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ABSTRACT

Coronavirus has brought about three massive out-
breaks in the past two decades. Each step of its life
cycle invariably depends on the interactions among
virus and host molecules. The interaction between
virus RNA and host protein (IVRHP) is unique com-
pared to other virus–host molecular interactions and
represents not only an attempt by viruses to promote
their translation/replication, but also the host’s en-
deavor to combat viral pathogenicity. In other words,
there is an urgent need to develop a database for pro-
viding such IVRHP data. In this study, a new database
was therefore constructed to describe the interac-
tions between coronavirus RNAs and host proteins
(CovInter). This database is unique in (a) unambigu-
ously characterizing the interactions between virus
RNA and host protein, (b) comprehensively provid-
ing experimentally validated biological function for
hundreds of host proteins key in viral infection and
(c) systematically quantifying the differential expres-
sion patterns (before and after infection) of these
key proteins. Given the devastating and persistent
threat of coronaviruses, CovInter is highly expected
to fill the gap in the whole process of the ‘molec-
ular arms race’ between viruses and their hosts,
which will then aid in the discovery of new antivi-

ral therapies. It’s now free and publicly accessible at:
https://idrblab.org/covinter/

GRAPHICAL ABSTRACT

INTRODUCTION

The coronaviruses have brought about three massive out-
breaks over the past two decades: severe acute respiratory
syndrome (SARS), middle eastern respiratory syndrome
(MERS) and corona virus disease 2019 (COVID-19) (1–4).
The general life cycle of coronavirus (illustrated in Figure
1) is composed of multiple steps, such as fusion, proteol-
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Figure 1. A schematic representation of the life cycle of coronavirus, which consisted of multiple steps (such as fusion, proteolysis, translation, replication,
packaging & release). The interactions between virus RNAs and host proteins (IVRHPs, highlighted using blue bold font) are unique in representing not
only the virus’ attempts to accelerate their translation & replication, but also the host’s endeavor to combat virus pathogenicity.

ysis, translation, replication, packaging, and release (5–7),
each step of which invariably depends on the interactions
among the molecules of viruses and hosts (8–12). Particu-
larly, the virus–host protein–protein interactions (VHPPIs)
are reported to be essential for virus entry, replication, and
dysregulation of host’s innate immune response (13–16); the
virus–host RNA–RNA interactions (VHRRIs) are identi-
fied as the critical building blocks of the pathways for coro-
naviruses’ transcription/replication (17–19); and the inter-
actions between virus protein and host RNA (IVPHRs) are
found essential for not only the transcription of virus pro-
teins but also the packaging during the coronavirus infec-
tion (20–23).

Compared with the interactions above (VHPPIs,
VHRRIs and VPHRIs), the interactions between virus
RNA and host protein (IVRHPs, highlighted using blue
& bold font in Figure 1) are unique in representing not
only the virus’ attempts to accelerate their translation and
replication (24–26), but also the host’s endeavor to combat
virus pathogenicity (27–29). With the recent technological
breakthrough in detecting such invaluable interactions
(30–33), the discovery of new IVRHP has attracted broad
attention from the research community and a huge number
of IVRHP data have thus been accumulated (34–38).
Particularly, some of these newly discovered IVRHPs are
reported to promote the translation/replication of virus
(pro-virus (39,40)), while some others are found to suppress
the infection (anti-virus (41–43)). Both types of IVRHP
data are valuable for filling the missing blanks in the entire
process of the ‘molecular arms race’ between virus and
host (44–47), and identifying new therapeutic targets to
facilitate drug discovery/repurposing (48–53). Therefore,

it is essential to have a coronavirus-related knowledge
base to provide such valuable IVRHP data that facilitate
(pro-virus) or inhibit (anti-virus) virus infection.

Until now, a variety of molecular interaction-based
databases that discusses virus infections have been con-
structed (54–59). The majority of them focus on describing
VHPPI data (like COVINET (54), HVIDB (55), VirHost-
Net (56) and VirusMentha (57)); some others specialize in
demonstrating the VHRRI data (such as ViRBase (58));
and the remaining one aims at offering IVPHR data (such
as IntACT (59)). However, as an integral & unique part
of the comprehensive interacting network in viruses’ life
cycle, the IVRHPs have not been covered by any existing
databases, which urgently asks for the development of a
new database to provide the interaction data between virus
RNAs and host proteins (IVRHPs).

