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ABSTRACT Enucleated human polymorphonuclear leukocytes (PMN) were prepared by cen- 
trifuging isolated, intact PMN over a discontinuous Ficoll gradient that contained 20 /zM 
cytochalasin B. The enucleated cells (PMN cytoplasts) contained about one-third of the plasma 
membrane and about one-half of the cytoplasm present in intact PMN. The PMN cytoplasts 
contained no nucleus and hardly any granules. The volume of the PMN cytoplasts was about 
one-fourth of that of the original PMN. >90% of the PMN cytoplasts had an "outside-out" 
topography of the plasma membrane. 

Cytoplasts prepared from resting PMN did not generate superoxide radicals (02-) or 
hydrogen peroxide. PMN cytoplasts incubated with opsonized zymosan particles or phorbol- 
myristate acetate induced a respiratory burst that was qualitatively (02 consumption, 02- and 
H202 generation) and quantitatively (per unit area of plasma membrane) comparable with that 
of intact, stimulated PMN. Moreover, at low ratios of bacteria/cells, PMN cytoplasts ingested 
opsonized Staphylococcus aureus bacteria as well as did intact PMN. At higher ratios, the 
cytoplasts phagocytosed less well. The killing of these bacteria by PMN cytoplasts was slower 
than by intact cells. The chemotactic activity of PMN cytoplasts was very low. 

These results indicate that the PMN apparatus for phagocytosis, generation of bactericidal 
oxygen compounds, and killing of bacteria, as well as the mechanism for recognizing opsonins 
and activating PMN functions, are present in the plasma membrane and cytosol of these cells. 

Polymorphonuclear leukocytes (PMN ~) ingest, kill, and de- 
grade invading microorganisms. For this purpose, PMN pro- 
duce large quantities of hydrogen peroxide and secrete large 
amounts of granular enzymes into phagocytic vacuoles (1-3). 
The precise role of these cellular products in the killing process 
is not known. The importance of the hydrogen peroxide has 
been deduced from the inability of PMN from patients with 
chronic granulomatous disease to kill microorganisms that do 
not themselves secrete hydrogen peroxide (4). Moreover, 
many types of bacterium are killed only to a minor extent by 
PMN at low oxygen pressure (5). The importance of the 
granular enzyme myeloperoxidase has been ;nferred from the 
powerful antimicrobial activity of isolated myeloperoxidase 
with hydrogen peroxide and a halide such as chloride (6), and 
from the retarded killing of certain microorganisms by mye- 
loperoxidase-deficient PMN (7). 

Abbreviations used in this paper. HMP, hexose rnonophosphate; 
PMN, polymorphonuclear leukocytes. 

From human PMN, we have prepared cytoplasmic vesicles 
that contain neither nucleus nor granules. These so-called 
PMN cytoplasts were obtained from nonstimulated PMN, 
excluded vital dyes, were osmotically resistant, and did not 
generate hydrogen peroxide unless incubated with opsonized 
particles or soluble stimuli. Moreover, these PMN cytoplasts 
ingested and killed Staphylococcus aureus, proving that nei- 
ther nucleus nor granules are essential for the killing of these 
bacteria. 

MATERIALS AND METHODS 

Materials: A 40% (wt/vol) stock solution ofFicoll (Ficoll 70, Pharmacia 
Fine Chemicals, Uppsala, Sweden) was made in 0.025 M Tris-HCl, pH 7.4. 
The osmolarity of this stock solution was 296 mosM. Final solutions used for 
the gradient were made by diluting this stock solution with phosphate-buffered 
saline (PBS; 140 mM sodium chloride, 10 mM sodium phosphate; pH 7.2). 

Cell Isolation: PMN were isolated from the buffy coat of 500 ml of 
fresh blood from volunteer donors, as described by De Boer et al. (8). The 
PMN were suspended in a medium that consisted of 138 mM NaCI, 2.7 mM 
KCI, 8.1 mM Na~HPO+, 1.5 mM KH:PO+, 0.6 mM CaCI2, 1.0 mM MgCI2, 5.5 
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mM glucose, and 0.5% (wt/vol) human albumin (incubation medium). The 
final cell suspension contained at least 95% PMN; the remaining cells were 
lymphocytes. 

Enucleation: We used a modification of the method described by 
Wiglet and Weinstein (9) for preparing enucleated PMN. PMN were suspended 
in 12.5% (wt/vol) Ficoll solution (sp gr d 25, 1.0477 g/cm3; refractive index r~D 5, 
1.352) with 20 ~M cytochalasin B (Sigma Chemical Co., St. Louis, MO). This 
cell suspension (~l tP PMN/ml) was preincubated for 5 min at 37"C. The 
suspension (4.5 ml) was then layered on a prewarmed (2 h at 37"C), discontin- 
uous density gradient (4.5 ml of 16% [wt/vol] Ficoll [d 25, 1.0578; rr~D 5, 1.356] 
on top of 4.5 ml of 25% [wt/vol] Ficoll [a us, 1.0855; rt2o 5, 1.369). Cytochalasin 
B (20 #M) was present throughout the gradient. Polycarbonate centrifuge tubes 
(2.5 x 8.9 cm; Beckman Instruments Inc., Palo Alto, CA) were used. The 
gradients were centrifuged for 30 min at 81,000 g (middle of the tubes) and 
33"C in an ultracentrifuge (Kontron Electronic, Inc., Ultracentrifuge TGA 50, 
Zurich, Switzerland), of which the SW-27 swing-out rotor (Beckman Instru- 
ments, Inc.) had been prewarmed for 4 h at 37°C. 

