REVIEW PAPER

Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System

Bin Xie¹ · Jing Yu¹ · Chao Chen¹ · Ting Shen¹

Received: 12 October 2024 / Accepted: 16 March 2025 © The Author(s) 2025

Abstract

Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.

Graphical Abstract

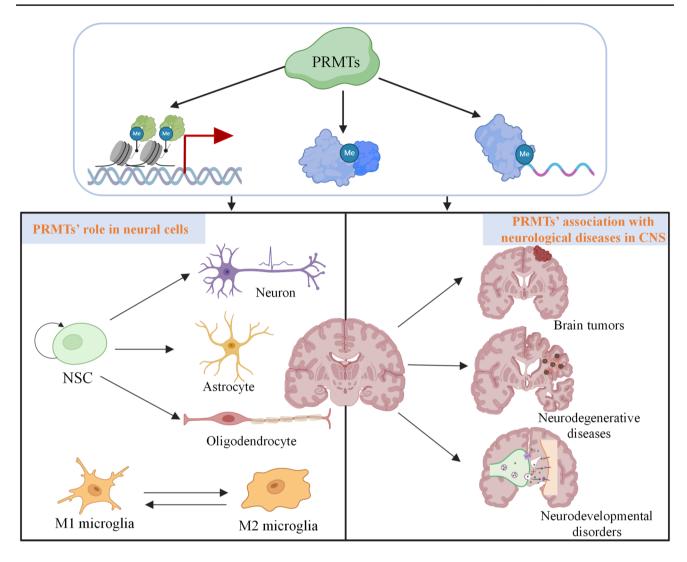
PRMTs' role in neural cells and neurological diseases in CNS. PRMTs-mediated arginine methylation plays a significant role in multiple biological processes of neural cells via regulating protein—protein and protein-RNA interactions, such as NSC proliferation and differentiation, neuron morphogenesis and activity, glial cells development and function. Its dysregulation is closely linked to neurological diseases in CNS including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders.

Bin Xie and Jing Yu are Co-first authors.

☐ Ting Shen shenting@csu.edu.cn

Bin Xie xiebin@sklmg.edu.cn

Jing Yu yuj@aimingmed.com


Chao Chen chenchao@sklmg.edu.cn

Published online: 14 May 2025

School of Life Sciences, Central South University, Changsha 410013, China

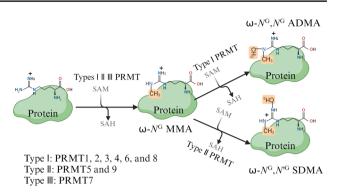
41 Page 2 of 21 Cellular and Molecular Neurobiology (2025) 45:41

Keywords Arginine methylation · Protein arginine methyltransferases · Central nervous system · Neurological diseases

Introduction

Post-translational modifications (PTMs) add functional diversity to proteins by covalently attaching chemical groups after translation, altering their stability, localization, and interaction networks. Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), has gained significant attention. PRMTs transfer the methyl group from *S*-adenosyl-L-methionine (SAM) to the guanidino nitrogen atoms of arginine residue in proteins. This modification alters the hydrogen-bonding capacity of the guanidino group, thereby modulating protein–protein and protein-RNA interactions (Fuhrmann et al. 2015). In human cell lines, around $1 \sim 3.4\%$ of arginine residues are methylated, which is as abundant as phosphorylation and ubiquitination (Zhang et al. 2021).

Like other modifications, arginine methylation recruits effector molecules, referred to as "readers", to newly created methyl-motifs (Gayatri and Bedford 2014; Wang and Bedford 2023). Tudor domain-containing proteins are the primary readers of methylarginine modifications (Gayatri and Bedford 2014; Wang and Bedford 2023). In humans, there are thirty-six Tudor domain-containing proteins; some of these proteins bind to methylarginine, while others interact with methyllysine motifs (Gayatri and Bedford 2014; Wang and Bedford 2023). For example, survival of motor neuron (SMN) engages with arginine-methylated RNA-binding proteins via its Tudor domain (Brahms et al. 2001; Friesen et al. 2001). Additionally, apart from Tudor domain-containing proteins, other domains and protein folds also demonstrate an affinity for methylated arginine residues (Wang and Bedford 2023).



