       | 1.395 (5) |
| С7—Н7      | 0.9500    | C15—H15       | 0.9500    |
| C8—C8A     | 1.383 (5) | C16—C17       | 1.376 (5) |
| C8—H8      | 0.9500    | C17—C18       | 1.383 (5) |
| С9—Н9      | 0.9500    | С17—Н17       | 0.9500    |
|            |           |               | 106.4     |
| C2-01-C8A  | 122.7 (3) |               | 126.4     |
| C9—NI—CII  | 109.4 (3) | N2—C10—H10    | 126.4     |
| C9—N1—C3   | 125.0 (3) | C10—C11—N1    | 106.1 (3) |
| C11—N1—C3  | 125.5 (3) | C10—C11—H11   | 126.9     |
| C9—N2—C10  | 109.8 (3) | N1—C11—H11    | 126.9     |
| C9—N2—C12  | 125.5 (3) | N2—C12—H12A   | 109.5     |
| C10—N2—C12 | 124.7 (3) | N2—C12—H12B   | 109.5     |
| O2—C2—O1   | 118.7 (3) | H12A—C12—H12B | 109.5     |
| O2—C2—C3   | 125.7 (4) | N2—C12—H12C   | 109.5     |
| O1—C2—C3   | 115.6 (3) | H12A—C12—H12C | 109.5     |
| C4—C3—N1   | 122.0 (3) | H12B—C12—H12C | 109.5     |
| C4—C3—C2   | 122.9 (4) | O4—N3—O5      | 124.3 (3) |
| N1—C3—C2   | 115.1 (3) | O4—N3—C14     | 117.8 (3) |
| C3—C4—C4A  | 119.3 (4) | O5—N3—C14     | 117.9 (3) |
| C3—C4—H4   | 120.4     | O7—N4—O6      | 124.6 (3) |

| C4A—C4—H4      | 120.4      | O7—N4—C16       | 117.1 (3)  |
|----------------|------------|-----------------|------------|
| C8A—C4A—C5     | 117.8 (3)  | O6—N4—C16       | 118.3 (3)  |
| C8A—C4A—C4     | 119.1 (3)  | O8—N5—O9        | 123.7 (3)  |
| C5—C4A—C4      | 123.1 (4)  | O8—N5—C18       | 118.2 (3)  |
| C6—C5—C4A      | 120.6 (4)  | O9—N5—C18       | 118.0 (3)  |
| C6—C5—H5       | 119.7      | 03-C13-C14      | 122.9(3)   |
| C4A—C5—H5      | 119.7      | 03-C13-C18      | 125.4(3)   |
| C5—C6—C7       | 119.7 (3)  | C14—C13—C18     | 111.5 (3)  |
| С5—С6—Н6       | 120.1      | C15-C14-C13     | 125.6 (3)  |
| С7—С6—Н6       | 120.1      | C15—C14—N3      | 116.9 (3)  |
| C8—C7—C6       | 120.3 (4)  | C13—C14—N3      | 117.4 (3)  |
| С8—С7—Н7       | 119.8      | C14—C15—C16     | 117.4 (3)  |
| С6—С7—Н7       | 119.8      | С14—С15—Н15     | 121.3      |
| C8A—C8—C7      | 118.7 (4)  | C16—C15—H15     | 121.3      |
| C8A—C8—H8      | 120.6      | C17—C16—C15     | 122.3 (3)  |
| C7—C8—H8       | 120.6      | C17—C16—N4      | 119.4 (3)  |
| C8 - C8 - C4A  | 122.8 (3)  | C15-C16-N4      | 1183(3)    |
| C8 - C8 - O1   | 116.8 (3)  | C16-C17-C18     | 119.2(3)   |
| C4A - C8A - O1 | 120.5(3)   | C16—C17—H17     | 120.4      |
| N2-C9-N1       | 1074(3)    | C18 - C17 - H17 | 120.1      |
| N2-C9-H9       | 126.3      | C17 - C18 - N5  | 1162(3)    |
| N1-C9-H9       | 126.3      | C17 - C18 - C13 | 123.9(3)   |
| C11 - C10 - N2 | 107 3 (3)  | $N_{5}$ C18 C13 | 129.9(3)   |
|                | 107.5 (5)  |                 | 119.9 (5)  |
| C8A—O1—C2—O2   | -177.4 (3) | C12—N2—C10—C11  | 178.7 (3)  |
| C8A—O1—C2—C3   | 1.3 (5)    | N2-C10-C11-N1   | 0.6 (4)    |
| C9—N1—C3—C4    | 120.5 (4)  | C9—N1—C11—C10   | -0.5 (4)   |
| C11—N1—C3—C4   | -64.0 (5)  | C3—N1—C11—C10   | -176.6 (3) |
| C9—N1—C3—C2    | -60.9 (5)  | O3—C13—C14—C15  | 171.5 (4)  |
| C11—N1—C3—C2   | 114.6 (4)  | C18—C13—C14—C15 | -4.2 (5)   |
| O2—C2—C3—C4    | 177.9 (4)  | O3—C13—C14—N3   | -5.2 (5)   |
| O1—C2—C3—C4    | -0.7 (5)   | C18—C13—C14—N3  | 179.1 (3)  |
| O2—C2—C3—N1    | -0.7 (5)   | O4—N3—C14—C15   | -50.5 (5)  |
| O1—C2—C3—N1    | -179.4 (3) | O5—N3—C14—C15   | 130.3 (4)  |
| N1—C3—C4—C4A   | 179.1 (3)  | O4—N3—C14—C13   | 126.5 (4)  |
| C2—C3—C4—C4A   | 0.6 (5)    | O5—N3—C14—C13   | -52.7 (5)  |
| C3—C4—C4A—C8A  | -1.0(5)    | C13—C14—C15—C16 | 4.2 (5)    |
| C3—C4—C4A—C5   | 177.9 (3)  | N3—C14—C15—C16  | -179.1 (3) |
| C8A—C4A—C5—C6  | -0.7 (5)   | C14—C15—C16—C17 | -2.4 (5)   |
| C4—C4A—C5—C6   | -179.6 (3) | C14—C15—C16—N4  | 177.7 (3)  |
| C4A—C5—C6—C7   | -0.4 (5)   | O7—N4—C16—C17   | 6.1 (5)    |
| C5—C6—C7—C8    | 1.3 (6)    | O6—N4—C16—C17   | -174.2 (3) |
| C6—C7—C8—C8A   | -1.1 (6)   | O7—N4—C16—C15   | -174.1 (3) |
| C7—C8—C8A—C4A  | -0.1 (6)   | O6—N4—C16—C15   | 5.6 (5)    |
| C7—C8—C8A—O1   | 178.3 (3)  | C15—C16—C17—C18 | 1.2 (5)    |
| C5—C4A—C8A—C8  | 1.0 (5)    | N4—C16—C17—C18  | -179.0 (3) |
| C4—C4A—C8A—C8  | 179.9 (4)  | C16—C17—C18—N5  | -178.7 (3) |
| C5—C4A—C8A—O1  | -177.3 (3) | C16—C17—C18—C13 | -1.5 (5)   |
| C4—C4A—C8A—O1  | 1.6 (5)    | O8—N5—C18—C17   | 27.9 (5)   |