After centrifugation, a band of enuclcated PMN (band I) was present at the 
interface of the 12.5 and 16% Ficoll solutions. We found a second band at the 
interface of the 16 and 25% Ficoll solutions; this band 2 contained a few intact 
PMN and some cell debris. The nuclei were pelleted at the bottom of the tubes 
(band 3). The gradient fractions were washed five times with incubation 
medium to wash away the cytochalasin B (centrifugation: 10 min, 600 g, room 
temperature). For enzyme assays, the gradient fractions and the original PMN 
were sonicated three times (10 s each, with intervals of 15 s in ice; amplitude 8 
~m, frequency ~23 kHz). For metabofic and functional assays, the enucleated 
PMN were counted electronically (Coulter Counter, Coulter Electronics, Ltd., 
Dunstable, United Kingdom) in the absence of saponin. 

Dimensions: The volume of the enucleated PMN (cytoplasts) was 
determined with a Coulter Counter (model ZF, Coulter Electronics, Ltd.) 
equipped with a pulse-height analyzer (Channelyzer, model C-1000, Coulter 
Electronics Ltd.). Purified erythrocytes (87 femtoliter), lymphocytes (230 fem- 
toliter), and PMN (450 femtoliter) from normal human blood were taken as 
reference values (10). 

We determined the relative surface areas of PMN and PMN cytoplasts with 
the same equipment after the cells swelled in various hypotonic NaCl solutions 
(for conditions, see Fig. 2). The volume of the cells increased at decreasing 
osmotic values of the NaCl solutions. In the solution with the lowest osmotic 
value that the cells could endure without lysing the cells were at their largest 
volume. In this situation, we considered the cells to be spheres. On the basis of 
these cell volumes the radius and the surface area were calculated. 

Marker Assays: We used lactate dehydrogenase (L-lactate: NAD oxi- 
doreductase) as a cytoplasmic marker enzyme, lysozyme (N-acetylmuramide 
glycanohydrolase) as a marker enzyme for all granules, and/~-glucuronidase (/~- 
D-glucuronide glucuronohydrolase) as a marker enzyme for the azurophilic 
granules. These enzymes were measured as described before (l l). Assays for 
myeloperoxidase (donor: H202 oxidoreductase) (12), that were used as a marker 
enzyme for the azurophilic granules, and catalase (H202:H202 oxidoreductase) 
(13) have also been described before. 

Vitamin B~2-binding protein, a marker for the specific granules, was meas- 
ured with a modification of the method described by Gottlieb et al. (14). Lysate 
(125/~l) of 15 x l04 cells was mixed with 250 #l of vitamin Bt2 solution (2 ng 
vitamin B~2 and 0.5 ng 57Co-vitamin B~2/ml in 154 mM NaC1 solution; Merck 
Sharp and Dohme, Haarlem, The Netherlands) and incubated for 30 min at 
20°C. Then, 500 #1 of a suspension of activated charcoal in albumin (8 mg 
activated charcoal/ml, 0.2% [wt/vol] bovine serum albumin in 154 mM NaC1 
solution) was added to absorb the free vitamin B12. The suspension was 
incubated for l0 min at 20°C. The charcoal was spun down at 1,200 g for 10 
rain, a 500-~1 sample was taken from the superuate, and the amount of 5VCo- 
vitamin B~2 in it was measured in a gamma-radiation counter. The values 
measured were compared with a sample that had not been treated with charcoal, 
and were expressed as percentage binding. 

Alkaline phosphatase (orthophosphoric monoester phosphorylase) was taken 
as a marker of the plasma membrane. This enzyme was measured with a 
modification of a method described by Bessey et al. (15). A 100-#l sample, 
which contained material from ~ l0 ~ PMN, was added to 0.9 ml of buffered 
p-nitrophenylphosphate solution (5 mM sodium acetate, 5 mM MgCl2, 5 mM 
glycine-potassium hydroxide, pH 9.0, 65 mM KC1, and 5 mM p-nitrophenyl- 
phosphate). After 1 h, the incubation at 37°C was stopped with 3 ml of ice-cold 
0.1 M NaOH. The tubes were centrifuged and the absorbance of the liberated 
p-nitrophenol was measured in the supernate at 405 nm. Values obtained with 
substrate only were subtracted from the values obtained with cell-derived 
material. 

DNA was measured with the method described by Labarca and Paigen (16). 
A 20-~d sample (containing material from ~8 x 104 PMN) was added to 1,950 
#l of Hoechst 33258 solution (Calbiochem-Behring Corp., La Jolla, CA; 0. l 
~g/ml in 2 M NaC1, 50 mM NaHPO4, and 2 mM EDTA, pH 7.4). The 

fluorescent complex between DNA and Hoechst 33258 was measured in a 
fluorimeter (excitation, 356 nm; emission, 458 rim). The DNA concentration 
in the samples was calculated by comparison with a set of calf thymus DNA 
standards of known concentrations (Worthington Biochemical Corp., Freehold, 
N J). 

We measured protein according to the method of Bradford (17), because the 
presence of Ficoll interferes with the method of Lowry. A 20-#1 sample, 
containing maximally 500 ng of protein/ml, was added to 200 ul of PBS and 2 
ml of Coomassie Brilliant Blue G250 (100 mg in l liter 5 % [vol/vol] ethanol, 
8.5% [wt/vol] H3PO4). The absorbance of the protein/Coomassie Brilliant Blue 
complex was measured at 595 nm. The amount of protein per sample was 
calculated by comparison with a standard curve of known amounts of bovine 
albumin. 

