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ABSTRACT: Fishing vessels need to adapt to and mitigate climate
changes, but solution development requires better information
about the environment and vessel operations. Even if ships generate
large amounts of potentially useful data, there is a large variety of
sources and formats. This lack of standardization makes
identification and use of key data challenging and hinders its use
in improving operational performance and vessel design. The work
described in this paper aims to provide cost-effective tools for
systematic data acquisition for fishing vessels, supporting digital-
ization of the fishing vessel operation and performance monitoring.
This digitalization is needed to facilitate the reduction of emissions
as a critical environmental problem and industry costs critical for
industry sustainability. The resulting monitoring system interfaces
onboard systems and sensors, processes the data, and makes it available in a shared onboard data space. From this data space, 209
signals are recorded at different frequencies and uploaded to onshore servers for postprocessing. The collected data describe both
ship operation, onboard energy system, and the surrounding environment. Nine of the oceanographic variables have been
preselected to be potentially useful for public scientific repositories, such as Copernicus and EMODnet. The data are also used for
fuel prediction models, species distribution models, and route optimization models.
KEYWORDS: Tuna fishery, fisheries digitalization, climate change mitigation, environmental science, technology research, data science,
sustainable systems

1. INTRODUCTION
The United Nations development goals require fishing to be
environmentally friendly, economically viable, and socially
sustainable to provide long-term food security. The fisheries
industry needs to reduce its costs and carbon footprint to
achieve such objectives. Fuel consumption may represent 50%
of the total operational costs of the tuna vessels, which is being
one of the main concerns of the fishing companies.1,2

Moreover, the world fishing industry emissions per landed
ton of fish have recently increased by 21% recently.3 A total
amount of 3 billion liters of fuel is consumed in a year by the
world’s fishing fleets.4 But as large pelagic fish, such as tuna
species, are highly migratory, vessels targeting tuna species
tend to have higher and more variable fuel consumption costs
than other fishing of coastal species.5 This involves the yearly
emission of 7.7 billion tons of CO2 equiv into the atmosphere by
the tuna purse seine fleet in fishing operations. The changing
tuna fish distribution6,7 and human behavior modulate fuel
consumption,7 which in turn influences both the profitability
and sustainability of the fisheries industry and impact on the
ecosystem through greenhouse emissions.

As an example, from the world’s largest commercial
fisheries,8 the tropical tuna fishing industry is starting to use
Earth Observation (EO) data to characterize the environ-
mental conditions of the surrounding areas in order to locate
fishing grounds with less effort (i.e., time, fuel, and costs).
Digitalization of tuna vessels means that their capacity to
record data and to use existing EO data has increased.
However, due to the large volume, diversity of sources, and
quality of recorded data, they are sparsely stored and used,
leaving much of the already recorded data intact and
unstructured. Consequently, data are not often used for
further analysis or integrated into holistic energy management.
Big data methodologies seem to be the solution to deal with
such a large volume of data and exploit it efficiently to turn it
into useful information.
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Solving these problems demands new system architectures
for data acquisition, transmission, storage, and large-scale data
processing mechanisms.9 Big data processing techniques,
enhanced by machine learning methods, can increase the
value of such data and their applicability to society, industry,
and management challenges. Machine learning has already
proved its potential in marine sciences and fisheries such as the
examples in fisheries forecasting,10 automatic classification of
samples,11 marine spatial planning for resolving conflicts of
fisheries and new activities,12 fishing activities tracking,13,14

indicators, fishing gear selectivity15,16 or species identifica-
tion.16 In addition, evolving optimization heuristics have been
designed in recent years to help tropical tuna fishing vessels.17

However, its use by the fishing industry is behind the state-of-
the-art and day-to-day applications, as compared with the other
shipping industries.18−20

There is a growing need in fisheries science and manage-
ment for larger amounts of data and highly trained experts in
which digitalization and AI should play a central role.
Digitalization refers to enabling or improving processes by
using digital technologies and data. As the basis of digital-
ization, these data must be collected, stored, and managed in a
single platform from which a harmonized data set can be
transmitted to different users and for different data analyses.
Therefore, the digitalization in this sector is very important for
achieving these purposes, and AI systems could play a critical
role in the acquisition and use of the data.21 Four main
challenges that can explain the lack of digitalization in the
fisheries industry are up-front costs and insufficient access to
capital, legal, and bureaucratic barriers; failure to implement
data collection standards; and lack of trust and buy-in from
fisheries.22 In this work, the challenges of digitalizing a fishing
vessel for scientific data collection will be demonstrated.