In this study, a new knowledge base titled ‘interaction
data between coronavirus RNAs and host proteins (Cov-
Inter)’ was thus constructed. First, a systematic literature
review was conducted by keyword searching in PubMed,
which resulted in a total of 10 180 IVRHP data between 310
virus RNAs and 1281 host proteins. Second, the functions
of host proteins interacting with virus RNA were then sys-
tematically collected by the literature review, and a total of
808 host proteins were identified to describe their pro/anti-
virus functions. Particularly, there were 364 pro-virus pro-
teins and 444 anti-virus ones. Third, the differential expres-
sion patterns of these host proteins were further analyzed
based on the data collected from the GEO database (60).
Finally, a total of 316 infectious signaling pathways (the
definition of this type of pathway was explicitly described
below) that those host proteins involved in were extracted.
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Figure 2. A typical CovInter page for virus RNA describing a comprehensive list of host proteins that interacted with this RNA. The detailed experi-
mental information was provided and explicitly discussed, which included the virus infection time, infection cell, cell-originated tissue, detection method,
interaction types, interaction binding type and so on. All the interactions were validated using diverse living systems including 30 cell lines from 14 tissues
and various model organisms. Detailed information of the interacting proteins can be found by clicking the dark blue button.

All in all, CovInter database was introduced to (a) ex-
plicitly describe the interaction data between virus RNAs
and host proteins, (b) systematically provide the experimen-
tally verified function for hundreds of host proteins key in
virus infection and (c) quantitatively demonstrate the dif-
ferential expression patterns (before and after infection) of
these key proteins. Considering the devastating and long-
lasting threat of coronavirus, the data shown in CovInter
are expected to help to fill the missing blanks in the entire
process of ‘molecular arms race’ between virus and host,
which will therefore facilitate the identification of new ther-
apeutic targets for drug discovery/repurposing.

FACTUAL CONTENT AND DATA RETRIEVAL

Collection of interaction data between virus RNA and host
protein (IVRHPs)

A comprehensive literature review on the interactions be-
tween coronavirus RNA and host protein was first con-
ducted by PubMed searching using the keywords of ‘coro-
navirus RNA interaction’, ‘SARS-CoV-2 RNA protein in-
teraction’, ‘COVID RNA protein interaction’, ‘SARS-CoV
RNA protein interactions’, ‘MERS RNA protein interac-
tions’, ‘coronavirus RNA binding’, and so on. As a result,

the IVRHP data of seven types of coronavirus were col-
lected, which included severe acute respiratory syndrome
coronavirus (SARS), severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), middle eastern respiratory
syndrome coronavirus (MERS-CoV) together with other
four human coronaviruses (HCoV-OC43, HCoV-NL63,
HCoV-HKU1, HCoV-229E), and a total of 10 180 IVRHPs
between 310 virus RNAs and 1281 host proteins were iden-
tified.

Moreover, the additional referencing data for host pro-
teins, virus RNAs, and their corresponding interactions
were systematically collected and provided in CovInter
database. For a host protein, a variety of referencing data
were given, which included protein name, protein fam-
ily, gene name, EC number (if available), subcellular loca-
tion, sequence, UniProt ID (61), gene ID (62), Ensembl ID
(63), HGNC ID (64) and biological function. The 2D and
3D structures of these proteins from PDB (65), SWISS-
MODEL (66) and AlphaFold (67) were also collected. For a
coronavirus RNA, its referencing data included virus name,
taxonomy ID (68), strains name, strains family, GISAID
accession ID (69), strains mutation site, and its structure
predicted using RNAfold. For an IVRHP, a variety of ex-
perimental data were collected and described, which con-
tained virus infection time, infection cells, cell-originated



Nucleic Acids Research, 2023, Vol. 51, Database issue D549

Figure 3. A typical circular plot in online CovInter comprehensively describing all IVRHPs for a particular RNA region from the France/IDF-220–95
stain of SARS-CoV-2 (indicated by a red circle). All interactions between this RNA and different host proteins (green circles) were visualized by linking
them using the red line. Other RNAs (from other SARS-CoV-2 strains) which interacted with the same host proteins as that of the studied RNA region
above, were highlighted by orange circles, and their corresponding interactions with host proteins were visualized using orange lines. The diameter of a
green circle indicated the number of virus’ RNAs interacting with the corresponding protein. The larger the diameter of a protein is, the more virus RNAs
this protein interacts with. Specifically, the diameter of a green circle denoted the level of conservation among the corresponding IVRHPs of different
virus variants/strains. The circular plot is drawn using the Pychart 1.91 package in Python 3.8 environment, which can be readily viewed online and freely
downloaded from the CovInter website.