Reaction with Antibodies: PMN(106)orPMNcytoplasts(3 x 106) 
were fixed with 0.5 % (wt/vol) paraformaldehyde for 5 min at room temperature 
and washed twice with PBS. The cells were then incubated for 30 min at room 
temperature with l:l,000 dilutions oftbe monoclonal mouse IgGl antibodies 
B 13-3 (30 mg of protcin/ml; directed against a PMN plasma membrane antigen 
with a molecular weight of 87,000) or CI7 (20 mg of protein/ml; directed 
against the thrombocyte plasma membrane antigen glycoprotein Ilia). Both 
antibodies were kindly provided by Dr. P. Lansdorp from our institute. After 
two washings with PBS, the cells were stained with a 1:80 dilution of a I 1.8- 
mg protein/ml fluorescein isothiocyanate (FITC)-Iabeled goat-anti-mouse IgG 
(30 rain, room temperature), washed twice with PBS, and suspended in 70% 
(vol/vol) glycerol in PBS. 200 cells were scored as positive or negative by 
fluorescence microscopy. 

Alternatively, the PMN were incubated for 30 min at room temperature 
with a 1:5 dilution of F(ab') fragments of a rabbit-IgG antiserum against C3b 
receptor from human erythrocytes (0.6 mg protein/ml; kindly provided by Dr. 
M. R. Daha, University of Leiden, The Netherlands). F(ab') fragments of rabbit 
IgG against human IgG were used as a control. The PMN were washed twice 
with PBS, and part of the cells was then suspended in 12.5% (wt/vol) Ficoll 
and subjected to the cytoplast preparation (as described previously in this 
paper). Next, the PMN and the PMN cytoplasts were fixed with 1% (wt/vol) 
paraformaldehyde and washed twice with PBS. Both preparations were then 
incubated for 30 min at room temperature with a l:100 dilution of FITC- 
labeled F(ab') fragments of swine IgG against rabbit IgG (6 mg protein/ml; 
Dakopatts, Copenhagen, Denmark), washed twice with PBS, suspended in 70% 
(vol/vol) glycerol in PBS, and examined by fluorescence microscopy. 

For quantitative measurement of B 13-3 binding, this antibody was labeled 
with Z2~l by the iodogen method (18). In brief, 100 ug of iodogen in 100 el of 
dimethyl chloride was put into a 10-ml bottle, and the solvent was evaporated 
with dry nitrogen gas. Next, 100 ~g of B13-3 in 200 ul of PBS plus 1 mCi 
Nat2Sl was added and incubated for l min at room temperature. The supernate 
was then dialyzed three times against 500 ml of PBS plus 0.01% (wt/vol) 
potassium iodide, l0 T PMN or 3 x l0 T PMN cytoplasts were incubated for 45 
rain at room temperature with 0.8 ng of the ~25I-labeled B13-3 together with 
1.5 vg of unlabeled Bl 3-3, in a volume made 300 vl with incubation medium. 
Thereafter, the PMN and the PMN cytoplasts were washed five times with l0 
ml of PBS plus 0.5% (wt/vol) human albumin. The radioactivity was counted 
in a gamma-radiation counter and expressed as percentage of the radioactivity 
bound to intact PMN. 

Functional Tests: Chemotaxis toward casein was measured with the 
leading front method of Zigmond and Hirsch (19), essentially as described 
before (12). Instead of Millipore filters, we used cellulose-nitrate filters (Sarto- 
flus, type SM 11302, G6ttingen, Federal Republic of Germany). The pore size 
was 3 ~m. Because PMN cytoplasts lack a nucleus, staining was performed 
with amido black (0.2% [wt/vol], in ethanol 96% [4 parts] plus glacial acetic 
acid [1 part]). Chemotaxis was also measured using the agarose method of 
Nelson et al. (20). PMN (3.5 x 105) and cytoplasts (3.5 x 105 or 1.4 x l06) 
were tested for 18 h against zymosan-activated human serum and against 
minimal essential medium (MEM). 

Phagocytosis and intracellular killing of S. aureus (strain "Oxford" no. 421) 
were measured essentially as described before (12). In the killing assay, extra- 
cellular bacteria were not treated with antibiotics, because these agents were 
found to penetrate the PMN cytoplasts. Instead, the extracellular bacteria were 
removed by centrifugation (4"C, l0 min, 280 g) and washed three times with 
ice-cold PBS/human-albumin (0.5%, [wt/vol]). 

Metabolic Reactions: Oxygen consumption was measured with an 
oxygen electrode as described by Weening et al. (2 l). Production of t4CO2 from 
[1-t4C]glucose was determined as a measure of the hexose monophosphate 
(HMP)-shunt activity. A modification of a previously described method (12) 
was used. 

Hydrogen peroxide-production was measured in a direct fluorimetric assay. 
PMN or PMN cytoplasts were suspended in incubation medium in a fluores- 
cence cuvettc to 0.3 x 106 or 0.9 x 106/ml, respectively, in the presence of 1 
mM homovanillic acid (Merck AG, Darmstadt, Federal Republic of Germany), 
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1.44 U of horse-radish peroxidase (Boehringer, Mannheim, Federal Republic 
of Germany), 2 mM NAN3, and 4 #M superoxide dismutase (Sigma Chemical 
Co.). The cells were stimulated at 37"C with opsonized zymosan particles (0. l 
mg/ml) or the soluble stimulator phorbol-myristate acetate (I00 ng/ml). The 
H202 generated by the cells oxidized the homovanillic acid in a peroxidase- 
catalyzed reaction to a fluorescent product. The resulting increase in fluores- 
cence was measured (excitation, 315 nm; emission, 420 nm) and calibrated 
with a set of samples with known amounts of hydrogen peroxide. 

Superoxide-anion generation was measured by ferricytochrome-c reduction 
(150 /~M horse-heart ferricytochrome c, grade !I!, Sigma Chemical Co.) as 
previously described (22). The values found in the presence of 1.3 uM super- 
oxide dismutase were subtracted from all other values. 