Fishing vessels are notoriously heterogeneous with respect
to onboard installed sensors, data protocols, and network
topology. This is a major obstacle common in big data
problems9 for both collecting data from vessels and also for
local data exchange onboard vessels. It implies a non-
harmonized data collection and recording with a tailor-made
and ad hoc integration against individual sensors instead of
interfacing a central hub, which again integrates against the
individual sensors and onboard systems. In effect, this makes it
difficult to achieve the otherwise usual large-scale synergies
found in other kinds of industrial processes. The aim of this
work is to describe how the integration of data for the
development of fuel consumption models, species distribution
models, and routing strategies could be achieved that can help
the industry to mitigate and adapt to climate change.

2. METHODS FOR A FISHING VESSEL MONITORING
SYSTEM

The target of digitalization onboard the fishing vessel is to
characterize the vessel performance under different operational
conditions to reduce greenhouse and pollutant gases and to provide
data to improve fishing operations. Hence, the data collected include
parameters that define when and where the fuel has been consumed.
The “where” parameter should also include metrics that can be used
to characterize the environmental conditions when fuel oil was
consumed during sailing operation (going from one geographical
point to another) and when fish was caught (sailing condition and
fishing condition). Fishing vessels may also act as oceanographic data
acquisition systems contributing to the ocean forecasts, which are
used to improve operational efficiency.
According to the targets described above, the systems and data

have been grouped in three main categories to facilitate their
understanding (Figure 1). Two of these categories are related to the
type of data being captured: environmental or oceanographic (outside
of the vessel) and propulsion related (inside of the vessel). Both types
of data are needed to build fuel oil consumption (FOC) forecasting

Figure 1. Data acquisition and monitoring system scheme. Components measuring oceanographic data are shown in blue, components measuring
energy consumption in red, and in green dual components needed for data synchronization or to consider when using oceanographic and energy
data measurements.
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models using a statistical approach,23−25 a machine learning
approach,26−32 or combined with optimization methods.33 A third
group integrates other devices that help data integration or produce
data relevant for environmental and propulsion forecasting models
(e.g., timestamps or vessel position). All these data are crucial to
develop routing decision support systems that can reduce fuel

consumption and consequent emissions33−36 particularly for fisheries
where such systems are sparse.37 In total, 217 variables are recorded,
of which 191 propulsion-related variables, 17 environmental variables,
and nine from the third group of variables (Table 1).
Definition of variables needed to evaluate the vessel fuel oil

consumption performance during free sailing operation has been

Table 1. Devices and Their Types of Dataa

group of data measuring devices description
acquisition

rate remark
variable
qty

environment ADCP with
temperature sensor

four different underwater layer current velocity and direction at
different depths, surface water temperature.

medium
(1 Hz)

onboard 4

anemometer wind velocity and direction. medium
(1 Hz)

new 5

vessel engine sensors engine op. parameters: pressure, temperature, and speed. low (0.1 Hz) new 62
delta OHM engine room ambient conditions (pressure, temperature, humidity) medium

(1 Hz)
new 4

MarPrime engine combustion parameters high
(200 kHz)

new 74

propulsion/fuel
consumption

propeller power and thrust, fuel oil consumption. medium
(1 Hz)

onboard 12

PMS (power
management system)

ship electric consumption and generation medium
(1 Hz)

onboard 10

GPS position latitude, longitude, speed over dround (SOG), course over
ground (COG).

medium
(1 Hz)

onboard 7

speed Log speed over water. medium
(1 Hz)

onboard 2

motion reference unit ship motions. high (10 Hz) new 13
integration, network,
and backup

ratatosk above data integrator configurable new does not
applyNMEA-2000 to

ethernet converter
data convert from NMEA to ethernet new

serial to modbus
ethernet converter

data convert from serial to modbus new

can J1939 to modbus
ethernet

data convert from J1939 to modbus new

ethernet switch networks connection new
NAS backup storage new

aNew (new device to be installed in the project)/onboard (system already installed in vessels).