The "erasers" for methylarginine still remains enigma. JmjC domain-containing protein 6 (JMJD6) is identified as the first enzyme proposed to catalyze arginine demethylation on histone substrates (Chang et al. 2007). However, the subsequent biochemical and structure evidence fails to confirm this catalytic activity, instead establishing it as a lysine hydroxylase (Webby et al. 2009; Cockman et al. 2022). Additionally, some members of JmjC domain-containing lysine demethylation (KDM), in purified form, are reported to possess arginine demethylation activity (Walport et al. 2016; Li et al. 2018; Bonnici et al. 2024). For example, isolated JmjC-KDM4 and KDM5 can catalyze demethylation of methylarginine of H2a, but this reaction may be altered by different substrate sequence contexts (Bonnici et al. 2024). However, further efforts need to focus on confirming their demethylation activity on methylarginine and demonstrating their biological relevance in cells.

The arginine methylation targets catalyzed by PRMTs include histones and non-histones, playing a key role in regulating gene expression, pre-mRNA splicing, RNA transport, DNA damage repair, and signal transducing (Blanc and Richard 2017; Wei et al. 2021). Increasing evidence has revealed that dysregulation of PRMTs activity is closely linked to disease pathogenesis. The therapeutic strategies targeting PRMTs have been effectively developed for various human diseases, particularly in cancer (Guccione and Richard 2019; Hwang et al. 2021; Wu et al. 2021). In this review, we will focus on the functions of PRMTs in neural cells and their relevance to diseases occurred in central nervous system.

The Enzymatic Activity of Protein Arginine Methyltransferases

There are three states of arginine methylation in cells (Fig. 1), including ω - N^G , N^G -asymmetric dimethylarginine (ADMA), ω - N^G , N^G -symmetric dimethylarginine (SDMA), and ω - N^G monomethylarginine (MMA). Therefore, PRMTs are accordingly classified into three types based on the final form of methylated arginine they produce. Type I PRMTs including PRMT1, 2, 3, 4 (also known as CARM1), 6, and 8 carry out the formation of ADMA. PRMT1 is responsible for the majority of ADMA production, accounting for 85% of total PRMTs activity in cells (Tang et al. 2000; Tewary et al. 2019). Additionally, PRMT8 harbors phospholipase activity, alongside its role as a methyltransferase. Type II PRMTs including PRMT5 and PRMT9 produce SDMA, of which PRMT5 plays a leading role in SDMA generation (Gillespie et al. 2024).

Fig. 1 PRMTs have arginine methyltransferase activity. There are three types of PRMTs catalyzing the formation of arginine methylation in protein by transferring the methyl group from SAM to the guanidino nitrogen atoms of arginine residue. Type I PRMTs including PRMT1, 2, 3, 4, 6, and 8 carry out the final formation of ADMA. Type II PRMTs including PRMT5 and PRMT9 are responsible for producing SDMA. Type III PRMTs only have PRMT7 and exclusively cause the formation of MMA

Type III PRMTs include only PRMT7, which exclusively causes the formation of MMA. Among these forms of arginine methylation, ADMA is the most abundant, while SDMA and MMA 10% and 1% of ADMA levels, respectively (Zhang et al. 2021).

Structurally, all PRMTs shares a core design that includes a N-terminal Rossman fold domain also referred to SAM-binding domain and a C-terminal β -barrel domain which mediates the formation of homo-dimerization required for active enzyme (Tewary et al. 2019). However, dimerization is not necessary for PRMT7 and PRMT9, because they possess two tandem Rossman fold domains due to gene duplication over evolutionary time, forming an intramolecular homodimer-like structure (Hasegawa et al. 2014; Yang et al. 2015).

Most of PRMTs are ubiquitously expressed in cells and are localized in both the cytoplasm and nucleus (Hwang et al. 2021). However, PRMT6 is predominantly found in the nucleus (Bouchard et al. 2018). In addition, PRMT8 is uniquely restricted to the brain and dwells in the plasm membrane (Lee et al. 2005).