RESULTS 

Preparation of PMN Cytoplasts 
After centrifugation of PMN over the Ficoll/cytochalasin- 

B-gradient (see Materials and Methods), three fractions were 
collected. The top fraction contained the 12.5% Ficoll solu- 
tion and band I, the second fraction contained the 16% Ficoll 
solution and band 2, and the bottom fraction contained the 
25% Ficoll solution and band 3. Each fraction (~4.5 ml) was 
diluted with an equal volume of PBS and centrifuged (700 g, 
10 min, room temperature). The supernates and the resus- 
pended pellets (in 5 ml of PBS) were separately tested for 
protein and subcellular markers. 

Table I shows that band 1 contained about one-third of all 
protein and alkaline phosphatase (plasma membrane marker), 
as well as about one-half of all lactate dehydrogenase (cyto- 
plasmic marker) and ~40% of all catalase activity (not 
shown). In contrast, this fraction contained no DNA (Table 
I) or myeloperoxidase (not shown) and hardly any other 
granular proteins (Table I). Thus, band 1 consists of enu- 
cleated PMN (PMN cytoplasts); this was confirmed by elec- 
tron microscopy (Fig. 1). Similarly, the enzymatic (Table I) 
and microscopic analyses revealed that band 2 contained 
some intact PMN and cell debris, and band 3 plasma-mem- 
brane vesicles filled with nuclei and granules (PMN kary- 
oplasts). 

The diameter of the PMN cytoplasts was 4-8 #m (n = 25), 
measured by electron microscopy, and 6.4 _ 1.2 #m (mean 
_ SD, n = 100), measured by light microscopy. Intact PMN 
had diameters of 10-15 #m (EM, n = 25) and 11.7 _ 2.3 ~m 
(mean _ SD, n = 100; light microscopy), respectively. 

The volume of the PMN cytoplasts was determined elec- 
tronically (see Materials and Methods). This value varied 
between 90 and 120 femtoliter (mean 104 femtoliter, SD 14 
femtoliter, n -- 5). The relative surface area of PMN and 
cytoplasts was determined after swelling in hypotonic NaCI 
solutions (see Materials and Methods). PMN cytoplasts in- 
creased 40% in volume before lysing; PMN increased = 100% 
in volume before lysing. From the largest volumes measured, 
we calculated a surface ratio between cytoplasts and PMN of 
0.29 (mean of two experiments). 

The number ofcytoplasts recovered from band I was always 
about the same as the number of PMN applied to the gradient. 
Apparently, each PMN formed one cytoplast. Up to 600 x 
l 0  6 PMN were applied to one gradient (surface area 4. l cm 2) 
without signs of overloading (recovery of >1% intact PMN 
from band I or 2). Centrifugation at forces <81,000 g resulted 
in appearance of intact PMN in band 2. Centrifugation for 
l0 or 20 min gave results similar to those obtained with 30- 
min centrifugation time. Centrifugation at 20"C resulted in 
formation of functionally intact PMN cytoplasts at ~60% 
yield compared with the procedure at 33"C. At 4"C, no PMN 
cytoplasts were formed. Centrifugation of PMN over a Ficoll 
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gradient without cytochalasin B resulted in very low yields of 
cytoplasts. 

Topography 
The PMN cytoplasts had an intact plasma membrane, 

because the vital dye trypan blue was excluded by 99% of the 
neutroplasts. A similar percentage of the PMN cytoplasts 
released fluorescein from the vital dye fluorescein diacetate. 
PMN cytoplasts were less osmotically resistant than intact 
PMN. Fig. 2 shows that PMN cytoplasts lost 50% of their 
lactate dehydrogenase when these cells were incubated with 

130 mosM NaC1. Intact PMN had to be incubated with 70 
mosM NaC1 for a similar reaction. 

The plasma membrane of the PMN cytoplasts faced with 
the original outside outwards. This conclusion was deduced 
from the observation that similar percentages of cytoplasts 
and the original PMN bound the monoclonal mouse-IgGl- 
antibody B13-3 against human PMN and F(ab') fragments of 
rabbit IgG against C3b receptors of human erythrocytes. The 
values are given in Table II. Moreover, upon lysis, PMN 
cytoplasts displayed a similar percentual increase in activity 
of alkaline phosphatase as did the original PMN (not shown). 

Metabolic Activity 
Without additions, PMN cytol~lasts consumed very little 

oxygen, did not reduce exogenous cytochrome c, and did not 
release hydrogen peroxide (Table III). When PMN cytoplasts 
were incubated with opsonized zymosan particles (1 mg/ml) 
or the soluble stimulator phorbol-myristate acetate (100 ng/ 
ml), a sharp increase in the consumption of oxygen was 
observed (Table III). This increased respiration was accom- 
panied by a concomitant reduction of exogenous cytochrome 
c and release of hydrogen peroxide. When the activity was 
expressed per unit of alkaline phosphatase, as a measure of 
the amount of plasma membrane, the PMN cytoplasts dis- 
played a metabolic activity comparable with that of intact 
PMN (Table III). The time course of these reactions was 
similar for PMN and cytoplasts (Figs. 3 and 4). PMN that 
had been incubated with FicoU plus cytochalasin B and 
washed in the same way as the cytoplasts were as active as 
untreated PMN (not shown). 

The activity of the HMP shunt was also measured. Intact 
PMN, incubated either with opsonized zymosan particles or 
with phorbol-myristate acetate, produced ~ 15 times more 
14CO2 from [1-14C]glucose than did resting cells (Table IV). 
PMN cytoplasts did likewise, and displayed activity similar to 
intact PMN, when expressed per unit of either lactate dehy- 
drogenase or glucose-6-phosphate dehydrogenase (as a meas- 
ure of the amount of cytoplasm) (Table IV). 

Functional Activity 
Chemotaxis was measured by the distance of cell penetra- 

tion into a filter with pores of 3 #m, and by the distance of 
cell migration under agarose (see Materials and Methods). 
Table V shows that treatment of PMN with Ficoll (12.5 % [wt/ 
vol]) plus cytochalasin B (20 #M) at 33"C, for the same period 
as used for the cytoplast preparation, followed by washing 
five times with incubation medium, inhibited the chemotactic 
capacity of the cells 10-35%. PMN cytoplasts showed ~20% 
of the activity of cytochalasin B-treated cells toward casein 
but no activity at all toward zymosan-activated serum. 