Figure 2. Onboard installation scheme showing the main components organized by ship location.
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based on the ISO 19030-2 (2016)38 international standard. The
propulsion variables are used for fuel consumption modeling and a
condition-based maintenance program. The fuel oil consumption
onboard a fishing vessel is distributed in propulsion load and auxiliary
load onboard, i.e., the energy required to move the vessel and energy
required to keep vessel systems in operation (mostly electricity load
and hydraulic system load required to pump fluids). For the candidate
vessels in this research, propulsion accounts for 70−75% of total
energy consumption and auxiliary loads 25−30%. This distribution
depended on the variability of fishing operations during the year.39

The Ratatosk framework40 is used for integrating all sensors of
interest. Ratatosk has been developed to facilitate simpler data
integration and communication on fishing vessels. It can interface
with relevant hardware systems and protocols, such as Canbus,
Modbus, and NMEA, and new interfaces can be added as necessary.
The interfaced sensors and systems are made available through the
Ratatosk main communication bus for easy two-way communication.
This facilitates easy vessel integration and simple reuse for future
applications and extensions.

3. CANDIDATE VESSEL IMPLEMENTATION
Two commercial tuna fishing vessels acted as pilot vessels for
development and demonstration. Figure 2 shows the system-
atic arrangement of the proposed holistic monitoring and
energy management system. The installations of system
components occurred mainly in the engine room (ER), the
engine control room (ECR) and the wheelhouse (W/H). Data
communication between the different locations and onboard
vessel systems was primarily done over Ethernet (Figure 2).
Two interconnected switches, located in the wheelhouse and
in the engine control room, formed the backbone of the
onboard data exchange network, through which the data
sources communicate. Converters were used for interfacing
systems and sensors unable to communicate over Ethernet,
such as serial to Modbus-over-Ethernet converters. Distributed
Ratatosk components could also perform this function, but
converters were chosen for these vessels. The Ratatosk server
acts as the central hub of the monitoring system. It provides
the shared data space, records data to file, and sends them to
shore. To this end, it is also connected to a managed switch,

Figure 3. Example of Main Engine variable Dashboard on top panel and options to modify time window and zoom up to detailed parameter in the
bottom panel.
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which gives periodic Internet access using the ship’s VSAT
system. The Ratatosk server sets up two secured and encrypted
communication channels. One is for remote connection, and
the other is for remote configuration.
The monitoring and energy management system was

designed to incorporate existing sensing devices without data
integration capabilities. This included: (1) the engine control
system; (2) the propulsion efficiency monitoring system; (3)
the ship power management system; (4) the fish hold cold
storage system; and (5) the ship draft and inclination sensors.
The main engine includes manual monitoring operations,

i.e., manual measurements of the engine parameters with
specific tools. The most common method is the engine
cylinder combustion pressure measurement. For a full system
integration, an IMES combustion control module (CCM) was
installed in the engine room. This system comprises one sensor
for continuous combustion pressure measurement per cylinder,
a pickup for RPM and cylinder position measurement, and a
cylinder inlet pressure sensor. It outputs digital measurements
to a controlling computer in the engine control room and as a
CAN output. The latter is further converted to Modbus TCP
by a dedicated converter for integration with Ratatosk. In

addition to receiving these instantaneous measurements, the
Ratatosk receives engine combustion analyses and statistics
from the engine control room computer. Two programmable
logic controllers (PLCs) make approximately 110 measure-
ments from various systems available over Modbus, in addition
to some combustion measurements.
Since the diesel engine operational parameters are

influenced by ambient conditions, a Delta OHM monitoring
device measures ambient pressure, temperature, and relative
humidity in the engine room. It outputs its measurements over
the RS485 protocol, which a serial-to-ethernet converter relays
to the monitoring network. A motion reference unit (MRU) is
installed close to the ship center of gravity to measure the ship
movements. It outputs over RS232, and a serial to Ethernet
converter relays its measurements to the monitoring network
through the switch in the engine room. Not all the sensors
established by the ISO 19030 as minimum sensors were
available onboard and were not possible to install for this
research. Specifically, the rudder angle was not measured by
the acquisition system.