Arginine and glycine repetitions of protein, namely RGG/RG motif, are the most favored methylated sites by PRMTs, while CARM1 preferentially modifies arginine residues locate within proline, glycine, and methioline (PGM) regions (Shishkova et al. 2017). PRMT7, on the other hand, targets arginine residues within RXR motifs, which are typically surrounded by lysine-rich amino acid sequences (Feng et al. 2013).

The Function of Arginine Methylation in Neural Cells

Conditional knockout of PRMT1 or PRMT5 in mice CNS led to the early death at postnatal 2 weeks, indicating the key roles of PRMTs-mediated arginine methylation on neural development (Bezzi et al. 2013; Hashimoto et al. 2016). Below, we summarize their expression (Table 1) and function in neural stem cells (NSCs), neuronal cells and glial cells (Fig. 2).

PRMTs and Neural Stem Cells

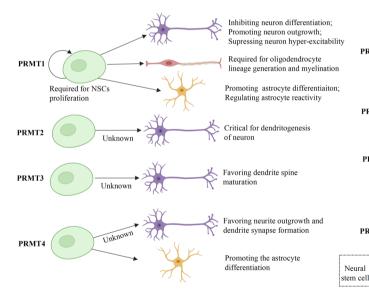
PRMTs and the Proliferation of Neural Stem Cells

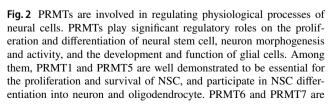
PRMT1 was essential for NSCs proliferation and survival in mice (Hashimoto et al. 2022). PRMT1 deficiency activated cellular apoptotic pathway by increasing p53 protein level and upregulating p53-response pro-apoptotic genes, including *Pmaip1* and *Perp* (Hashimoto et al. 2022). Consequently, PRMT1-deficient mice NSCs displayed reduced proliferative capacity, forming smaller neurosphere compared to the control (Hashimoto et al. 2022).

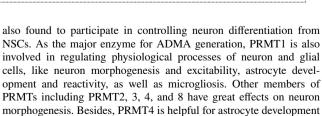
Table 1 The expression of PRMT subtype in CNS cell types

PRMT Subtype	Expression in CNS cell types	Reference	
PRMT1	Widely expressed in neurons, microglia, oligodendrocytes, and astrocytes	(Zhang et al. 2015; Hashimoto et al. 2021)	
PRMT2	Expressed in the dendrites of neurons	(Hou et al. 2018)	
PRMT3	Expressed in the cell bodies and dendrites of neurons	(Ikenaka et al. 2006; Miyata et al. 2010)	
PRMT4	Expressed in post-synapses of neurons and astrocytes	(Selvi et al. 2015; Lim et al. 2017)	
PRMT5	Expressed in neurons, astrocytes, and oligodendrocytes	(Huang et al. 2011; Calabretta et al. 2018)	
PRMT6	Primarily expressed in neurons	(Damez-Werno et al. 2016; Bouchard et al. 2018)	
PRMT7	Primarily expressed in neurons	(Lee et al. 2020)	
PRMT8	Expressed in cell bodies and dendrites of neurons	(Kousaka et al. 2009; Lo et al. 2020)	
PRMT9	Primarily expressed in neurons	(Shen et al. 2024)	

PRMT5


PRMT6


PRMT7


PRMT8

Required for NSCs

proliferation

Oligodendrocyte

Promoting neuroblastoma cell differentiating into

Essential for oligodendrocyte

lineage development and myelination

Promoting the neuron

Antagonizing the neuron differentiation of NT2/D1;

Inhibiting neuron hyper-

Favoring dendrite spine

Astrocyte

synaptic plasticity

maturation and excitatory

excitability

differentiation of NT2/D1

PRMT5 also played a significant role in NSC viability. Knockout of PRMT5 in mouse NSCs led to abnormal splicing of many pre-mRNAs, including MDM4, a known inhibitor of p53 activity (Bezzi et al. 2013). This resulted in the activation of p53-mediated apoptotic signaling pathway, contributing to NSCs death (Bezzi et al. 2013). Consequently, these knockout mice showed reduced brain size and early postnatal lethality (Bezzi et al. 2013). Additionally, PRMT5 was involved in regulating NSCs proliferation acting as a regulator of gene expression via histone modification. PRMT5 interacted with Schwann cell factor 1 (SC1, also known as PRDM4) to comprise an epigenetic regulatory complex that directs symmetric dimethylation of H4 at R3 (H4R3me2s) (Chittka et al. 2012). Overexpressing of mycSC1 delayed the time of neurogenesis from NSCs in mice cerebral cortex while this phenomenon was absent in mice expressing a mutant form of mycSC1 that could not recruit PRMT5 (Chittka et al. 2012).