FIGURE 1 Electron micrograph of PMN cytoplasts and PMN. Cytoplasts (a) and the original PMN (b) were fixed, stained for 
peroxidase activity, postfixed, embedded, cut, and stained with uranyl acetate and lead citrate, as described by Beelen et al. (45). 
Note the lack of peroxidase activity in the PMN cytoplasts. Bar, 5 ~m. x 7,000 (a); x 5,000 (b). 

Fig. 5 shows that the PMN cytoplasts ingested S. aureus 
bacteria at about the same rate as did the original PMN at a 
low ratio of  bacteria to cells, but significantly slower at higher 
ratios. A dose-response curve is shown in Fig. 6. The method 
employed for this study measures only intracellular bacteria 
because adhering bacteria are removed by digestion with 
lysostaphin. Table VI shows that about twice as many cyto- 
plasts as PMN did not ingest any bacteria. Fig. 7 shows that 
Escherichia coli bacteria were also ingested by the PMN 
cytoplasts. 

The intracellular killing ofS. aureus by the PMN cytoplasts 
was less efficient than that shown by intact PMN (Fig. 8). 
Treatment with Ficoll plus cytochalasin B, followed by wash- 
ing five times, slightly decreased the killing capacity of  the 
neutrophils. Nevertheless, the cytoplasm killed ~40% of the 
ingested bacteria within 30 min of  reincubation at 37"C. 

DISCUSSION 

Enucleation of  PMN by centrifugation over a Ficoll gradient, 
as described above, is a process that probably involves accu- 
mulation of  the intact cells at the interface between 16 and 
25% Ficoll (band 2), movement of  nuclei and granules to the 
centrifugal side of  the ceils, fusion of  the plasma membrane 
around the cytoplasmic (centripetal) and around the kary- 
oplastic (centrifugal) parts of  the cells, flotation of  the cyto- 
plasts to the interface between 12.5 and 16% Ficoll (band 1), 
and sedimentation of  the karyoplasts to the bottom of the 
tubes (band 3) 2 . This order of  events is deduced from the 

2 When intact PMN karyoplasts are needed for functional studies, 
care should be taken to avoid clumping of these particles, for instance, 
by putting a very dense layer of Ficoll as a cushion at the bottom of 
the centrifuge tubes. 
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FIGURE 1 continued 

observations that centrifugation at a force of <81,000 g re- 
suited in localization of intact cells in band 2, whereas cen- 
trifugation at 81,000 g resulted in practically complete divi- 
sion of the cells into separated cytoplasts and karyoplasts. The 
conclusion that a PMN cytoplast is "pinched off" from the 
rest of the cell is based on the low activity of lactate dehydro- 
genase in the gradient material after the cytoplasts have been 
formed (Table I), on the structural integrity of the cytoplasts 
and on the "outside-out" configuration of the cytoplasts 
(Table II). The presence of cytochalasin B is essential for 
PMN cytoplast formation. Apparently, the microfilamental 
structure must be (temporarily) destroyed before the forma- 
tion and/or separation of cytoplasts and karyoplasts can take 
place. Similarly, optimal PMN cytoplast formation takes 
place only at temperatures above the transition temperature 
of the lipids in the PMN plasma membrane (i.e., 27"C [23]). 

According to Table I, the PMN cytoplasts contain 33% of 
the original amount of alkaline phosphatase in the PMN. 

Because each PMN forms one cytoplast, this indicates that 
each cytoplast contains a mean of 33% of the amount of 
alkaline phosphatase present in its "parent" PMN. Alkaline 
phosphatase is regarded as a plasma membrane marker of 
human PMN (24); however, this has been disputed (25). 
Therefore, we have checked our results with binding of a 
monoclonal antibody against a PMN membrane antigen. 
Similar results were obtained with either marker (Table I). 

These methods presume, however, that the plasma mem- 
brane markers of the PMN are distributed over the cytoplasts 
and the karyoplasts according to the amount of plasma mem- 
brane around these particles, i.e., that the markers are not 
concentrated on the surface of either particle. Therefore, we 
also measured the ratio of the surface areas of cytoplasts and 
intact PMN with an independent method. This was done by 
electronically measuring the volume of PMN and cytoplasts 
after maximal swelling in hypotonic media. Assuming that 
the cells were spherical in media with an osmotic value close 
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to that causing lysis, we calculated that the mean surface area 
ofPMN cytoplasts was 29% of the mean surface area of PMN. 

Thus, all three methods indicate that the cytoplasts contain 
about one-third of the amount of plasma membrane of the 
original PMN. This proves two things: (a) The plasma mem- 
brane markers investigated did not redistribute during the 
cytoplast preparation; and (b) Alkaline phosphatase can be 
used as a marker to calculate the cytoplasts' activities per unit 
of surface area. Moreover, from the observation that PMN 
swelled to almost twice their original volume whereas PMN 
cytoplast increased only ~40% in volume, we conclude that, 
in isoosmotic media, the cytoplast surface contains much less 
folds than that of the PMN. This may be caused by the 
division of the contents of each PMN over two new particles 
with the same total amount of plasma membrane. 

The volume of the cytoplasts (104 femtoliter) is 23 % of the 
PMN volume. The cytoplasts contain 48% of the original 
amount of lactate dehydrogenase in the PMN (Table I). 
Lactate dehydrogenase is a soluble enzyme (26) and is there- 
fore generally regarded as a good marker for the cytoplasm of 
a cell. Thus, 23% of the volume represents 48% of the 
cytoplasm of PMN. In other words, the cytoplasm of PMN 
takes about half of the total volume of these cells; the rest of 
the volume is occupied by the nucleus and the granules. 