Table 2. List of Variables Measured for Fuel Consumption Developmenta

variable group type description unit

ME_FO_consumption ME D fuel oil consumption of main engine after density correction l/h
AE_FO_consumption ME D fuel oil consumption of auxiliary engines after density correction l/h
Eng_Relative_load ME I main engine relative load from 0 to 100%. 100% load = 4500 kW %
FO_Rack_position ME I fuel oil injection pump rack position. From 0 to 53 mm. It has a strong correlation with engine power mm
engine_speed ME I engine turning speed affecting propeller pitch rpm
FO_demand ME I fuel oil demand. Range is from 0 to 10 000 ppt. Maximum value corresponds to 100% load ppt
propeller_pitch PP I propeller blades position indication. Varies from 0 to 100%. The propeller is a controllable pitch propeller and

can change pitch
%

torque PP D torque in propeller shaft kNm
propeller_shaft_rpm PP D propeller shaft speed. It is used to calculate propeller output rpm
propeller_shaft_output PP D propeller shaft mechanical output (power) kW
propeller_shaft_thrust PP D thrust generated by the propeller in the shaft kN
ME_FO_inlet_flow ME I volumetric fuel flow inlet to the main engine. Used to calculate fuel oil consumption l/min
ME_FO_outlet_flow ME I volumetric fuel flow outlet from the main engine. Used to calculate fuel oil consumption l/min
AE_FO_inlet_flow AE I volumetric fuel flow inlet to the auxiliary engines. Used to calculate fuel oil consumption l/min
AE_FO_outlet_flow AE I volumetric fuel flow outlet from the auxiliary engines. Used to calculate fuel oil consumption l/min
ME_FO_inlet_temp ME I temperature of the fuel oil in the inlet of the main engine. Used to calculate mass flow rate in the inlet to the

engine using fuel density
°C

ME_FO_outlet_temp ME I temperature of the fuel oil in the outlet of the main engine. Used to calculate mass flow rate in the outlet from
the engine using fuel density

°C

AE_FO_inlet_temp AE I fuel oil temperature in the inlet of the auxiliary engine. Used to calculate mass flow rate in the inlet to the
auxiliary engines using fuel density

°C

AE_FO_outlet_temp AE I fuel oil temperature in the outlet of the auxiliary engine. Used to calculate mass flow rate in the outlet from the
auxiliary engines using fuel density

°C

SOG SH D vessel speed over ground from GPS signal knot
STW SH D vessel speed over water from the doppler system knot
AE_Power_1 AE I electrical power generated by diesel generator #1 kW
AE_Power_2 AE I electrical power generated by diesel generator #2 kW
AE_Power_3 AE I electrical power generated by diesel generator #3 kW
AE_Power_4 AE I electrical power generated by diesel generator #4 kW
AE_Power_5 AE I electrical energy generated by diesel generator #5 kW
wind_velocity WE I wind relative velocity to vessel m/s
ship_wind_angle WE I wind relative angle to ship deg
draft_fore_side WE I vessel draft in the fore side m
draft_aft_side WE I vessel draft in the aft side m
ship_inclination WE I ship inclination deg
MRU WE I ship angular velocity and acceleration deg/s, s2

aAbbreviations stand for: I: Indirect, D: Direct, ME: Main Engine, AE: Auxiliary Engine, PP: Propulsion, SH: Ship, and WE: Weather.
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4. SYSTEM MONITORING AND MAINTENANCE
Monitoring and maintenance is a central part of such a system,
comprising a large number of subsystems susceptible to
changes and faults. For this reason, automatic fault detection
would be a natural part of the final system. To fulfill this role
for the candidate vessels, a semiautomatic system has been
developed. This is based on providing useful ways for checking
and maintaining the system in an operative state through
remote access and easy-to-interpret visualizations.
For visualization, the GRAFANA41−43 visualization software

is being used (Figure 3). This solution permits an easy
visualization of all the monitored variables, which is especially
helpful for the health check of the monitoring system and
ensuring that reliable data is collected. It is necessary to remark
that GRAFANA is being used for visualization (by the
scientists at testing and the crew on operational time) rather
than actual data analysis. Each monitoring subsystem has a
dashboard: (1) anemometer; (2) auxiliary engine; (3) engine
room ambient parameters (DELTAOHM); (4) Fish holds; (5)
MarPrimeUltra; (6) Main engine; (7) Motion and MRU data;
(8) Maxsea and GPA navigation data; and (9) fuel oil
consumption and propeller shaft. By grouping dashboards into
monitoring subsystems, it is easier to check the performance of
the system. When data analysis is carried out, it is not possible
to go backward in time, so it is necessary to have systems up to
date (Figure 3).
The system facilitates remote system checking. The system

provides a secure login to the Ratatosk server, enabling both
monitoring of the signals on the Ratatosk bus and the health of
the system. In addition, a remote desktop to the IMES
computer can be enabled when necessary. In addition to being
used for checking system health, this provides a means for
doing remote maintenance when necessary. The configuration
channel can be used in similar ways and is primarily concerned
with keeping configurations updated, version controlled, and
sound.