PRMTs and the Differentiation of Neural Stem Cells

CNS-specific PRMT1 deficiency led to postnatal growth retardation in mice, with most dying within 2 weeks of birth (Hashimoto et al. 2016). This may be attributed to perturbations of the oligodendrocyte lineage generation from NSCs and severe hypomyelination of mature oligodendrocytes (Hashimoto et al. 2016). On a molecular level, PRMT1 deletion resulted in the decreased expression of several key transcriptional factors essential for oligodendrocyte specification and mature, including Olig1, Olig2, Nkx2.2 and Sox10, indicating the requirement of PRMT1 for NSCs differentiation into oligodendrocyte (Hashimoto et al. 2016). Signal transducer and activator of transcription 3 (STAT3) is the critical transcriptional factor to induce astrocyte from NSCs by promoting the expression of glial fibrillary acidic protein (GFAP), the astrocytic marker gene (Nakashima et al. 1999). PRMT1 enhanced the activity of STAT3 transcriptional activation on astrocytic genes expression through arginine methylation (Honda et al. 2017). Knockdown of PRMT1 in mice NSCs suppressed Gfap expression, impairing astrocyte differentiation from NSCs (Honda et al. 2017). Additionally, PRMT1 downregulation induced the neuronal-like differentiation by reducing the stemness of NSCs (Chen et al. 2021). The epigenetic factors EZH2, LSD1 and HDAC1 are accepted to be required for preserving neural stemness (Hsieh et al. 2004; Han et al. 2014a, b; Lei et al. 2019). PRMT1 interacted with deubiquitinase USP7 to coordinate ribosome and proteasome activity, maintaining their expression in mice NSCs (Chen et al. 2021). Therefore, when PRMT1 was depleted in NSCs, the protein level of EZH2, LSD1 and HDAC1 was decreased, promoting the cells to differentiate into neuron (Chen et al. 2021).

PRMT4 controlled astrocyte differentiating from NSCs via depositing asymmetric demethylation to R17 of H3 (H3R17me2a), an active histone mark (Selvi et al. 2015). This mark enhanced *Nanog*-modulated miR17-92 activity, favoring astroglial fate commitment in embryoid bodies (EBs) derived from human embryonic stem cells (Selvi et al. 2015). Therefore, the inhibition of PRMT4 activity led to the abnormal forming of astrocytes both in human cells and the animal model zebrafish (Selvi et al. 2015).

The ratio of PRMT5 short isoform, resulting from exon skipping, to the full isoform was changed when LA-N-5 human neuroblastoma cells differentiated into neurons induced by 13-cis-retinoic acid (Sohail et al. 2015). This result implied PRMT5 might play a role in neuronal differentiation from NSCs, however, the precise function required further investigation.

PRMT6 interacted with subunits of Polycomb repressive complex 1 and 2 ((PRC1 and PRC2) to facilitate the deposition of repressive histone mark trimethylation of H3 at lysine 27 (H3K27me3) on rostral *HOXA* genes (*HOXA1-5*), which are transcriptionally activated during neuronal differentiation of human neural progenitor cells (NPCs) NT2/D1 cell line induced by during all-*tans* retinoic acid (ATRA) (Stein et al. 2016). While the occupancy of PRMT6 and the resulting asymmetric dimethylation of H3 at R2 (H3R2me2a) on these genes loci was successively lost during ATRA-induced differentiation, favoring the neurogenesis from NT2/D1 (Stein et al. 2016). This result indicated that PRMT6 may be involved in NSCs differentiating to neuron cells by controlling the expression of neuron differentiation-associated genes.