The observation that the PMN cytoplasts contain ~40% 
of the catalase activity of intact PMN is in accord with a 
previous observation (13) that ~90% of the catalase activity 
in human PMN is in a soluble form. Indeed, in these cells, 

TABLE I 

Biochemical Analysis of Ficoll-gradient Fractions 

Band 2 
Band 1 (mid- Band 3 Total 

Marker (top) die) (bottom) recovery 

Protein 31_+2 13-+2  48_+5 102_+ 1 
DNA 0 . 5 + 0 . 3  10-+3  9 3 + 0 . 1  1 0 4 + 3  
Alkaline phosphatase* 33 + 2 15 -+ 3 35 + 3 95 + 2 
Lactate dehydrogenase 48 + 2 11 _+ 2 27 ___ 1 95 _+ 2 
Lysozyme 2 + 0 . 2  5 + 2  80_+5 9 6 + 3  
/~-glucuronidase 6 _ 2 8 + 2 77 + 6 96 _+ I 
Vitamin-B12-binding 2 _ 0.2 5 -+ 1 79 _ 2 103 _ 4 

protein 

Results in percentage of values found with intact PMN (mean - SEM of 
three paired experiments). Total recovery was calculated as the sum of all 
values found in the supernates and the pellets (bands) of each fraction. In 
the original PMN, the following values were found (mean _ SD per 106 
PMN, n = 3): protein, 43 + 6 #g; DNA, 4.9 + 1.3/~g; alkaline phosphatase, 
0.74 ± 0.18 mU; lactate dehydrogenase, 38 ± 6 mU; lysozyme, 3.7 ± 1.1 
~g;/~-glucuronidase, 1.2 + 0.3 mU; and vitamin B12-binding protein, 1.1 ± 
0.6 ng vitamin B12 bound. 

* Results obtained with alkaline phosphatase as a plasma membrane marker 
were checked with a binding assay of ~2Sl-labeled monoclonal antibody 
B13-3 (see Materials and Methods). PMN cytoplasts (band I) bound 36% ± 
5% (mean ± SD, n = 5) of the amount of antibody bound by intact PMN. 

catalase appears to be localized both as a soluble enzyme in 
the cytoplasm (26) and enclosed in small granules (27). 

Our finding that cytoplasts prepared from resting PMN do 
not reduce oxygen to hydrogen peroxide unless stimulated by 
either opsonized particles or soluble stimuli, deserves special 
attention. As far as we know, this is the first description of a 
subcellular preparation of PMN with a fully intact oxidase 
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FIGURE 2 Osmotic resistance of  PMN and PMN cytoplasts. Cyto- 
plasts and the original PMN were incubated with NaCl solutions of  
various concentrations for 30 min at 0°C. Thereafter, the incuba- 
tions were made 140 mM with respect to NaCI, the cells were spun 
down, and the activity of  lactate dehydrogenase was measured in 
the supernates. The activity of  this enzyme in the PMN or the 
cytoplasts was taken as 100%, and the results were expressed as 
percentage lysis (mean + SEM of  three paired experiments). O, 
PMN; 0,  PMN cytoplasts. 

TABLE II 

Reaction of PMN Cytoplasts with Antibodies Against PMN 

F(ab') 
anti-C3b- F(ab') 

Cell preparation B13-3 C17 receptor anti-lgG 

PMN 99 9 93 0 
PMN + cyto B 100 7 92 1 
PMN cytoplasts 96 9 90 0 

• PMN and PMN cytoplasts were incubated with the monoclonal mouse IgG 
antibodies B13-3 {against human neutrophils) or C17 (against glycoprotein 
Ilia of human thrombocytes) and stained with FITC-labeled goat-anti-mouse 
IgG, as indicated in Materials and Methods. Alternatively, PMN were incu- 
bated with F(ab') fragments of either rabbit IgG against C3b receptors of 
human erythrocytes or rabbit IgG against human IgG; from part of these 
PMN, cytoplasts were prepared, and both preparations were stained with 
FITC-labeled F(ab') fragments of swine IgG against rabbit IgG (see Materials 
and Methods). Data are given as percentage of cells scored positive with 
fluorescence microscopy (200 cells counted; mean of two paired experi- 
ments). PMN + cyto B: PMN incubated with 12.5% (wt/vol) Ficoll plus 20 
/~M cytochalasin B for 30 min at 33°C and washed five times with PBS (as 
were PMN cytoplasts). 

TABLE III 

Oxidative Metabolism of PMN and PMN Cytoplasts 

PMN PMN cytoplasts 

Parameter At rest +STZ +PMA At rest +STZ +PMA 

Oxygen consumption 0.7 _+ 0.1 16.0 + 1.8 11.0 + 1.5 0.6 + 0.2 9.0 _+ 1.3 9.1 _+ 1.9 
Hydrogen peroxide product ion 0 6.1 _+ 1.0 6.4 _ 1.0 0 4.1 ___ 0.8 6.2 + 1.3 
Cytochrome c reduction 0 6.0 _+ 0.4 7.3 _ 1.9 0 8.0 _+ 1.2 9.3 -+ 1.5 

Values (rates at linear part of curves, see Figs. 3 and 4) in #mol per unit alkaline phosphatase per min (mean - SEM, 4-11 paired experiments). STZ, serum- 
treated zymosan particles; and PMA, phorbol-myristate acetate. PMN incubated with 12.5% (wt/vol) Ficoll plus 20/tM cytochalasin B for 30 rain at 33°C and 
washed five times with PBS (as were PMN cytoplasts) displayed reactions similar to those of untreated PMN (not shown). 
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system. So-called podosomes have to be prepared from stim- 
ulated PMN to show NADPH-oxidase activity; podosomes 
made from resting PMN cannot be activated (28). Probably, 
the activation mechanism of the oxidase is destroyed in these 
particles. Phagocytic vesicles, by definition, are always pre- 
pared from stimulated PMN (29). 