tissue, detection method, interaction type, interaction bind-
ing type and so on. All these interactions were validated us-
ing diverse living systems, which included 30 cell lines from
14 tissues and various model organisms. As shown in Figure
2 (a typical CovInter page for virus RNA), a full list of host
proteins that interacted with this virus RNA together with
the detailed experimental information was provided and ex-
plicitly described.

Illustration of the level of conservation among different
IVRHP interactions

Conservation of IVRHPs among various virus strains. Be-
cause of the rapid sequence variations in coronavirus RNA,
significant gain/loss of interaction (especially IVRHPs) has
been frequently reported, which is highly expected to lead
to substantial changes in the rate of both virus transmission
and case fatality (46,70,71). Thus, it is key to have an in-

depth understanding of the level of the conservation among
the IVRHPs of various virus variants/strains. In CovIn-
ter, a circular plot (comprehensively describing all IVRHPs
for a particular virus RNA) was therefore constructed and
then provided to demonstrate their level of conservation
among virus strains. As provided in Figure 3, for a par-
ticular RNA region from the France/IDF-220–95 stain of
SARS-CoV-2, all interactions between this RNA (red cir-
cle) and different host proteins (green circles) were first vi-
sualized by linking them using red lines. Then, other RNAs
(from other strains of SARS-CoV-2) which interacted with
the same host protein as that of the studied RNA (RNA re-
gion from SARS-CoV-2 France/IDF-220-95 stain), were
also highlighted using orange circles, and their correspond-
ing interactions with host protein were visualized using or-
ange lines. The diameter of green circle indicated the num-
ber of virus’ RNAs that could interact with the host protein.
The larger the diameter of a protein is, the more virus RNAs
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Figure 4. A typical hierarchical plot in CovInter illustrating all IVRHPs for specific host protein named ‘RPS3’ (on the far-left side). All interactions
between virus RNAs (as provided in the middle column) and this protein were described by linking them using purple line. The strains of the same type of
coronaviruses were illustrated in the same color on the right side (e.g. all SARS-CoV-2 strains were shown using blue lines one right side). As illustrated, the
IVRHPs between virus 5′-UTR RNA and host RPS3 protein were substantially conserved among different SARS-CoV-2 strains, but this type of IVRHP
has not been found in other types of coronaviruses. Different from the 5′-UTR RNA, the 3′-UTR RNA was reported to be conserved among different
coronavirus types (highlighted using different colors). The hierarchical plot above is drawn using the Pychart 1.91 package in the Python 3.8 environment,
which can be readily viewed online and freely downloaded from the CovInter website.

this protein interacts with. In other words, the diameter of
a green circle denoted the level of conservation among the
corresponding IVRHPs of various virus strains.

Taking SRSF1 protein as an example (described in Fig-
ure 3), it interacted with the RNAs of six different SARS-
CoV-2 strains (not only the France/IDF-220-95 one, but
also the remaining five strains: Argentina/INEI104133,
Zimbabwe/CERI-KRISP, Namibia/N17380, IPBCAMS-
YL01 and Wuhan-Hu-1). This suggested that the IVRHP
between SARS-CoV-2′s RNA region and host SRSF1
protein was greatly conserved despite the viral evolution
(25,26,34,37,72). Moreover, some other host proteins were
found to selectively interact with specific virus strains. Tak-
ing the CCAR2 protein as another example, it only inter-
acted with the RNA region from France/IDF-220–95 stain
of SARS-CoV-2 (34). That is to say, the corresponding in-
teractions between virus RNA region and host CCAR2
protein were deprived during the virus evolution from the
France strain to others. All in all, the CovInter is unique
in showing the level of conservation among the IVRHPs of
different virus strains, which can contribute to our under-

standings of virus infection process and the identification
and selection of new drug targets and therapies.