MLL4 was required for retinoic acid (RA)-induced differentiation of NT2/D1 stem cells by activating the expression of differentiating genes including *HOXA1-3* and *NESTIN* through trimethylation of H3 at K4 (H3K4m3) modification (Dhar et al. 2012). However, PRMT7-mediated H4R3me2s antagonized the binding of MLL4 on these genes, thereby inhibiting the neuronal differentiation of NT2/D1 induced by RA (Dhar et al. 2012). Moreover, as an epigenetic modifier, PRMT7 can be involved in NPC proliferation and differentiation by regulating the expression of cell cycle and neuronal function-related genes, such as *CDKN2A* and *SYP*, via H4R3me2s modification (Shen et al. 2025). It is found that PRMT7 depletion inhibited the expansion of NPC population but promoted their differentiating into neurons (Shen et al. 2025).

PRMTs and Neuronal Cells

PRMTs and the Neuronal Morphogenesis

Downregulation of PRMT1 in mouse Neuro2a cells inhibited neurite outgrowth under serum deprivation, indicating

the role of PRMT1 on neuronal morphogenesis (Miyata et al. 2008). In rat hippocampal neurons, axon outgrowth and dendrite complexity decreased when PRMT1 activity was inhibited (Amano et al. 2020). PRMT1 was also involved in the Golgi organization which is critical for axon and dendrite outgrowth (Amano et al. 2020). It was found that PRMT1 can methylate C-terminal domain of SCY1 like pseudokinase 1 (SCYL1), a significant player in Golgi morphology, and this modification was necessary for its interaction with the subunit of coat protein complex I (COPI) γ₂-COP to facilitate Golgi organization (Amano et al. 2020).

41

PRMT2 is essential for dendritogenesis of neuron (Hou et al. 2018). The actin nucleator Cordon-bleu (Colb) plays a pivotal role on dendrites and dendritic branch formation (Ahuja et al. 2007). PRMT2 acted as a binding partner of Colb and catalyzed its C-terminal domain methylation to promote the association of Cobl with actin, which was helpful for dendritic arbor formation (Hou et al. 2018). Therefore, overexpression of PRMT2 in hippocampal neurons isolated from mice increased the number of dendrites and dendritic branch-points, while PRMT2 knockdown contributed to the opposite effects (Hou et al. 2018).

PRMT3 regulated the stability of ribosome protein S2 (rpS2), which affected ribosome maturation (Miyata et al. 2010). This interactions of PRMT3 and rpS2 cooperatively supported the local translation of α subunit of the calcium/calmodulin-dependent protein kinase II ($\alpha CaMKII$) in response to neurotrophic factor activation in dendrite (Miyata et al. 2010). Hence, PRMT3 downregulation in rat hippocampus neuron led to the failure of increased $\alpha CaMKII$ abundance upon BDNF stimulation, and consequently decreased spine area (Miyata et al. 2010).

PRMT4 was enriched in the post-synaptic density (PSD) of post-synaptic membrane and co-localized with postsynaptic marker PSD 95 in rat hippocampal neurons (Lim and Alkon 2017). The genetic or pharmacological inhibition of PRMT4 contributed to a dramatically raised in the cluster size of key post-synaptic proteins including PSD95 and N-methyl-D-aspartate receptor subunit 2B (NR2B) in synapses, in accompany with the enhanced complexity of dendritic structure (Lim and Alkon 2017). These results indicated the regulatory role of PRMT4 in dendrite morphology and synapse formation possibly via arginine-methyl modifications of PSD proteins. Additionally, PRMT4 can be involved in neuritogenesis by methylation of a RNAbinding protein HuD, a critical factor for neuron differentiation via binding mRNAs containing the AU-rich elements to preserve them from degradation (Fujiwara et al. 2006). PRMT4-mediated HuD methylation was unfavorable for its interaction with p21cip/waf1 mRNA, resulting in decreased stability of p21cip/waf1 mRNA (Fujiwara et al. 2006). Therefore, PC12 cells with PRMT4 depletion harbored increased p21^{cip/waf1} protein abundance, leading to cell cycle arrest and accelerated neurite outgrowth in response to the stimulation of nerve growth factor (Fujiwara et al. 2006).