Our results indicate that neither nucleus nor granules are 
needed for the oxidase activity or for "triggering" of this 
reaction. Upon hypotonic lysis, ultrasonic disruption, or de- 
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FIGURE 3 Superoxide product ion by PMN and PMN cytoplasts. 
Cytoplasts and the original PMN were incubated with serum-treated 
zymosan (A) or phorbol-myristate acetate (B). The reduction of 
cytochrome c (see Materials and Methods) was measured in cell- 
free supernates at 550 nm. Values in micromoles of cytochrome c 
reduced per unit of alkaline phosphatase (mean + SEM of seven 
(A) or four (B) paired experiments). O, PMN; t ,  PMN cytoplasts. 
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FtGURE 4 Hydrogen peroxide generation by PMN and PMN cy- 
toplasts. Cytoplasts and the original PMN were incubated with 
serum-treated zymosan (A) or phorbol-myristate acetate (B). The 
oxidat ion of homovanil l ic acid (see Materials and Methods) was 
measured fluorimetrically. Values in micromoles of H202 generated 
per unit of alkaline phosphatase (mean +_ SEM of 11 (A) or 8 (B) 
paired experiments). O, PMN; I ,  PMN cytoplasts. 

tergent treatment of the PMN cytoplasts, either before or after 
stimulation, we found that very little production of hydrogen 
peroxidase was left, even in the presence of l mM NADPH 
(not shown). It is highly probable, therefore, that the oxidase 
system is localized in the plasma membrane and uses cyto- 
plasmic substrate(s) for its activity. This conclusion agrees 
with observations by other investigators (24, 26, 28-30) but 
contradicts reports on a possible granular component of the 
oxidase system (31-33). Probably, upon disruption of the 
plasma membrane, the molecular configuration of the oxidase 
system is destroyed or a soluble cytoplasmic factor is lost. 

Table III shows that PMN cytoplasts stimulated by opson- 
ized zymosan produced ~70% of the hydrogen peroxide 
generated by intact PMN (per unit area of plasma membrane). 
In contrast, phorbol-myristate acetate induced the same H202 
generation in PMN cytoplasts and in PMN. Thus, the path- 
way of oxidase stimulation by IgG and/or particulate activa- 
tors of the alternative complement pathway (34) might have 
been slightly damaged in the PMN cytoplasts, whereas the 
pathway of oxidase stimulation by phorbol-myristate acetate 
(35) is still fully intact. For this reason, and also because of 
the low activity of granular enzymes, PMN cytoplasts should 
constitute very good starting material for preparing functional 
plasma membranes from PMN. 

Table III also shows that PMN cytoplasts had conserved 
the ability to reduce extracellular cytochrome c in a superox- 
ide-dismutase-inhibitable reaction even better than the ability 
to generate hydrogen peroxide. In fact, the cytochrome c- 
reduction of the cytoplasts was greater (per unit area of 
membrane) than that of the original PMN, although the 
oxygen consumption was lower. In our opinion, this means 
that the oxidase in PMN cytoplasts is slightly distorted, which 
enables cytochrome c (and superoxide dismutase) to react 
with a superoxide adduct of the oxidase enzyme more effi- 
ciently than in intact PMN. A similar but much larger effect 
has previously been found with PMN homogenates (36). 
Therefore, we regard the ability of an oxidase preparation to 
generate hydrogen peroxide as a better indication of its activity 
than its ability to reduce cytochrome c. 

Although the PMN cytoplasts contain hardly any granules, 
their oxidase activity terminated 15-30 min after its activa- 

TABLE V 

Chemotaxis of PMN and PMN Cytoplasts 

Casein Zymosan-activated serum 

-- -I- -- + 

PMN 3 6 + 4  1 0 5 + 5  777+__17 2 , 2 3 0 + 5 7  
PMN + cyto B 29 +- 3 94 _+ 6 563 +_ 23 1,497 + 105 
PMN cytoplasts 15_+2 2 9 + 2  1 0 7 + 1 5  1 1 7 + 1 2  

Distances traveled by cells in microns (mean of nine paired experiments - 
SEM). PMN + cyto B, see legend to Table II. 

TABLE IV 

HMP Shunt Activity of PMN and PMN Cytoplasts 

PMN PMN cytoplasts 

At rest +STZ +PMA At rest +STZ +PMA 

(I) 0.02 _ 0 0.33 _ 0,05 0.53 +__ 0.03 0.03 +__ 0.01 0.29 ___ 0.06 0.35 +__ 0.08 
(2) 0.01 +_. 0 0.17 _ 0.03 0.27 +_ 0.01 0.02 _ 0.01 0.15 +__ 0.03 0.18 _ 0.04 

Values in/~mol of glucose metabolized through the HMP shunt per 30 rain (I) per unit of  glucose-6-phosphale dehydrogenase (G6PD) or (2) per unit of lactate 
dehydrogenase (LDH) (mean - SEM, five paired experiments). PMN contained 21.6 - 6.3 mU of G6PD and 42.4 -+- 10.6 mU of LDH per 106 cells; cytoplasts 
contained 8.6 --. 3.1 mU of G6PD and 16.9 ___ 5.2 mU of LDH per 106 cells (mean - SD, n = 5). For further information, see legend to Table III. 
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FIGURE 5 Phagocytosis of S. 
a u r e u s  vs. time. Cytoplasts or 
the original PMN were mixed 
with three times as many (A) 
or 50 times as many (B) 14C- 
labeled S. a u r e u s  bacteria in 
10% (vol/vol)  human AB 
serum. At various times, sam- 
ples were taken, treated 
with lysostaphin, centrifuged, 
washed, and counted for ra- 
dioactivity. The results are ex- 
pressed as number of bacteria 
phagocytosed per PMN (O) or 
per cytoplast (@) (mean _ SEM 
of three paired experiments). 