# supplementary materials

| C2-01-C8A-C8 179.8 (3) 09-N5-C18-C17 -15   | 50.4 (3) |
|--------------------------------------------|----------|
| C2—O1—C8A—C4A -1.8 (5) O8—N5—C18—C13 -14   | 49.4 (3) |
| C10—N2—C9—N1 0.1 (4) 09—N5—C18—C13 32.3    | 3 (5)    |
| C12—N2—C9—N1 -179.0 (3) O3—C13—C18—C17 -17 | 72.8 (3) |
| C11—N1—C9—N2 0.3 (4) C14—C13—C18—C17 2.8   | (5)      |
| C3—N1—C9—N2 176.4 (3) O3—C13—C18—N5 4.3    | (5)      |
| C9—N2—C10—C11 -0.4 (4) C14—C13—C18—N5 179  | 9.9 (3)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | Н…А  | D····A    | D—H···A |
|--------------------------------------|------|------|-----------|---------|
| C5—H5…O7 <sup>i</sup>                | 0.95 | 2.58 | 3.349 (4) | 138     |
| С9—Н9…ОЗ                             | 0.95 | 2.33 | 3.122 (5) | 140     |
| C10—H10…O9 <sup>ii</sup>             | 0.95 | 2.51 | 3.303 (5) | 141     |
| C11—H11…O3 <sup>iii</sup>            | 0.95 | 2.42 | 3.196 (5) | 139     |
| C11—H11…O5 <sup>iii</sup>            | 0.95 | 2.51 | 3.231 (5) | 132     |
| C12—H12 $A$ ···O2 <sup>iv</sup>      | 0.98 | 2.58 | 3.360 (5) | 137     |
| C12—H12 <i>B</i> ···O2 <sup>v</sup>  | 0.98 | 2.48 | 3.448 (5) | 171     |
| C12—H12 <i>C</i> ···O3 <sup>iv</sup> | 0.98 | 2.39 | 3.269 (4) | 148     |
| C12—H12 <i>C</i> ···O9 <sup>iv</sup> | 0.98 | 2.42 | 3.160 (5) | 132     |
| C17—H17····O5 <sup>vi</sup>          | 0.95 | 2.40 | 3.345 (5) | 172     |

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+2; (ii) *x*+1, *y*-1, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, *y*-1/2, -*z*+1; (v) *x*, *y*-1, *z*; (vi) *x*, *y*+1, *z*.