5. SYSTEM USAGE AND BENEFITS
The main engine in the candidate vessels is a medium speed 4
stroke diesel engine. According to the engine manufacturer, a
well-planned condition-based maintenance program can draw
fuel oil consumption and emission reductions between 2% and
5% and avoid unplanned stops from 60 to 90%. The fuel oil
consumption reduction brings a direct reduction of GHG
emissions; however, other pollutants are more complicated to
estimate, as a diesel engine operating in bad conditions can
emit more of other pollutants like NOx.44 Therefore, other
main engine parameters are also a very important group of
parameters to be measured. The monitored combustion
variables can be used to infer the several operational engine
parameters using machine learning techniques.45 As part of the
vessel digitalization process, Artificial intelligence (AI)
techniques will potentially be used to develop a condition-
based maintenance model in the future. Until now, many
authors have proved the feasibility of using AI techniques in
their studies,46−49 but implementation of the outcomes from
these studies requires a vessel digitalization platform.
Measurements on the main engine, propulsion system, and

auxiliary engines are needed to develop the fuel oil
consumption model. In this research, up to 140 parameters
from the main engine (Table 2) were considered for
monitoring. Vessel and environmental variables are measured

to include the environmental impact on vessel fuel oil
consumption. Main engine measurements also support the
development of fault detection models for condition-based
maintenance. These measurements can be divided into direct
and indirect measurements. The direct measurements measure
the energy consumption (i.e., fuel oil consumption with flow
meters), while indirect measurements can be used for
calculating energy consumption (i.e., fuel injection pump
index position). The indirect measurements often constitute a
redundancy in the case of failure on the direct measurements,
such as faulty sensors. As an example, fuel oil consumption
could be calculated from measurements of the fuel injection
pump index position and engine RPM.
The fuel oil consumption is measured by volumetric flow

meters, measuring the fuel flow to and from the engine.
However, the energy content in the fuel is proportional to its
mass. If the difference in fuel flows is directly used without
density correction, this would give an estimated error of 2−3%.
The volumetric flows are therefore corrected based on
measurements of inlet and outlet temperatures for each
engine. Each engine inlet volumetric flow, inlet temperature,
outlet volumetric flow, and outlet temperature must be
measured to calculate the consumed fuel mass flow. The
instantaneous propulsion power is calculated from measure-
ments of the propeller shaft torque and rotational speed. The
fuel oil consumption and the generated electrical power of the
auxiliary engines are measured. The vessels’ electrical hotel
load (electric power consumption) can then be found as the
difference between the auxiliary engines’ electrical power and
the sum of any major consumers not considered to be part of
the hotel load. Vessel speed is measured in terms of both speed
over ground and speed through water. Speed over ground is
provided by the GPS, while speed through water is measured
from the speed of the water flow under the hull. The
combination of these measurements, as well as the ship
heading and the course over ground, gives additional
information about the ship environment and makes it possible
to estimate current effects. These effects are important and
must be considered when modeling the vessel energy
consumption. Vessel speed through water is considered as
more accurate value for fuel oil consumption modeling (ISO/
CD 19030-1, 2017).50 Vessel environmental conditions (wind
speed and direction) are also measured, as well as vessel draft,
trim, and inclination. Vessel accelerations and motion are
measured with an inertial motion unit (IMU) that provides
many different motion variables (angular acceleration and
angular speed).