Conservation of IVRHPs among different virus types. It is
also very important to understand the level of conservation
of IVRHPs among different types of coronaviruses, since
such interactions usually indicate the fundamental mech-
anisms underlying virus’ survival and transmission (35,73).
In CovInter, a hierarchical plot (that illustrated all IVRHPs
for specific host protein) was therefore drawn to show their
level of conservations among virus types. As shown in Fig-
ure 4, for a host protein named ‘RPS3′, all interactions be-
tween virus RNAs (as shown in the middle column) and
this protein (on the left side) were first shown by linking
them using purple lines. Then, the strains of the same type
of coronaviruses were shown in the same color on the right
side. As illustrated, the IVRHPs between the virus 5′-UTR
RNAs and host RPS3 were largely conserved among differ-
ent SARS-CoV-2 strains, but this type of IVRHP has not
been reported in other types of coronaviruses yet. Differ-
ent from the 5′-UTR RNA, the 3′-UTR RNA was found
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Figure 5. A typical CovInter webpage showing the biological function and molecular regulation data of the host interacting proteins. A total of 808 host
proteins were offered in CovInter as pro-viral (facilitating viral infection) and anti-viral (hampering infectious progression). The detailed experiments for
validating the protein function were described here, such as infection time/cells, cell-originated tissue, detection method and so on. Moreover, the available
molecular regulators (especially drugs) of the host protein were collected, which resulted in a total of 391 drugs targeting 110 host proteins. All data can
be freely downloaded from the CovInter website.

to be conserved among different coronavirus types (which
were highlighted using different colors). All in all, CovInter
is unique in illustrating the level of conservation among the
IVRHPs of various types of coronaviruses (such as SARS-
CoV-2, SARS-CoV and MERS-CoV).

Explicit description on the interacting protein from multiple
perspectives

Current studies on the discovery or the analysis of new
IVRHPs have provided great implications on the develop-
ment of novel antiviral strategies (74–77), and it is also
necessary to have detailed descriptions on interacting pro-

teins from multiple perspectives (78–82). Thus, the addi-
tional data of these host proteins were provided, such as the
function of the proteins in coronavirus infection, available
molecular regulators (especially drugs) of the proteins, dif-
ferential expression pattern of the proteins before and af-
ter infection, and infectious pathways that the proteins in-
volved in.

Function and regulators of the host interacting proteins.
The function of the host interacting proteins in coron-
avirus infection was identified by searching the keywords
combination in PubMed, such as ‘coronaviruses + host
protein + loss of function’, ‘SARS-CoV-2 + host fac-



D552 Nucleic Acids Research, 2023, Vol. 51, Database issue

Figure 6. Differential expression patterns of host interacting proteins illustrated in CovInter. The differential expression pattern data were collected using
the following process. First, three benchmarks were collected from GEO (GSE152641, GSE162835 and GSE175779). GSE152641 is composed of 24
and 62 blood samples before and after SARS-COV-2 infections; GSE162835 consists of the nasopharyngeal swab samples of 37, 10 and 3 patients with
mild, moderate, and severe symptom, respectively; GSE175779 contains the bronchial epithelial cell samples from 4 healthy people and 4 SARS-COV-
2 patients at different time points (0, 24, 48, 72 and 96 h). Second, the differential expression pattern of host proteins was collected from the original
studies of these benchmarks and illustrated in CovInter using the Seaborn 0.11.2 package in Python. Green: protein expression in healthy individuals; red:
protein expression in the infected patients. Mild: protein expression in patients with mild symptom; Moderate: protein expression in patients with moderate
symptom; Severe: protein expression in patients with severe symptom.
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tor + CRISPR knockout screens’, ‘SARS-CoV + genome
wide screen’ and ‘MERS-CoV + siRNA screens’. As a re-
sult, a total of 808 host proteins were discovered as pro-
viral (facilitating viral infection) and anti-viral (hampering
infectious progression) proteins. Particularly, there were 364
pro-viral proteins (such as HMGB1 promoting the fusion of
SARS-CoV-2 (83)) and 444 anti-viral ones (such as DDX1
inhibiting the RNA amplification of multiple types of coro-
navirus (84)). The detailed experiments for validating the
protein function were also described, such as infection time
& cells, cell-originated tissue, detection method and so on.