phagocytosis of 14C-S.aureus 

},0 
~ 15 

10 

0 

ratio bacteria : cells 

FIGURE 6 Phatocytosis o f  S. aureus vs. bacter ia /ce l l  ratio. The cells 
were  incubated as descr ibed in the legend o f  Fig. 5, for 30 min. 
Results in number  o f  bacteria phagocytosed per PMN (O) or  per  
cytoplast (0). 

tion, as is found in intact neutrophils (37). Thus, the termi- 
nation of the oxidase activity is not (only) due to inactivation 
of the oxidase system by myeloperoxidase or other granular 
enzymes (38). Possibly, (per)oxidation of the oxidase system 
or its phospholipid environment by H202 itself contributes to 
this inactivation (39). 

At low ratios of bacteria/cells (<5), the PMN cytoplasts 
ingested as many S. aureus  and as rapidly as did intact PMN 
(Fig. 5 A). However, at higher ratios, the cytoplasts were slower 
and stopped when they had ingested a mean of seven bacteria 
per cell (Figs. 5 B and 6). Microscopic examination (Table VI) 
revealed that ~ 80% of the cytoplasts took part in this reaction 
(for PMN, this value was ~90%). These differences may have 
been caused by the preparation procedure, the smaller size, 
and/or the lower content of microfilaments in the cytoplasts. 

PMN cytoplasts displayed hardly any chemotactic activity. 
It might be that in PMN cytoplasts the microfilamental system 
or other elements critical for cell movement are present at 
concentrations too low to enable these cells to move at a rate 
comparable with that of intact PMN. The normal chemotactic 
response of cytokineplasts, disconnected from heat-treated 

TABLE Vl 

Microscopic Evaluation of  S. aureus Phagocytosis 

No. of bacteria per cell 

0 1-3 4 - 5  6 - 1 0  > 1 0  

PMN 11___1 1 2 + 2  14___1 19_+1 45_+1 
PMN cytoplasts 1 8 + 3  2 8 - + 3  14 -+1  1 7 - + 2  23_+1 

Values in percentage of cells examined (mean 4- SEM of four paired experi- 
ments). PMN and PMN cytoplasts were incubated for 30 min at 37"C with 
15 opsonized S. aureus bacteria per cell, treated with lysostaphin, and washed 
(12). Thereafter, the number of bacteria was counted microscopically in 100 
cells. 

PMN, to an erythrocyte destroyed by laser irradiation (40, 
41) may be explained either by the strong chemotactic signal 
emitted by the target or by the fact that the cytokineplasts 
contain the bulk of the PMN's contractile protein (41). 

The killing of S. aureus  by PMN cytoplasts is quite surpris- 
ing. Although it is known that PMN lacking myeloperoxidase 
are able to kill these bacteria in vitro (42), it is generally 
assumed that bactericidal oxygen products cooperate with 
granular components in the killing of bacteria. Thus, it has 
been postulated that myeloperoxidase (6, 7), lysozyme (43), 
and/or lactoferrin (44) assist in bactericidal reactions. Our 
experiments prove that these assumptions are not necessarily 
correct, because PMN cytoplasts contain hardly any granules 
but nevertheless killed S. aureus  to an appreciable extent. 
Possibly, the concentration of hydrogen peroxide (or perhaps 
other oxygen metabolites) in the phagosomes reaches values 
that are bactericidal already in themselves. We are well aware, 
however, that this need not be true for bacteria other than S. 
aureus.  In fact, we have indications that the perforation and 
killing of E. coli is severely decreased in PMN cytoplasts as 
compared with intact PMN. This is at present under investi- 
gation. Moreover, we expect that the degradation of bacterial 
proteins will be strongly depressed in PMN cytoplasts. This, 
too, might limit the bactericidal efficacy of the cytoplasts. 

In conclusion, we have found that PMN vesicles without 
nucleus or granules recognize opsonins. This recognition is 
then followed by activation of the phagocytic and the meta- 
bolic reactions. Thus, the plasma membrane of these cyto- 
plasts is fully intact, both physically and functionally. PMN 
cytoplasts, therefore, may be a powerful tool with which to 
study PMN membrane functions in great detail. Moreover, 
PMN cytoplasts also provide a unique possibility to study the 
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FIGURE 7 Electron micrograph of a PMN cytoplast after incubation with opsonized E. coi l  bacteria. PMN cytoplasts were 
incubated with E. co l i  bacteria in 10% (vol/vol) human AB serum for 15 min, and fixed and treated as described in the legend to 
Fig. 1, except that staining for peroxidase activity was omitted. Bar, 1 ~m. x 32,000. 
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FIGURE 8 Intracellular killing of S. au reus  by PMN. PMN cytoplasts 
or the original PMN were mixed with S. aureus  bacteria in 10% 
human AB serum and incubated for 7 min at 37°C. The incubations 
were then centrifuged at 4°C, washed three times with ice-cold 
medium, and reincubated at 37"C. At the indicated times, the cells 
were lysed with water; the lysate was diluted with medium, applied 
to agar plates, and cultured overnight. The number of live bacteria 
was measured in triplicate by colony counting. Results are ex- 
pressed as percentage of live bacteria found in the cells before 
reincubation at 37"C (mean + SEM of three paired experiments). 
O, PMN; O, PMN treated with 12.5% (wt/vol) Ficoll plus 20 ~M 
cytochalasin B for 30 min at 33°C and washed five times; I-I, PMN 
cytoplasts. 

role of granules and nucleus in PMN functions. A similar 
reasoning holds true for monocytes, because we found that 
these cells, too, are enucleated with the technique described 
in this article (unpublished observations). 
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