6. CONCLUDING DISCUSSION
Despite the growth in the capacity to collect, store, and analyze
data has increased,51 cost-effective data collection with
industry for integration with scientific data from oceanographic
surveys is sparse.52,53 Besides, it is estimated that 80% of
research time is consumed in data preparation, which is why it
is important to digitalize the vessels and build repositories with
interoperable and reusable data.54,55 Large data sets analysis
and application development in the bioeconomy sector can be
accelerated by recent providers of Big Data, such as the
Copernicus initiative and its Sentinel satellites for EO.56

The vessels participating in this study are operating as data
collection platforms and as consumers of data from AI and big
data systems. This work goes beyond previous work that has
demonstrated the deployment of decision support systems in
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four commercial vessels without modifications.40 Some of
these data sets can be classified as Essential Ocean Variables
(EOV), defined by the Global Ocean Observing System
(GOOS) experts as those who are effective to contribute to
deal with the Climate, Operational Ocean Services, and Ocean
Health.57,58 Besides EOV available in ocean data repositories
or aggregators, current data are being collected operationally in
Vessels of Opportunity (VoOs) or Voluntary Observing
Vessels (VOS). For example, the scheme coordinated by the
World Meteorological Organization has approximately 2000
vessels participating and acting globally as remote weather
stations. The near-surface observations taken include atmos-
pheric pressure, wind speed and direction, air temperature,
relative humidity, and sea surface temperature (SST), as well as
wave height, direction, and period. The value of these data is
recognized in Regulation 5, “Meteorological Forecasts and
Warnings”, of the Safety of Life at Sea Convention (Interna-
tional Maritime Organization [IMO], 2002), which encourages
contracting governments to arrange for a selection of ships to
be equipped with tested marine meteorological instruments
and to take, record, and transmit meteorological observations
at the main standard times for surface synoptic observations.
The Continuous Plankton Recorder is another example aimed
at biological information gathering.59,60

This work facilitates that data is useful and manageable
according to the Findable, Accessible, Interoperable, and
Reusable (FAIR) principles, which were created with the aim
of being a guide for improving data accessibility and reuse.61,62

However, other principles also need to be considered. CARE
principles were created with the aim of providing more control
over the use and application of data.63 FAIR focuses on making
the data accessible and reusable, whereas CARE aims to use
the data for purposes beyond dealing with numbers and, in the
case of sensitive information, always with the group or
population in mind. Finally, TRUST principles aim to create
trustworthy repositories.64 Despite the presented example here
focus on fishing vessels (use of the same devices and
protocols), the digitalization and FAIR data approaches can
also be applied to the shipping industry. The shipping industry
can become producers of not only environmental but also
biological data.59

The proposed monitoring system provides the needed data
for cost-effective data provision for forecasting systems needed
for decarbonization of the industry. For example, machine
learning models can create accurate engine models that are
able to predict the engine parameters under different
operational conditions with enough accuracy to be used as
reference values to compare with actual operational parame-
ters.65 Deviations from predicted parameters prior to fault
occurrence can help the crew to proactively operate the engine
and solve engine malfunction accordingly before occurring a
catastrophic fault that can endanger vessel and crew
operation.66 As some authors have clearly stated, if more
efficient ship operations are to be defined, energy consumption
in the full operational profile of the vessel is completely
necessary.67 The fuel consumption models can predict fuel oil
consumption in autonomous mode. This will also permit
specialization of staff on shore in energy efficiency areas,
creating an energy efficiency culture in vessel operation. All of
this increases vessel safety, reduces vessel downtimes and fuel
oil consumption, and increases vessel economical sustain-
ability.

Actually, the collected data is feeding fuel prediction
models,68−70 species distribution models, and route optimiza-
tion models71 being used by the vessels participating in this
work. The fuel prediction models based on AI methods68 are
being used to estimate the optimal speeds and current fuel
consumption as well as feed into route optimization models.71

These models combine large data sets of fuel consumption
recorded from the vessels with large environmental data sets
from Copernicus (Figure 4). Similarly, species distribution
forecasts based on artificial intelligence methods using
Copernicus data are being provided to the vessels and used
for route optimization.71

Furthermore, the integration of such models in international
data platforms will help to forecast threads to the fisheries
industry such as climate change.6 This work aims to support
scientists, industry, and policymakers in the understanding of
the needed technological development for cost-effective data
acquisition through fishing vessel digitalization. This digital-
ization is needed to facilitate the reduction of emissions as a
critical environmental problem and industry costs critical for
industry economic sustainability. In addition to data recording,
this system facilitates the deployment of standardized two-way
interfaces to onboard sensors and systems. This can remove a
significant obstacle toward the development and deployment
of applications based on interfacing ship systems. It would
enable the development of monitoring systems and decision
support systems without tailoring to each individual ship,
which today is hindering the widespread use of such systems.
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