Furthermore, the available molecular regulators (espe-
cially drugs) of the host interacting proteins were also col-
lected by literature review using the keywords combina-
tions of ‘coronavirus + host protein + drug’, ‘SARS-CoV-
2 + drug repurposing’, ‘SARS-CoV-2 + drug discovery’,
‘MERS-CoV + antiviral drugs’ and so on. As a result,
a total of 391 drugs that targeted 110 host proteins were
collected and the links for these drugs to several popular
databases such as DrugBank (85), PubChem (86) and TTD
(87) were also provided. In the CovInter webpage describ-
ing both functions and regulators of host proteins (shown
in Figure 5), various data of the corresponding protein was
systematically described, and all data can be freely down-
loaded from the website.

Expression and pathways of the host interacting proteins.
Virus infection elicits the differential expression of certain
protein and regulates infection-related pathways (88–91).
The discovery of proteins and biological pathways that are
changed in virus infection can substantially facilitate the
explanation of virus’ pathology (12,19), discovery of drug
targets (92–94), and advance of precision medicine (95,96).
Therefore, the differential expression patterns of the host
interacting proteins were analyzed and provided in Cov-
Inter database using the following procedures. First, three
benchmarks generated by Illumina NovaSeq 6000 and Il-
lumina NextSeq 500 were collected from GEO (60), includ-
ing GSE152641, GSE162835, and GSE175779. GSE152641
is composed of 24 and 62 blood samples before and after
SARS-COV-2 infections; GSE162835 consists of nasopha-
ryngeal swab samples of 37, 10 and 3 patients with mild,
moderate, and severe symptom, respectively; GSE175779
contains the bronchial epithelial cell samples from 4 healthy
people and 4 SARS-COV-2 patients at different time points
(0, 24, 48, 72 and 96 h). Then, the differential expression pat-
terns of host proteins were collected from the original pub-
lications of these benchmarks, and illustrated in the CovIn-
ter using the Seaborn 0.11.2 package in Python 3.8 environ-
ment (as shown in Figure 6).

Moreover, to achieve an in-depth insight into the host
response pathway activated by host protein during coron-
avirus infection, a total of 316 infection-associated path-
ways that these host proteins involved in were identified.
Particularly, the pathway information of each host protein
was first extracted from KEGG database, and these ex-
tracted pathways were checked one-by-one on their rela-
tion to virus infection. Then, to determine whether a path-
way is related to the infection, two critical procedures were
conducted, which included the adoption of KEGG sub-
classes (such as ‘viral infectious disease’ and ‘information

processing in viruses’) and the literature review in PubMed
by searching some keyword combinations (such as ‘Path-
way Name + infection’ and ‘Pathway Name + infectious dis-
ease’). All in all, these efforts helped us to identify any path-
ways reported to be closely related to virus infection, which
were therefore considered as ‘infectious signaling pathways’
in our database. Some of the typical infectious pathways in-
cluded COVID-19 infectious pathway, chemokine signaling
pathway, MAPK and JAK-STAT signaling pathways etc.
(97). All infectious pathway maps can be readily viewed
online and freely downloaded directly from CovInter web-
site. As reported, interactions between virus RNAs and
host proteins could be regulated by protein phosphoryla-
tion. Analysis of the phosphorylation of host protein after
SARS-CoV-2 infection was therefore considered in CovIn-
ter based on two reputable phosphorylated proteomic stud-
ies (54,98). The dynamic phosphorylation of proteins at dif-
ferent sites over time (2, 4, 8, 12, 24, and 36 h after SARS-
CoV-2 infection) was drawn using the Python package Mat-
plotlib 0.11.2, and a total of 4047 types of phosphorylation
occurring in 631 host proteins at 6 time-points were there-
fore collected and provided.

CONCLUSION AND PERSPECTIVES

Herein, CovInter was developed to unambiguously charac-
terize, for the first time, the interaction data between virus
RNA and host protein, comprehensively provide the exper-
imentally verified functions for hundreds of host proteins
key in coronavirus infection, and systematically quantify
the differential expression patterns of these key proteins be-
fore and after infection. CovInter has been smoothly run-
ning for months and tested by different research labs, and
its data can now be fully accessed without any login require-
ment by all users at: https://idrblab.org/covinter/.

DATA AVAILABILITY

To view the contributors of each individual sequence that
downloaded from GISAID database in this study (pro-
vided in Supplementary Table), visit via www.gsaid.org/
EPI SET 220823ya to get the detailed information such as
accession number, virus name, collection date, originating
lab and submitting lab and the list of authors.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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