PRMT8, primarily localized at the neuronal synapse, is involved in the dendrite spine maturation (Lee et al. 2017; Lo et al. 2020; Guan et al. 2021). PRMT8-mediated methylarginine of dendritic RNA-binding protein G3BP1 suppressed Rac1-PAK1 signaling, controlling synaptic actin dynamics (Lo et al. 2020). Mice cortical neurons with PRMT8 depletion exhibited decreased turnover of F-actin and defect morphology of dendritic spines with a higher number of filopodia and shaft synapses (Lo et al. 2020). Additionally, PRMT8 regulated the dendrite morphogenesis of mice Purkinje cells dependent on its phospholipase activity (Guan et al. 2021). Mice with PRMT8 knockout displayed abnormal motor behaviors as well as the abnormal dendritic arborization and altered cerebellar structure (Guan et al. 2021). Upon PRMT8 deletion, the increased phosphatidylcholine and decreased hydrolyzed products including choline and phosphatidic acid were observed, highlighting the deficiency of PRMT8-mediated phosphatidylcholine hydrolysis may contribute to this phenotype (Guan et al. 2021).

PRMT9 plays a critical role in neuronal morphogenesis and activity, particularly in synapse development and function (Shen et al. 2024). PRMT9 regulated RNA splicing by methylating SF3B2, a key splicing factor, influencing the inclusion or skipping of exons in genes involved in synaptic function such as *Grin1* (Shen et al. 2024). Therefore, PRMT9 knockout in hippocampal neurons led to abnormal synaptic morphology, including reduced spine density and size (Shen et al. 2024).

PRMTs and the Neuronal Activity

PRMT1 is accepted as a regulator in neuronal excitability through modulating the activity of KCNQ2 potassium channel (Kim et al. 2016). PRMT1 catalyzed the arginine methylation of KCNQ2 to promote its interaction with phosphatidylinositol-4,5-bisphosphate (PIP2) which is required for this channel activity (Kim et al. 2016). Thus, hippocampal neurons in *Prmt1*-heterozygous mice exhibited a reduced KCNQ2 channel activity and increased neuronal hyper-excitability (Kim et al. 2016).

In *C. elegans.*, PRMT5 mediated sensory and motor neuron responses to the environment stimuli by methylating G protein-coupled receptor (GPCR) DOP-3, a D2-like dopamine receptor homologous to the human D2 dopamine receptor, which plays a critical role in chemosensory and locomotor behavior (Likhite et al. 2015). The worms expressing mutant PRMT5 displayed the hypersensitivity to dilute octanol and a defect basal slowing when they encountered the food (Likhite et al. 2015). Moreover, PRMT5 can methylate another GPCR, the SER-2 tyramine receptor, which shares a conserved arginine methylation motif with

its human counterpart, to regulate *C. elegans* locomotion (Bowitch et al. 2018). The regulatory role of PRMT5 in *C. elegans* neurons implied that it might be also involved in modulating neuronal function in humans.

NALCN is a key player in establishing the resting membrane potential (RMP) in neurons. PRMT7 inhibited NALCN activity by catalyzing its methylation, thereby reducing neuron excitability (Lee et al. 2019). Therefore, hippocampal dentate granule cells lacking PRMT7 in mice displayed hyper-excitability with the depolarization of RMP, decreased threshold currents, and increased excitability (Lee et al. 2019). PRMT7 also modulated the expression of Shank3 which is a scaffolding protein of HCN channel proteins to control the number of HCN channel in mice hippocampal CA1 neurons (Lee et al. 2020). When PRMT7 function was defect in mice, CA1 neurons showed a higher polarized resting potential and input resistance (Lee et al. 2020).

PRMT8 also plays a crucial role in the neuronal function. PRMT8 deficiency caused a significant reduction of NMDA receptor subunit GluN2A in mice hippocampus, resulting in the decreased GluN2A-mediated currents (Penney et al. 2017). Electrophysiological recordings from these PRMT8-deficient mice showed defects in excitatory synaptic function and plasticity (Penney et al. 2017).

PRMTs and Glial Cells

PRMT1 plays a critical role in the development and function of glial cells. Most mice with conditional deletion of PRMT1 in brain died at postnatal 2 weeks (Hashimoto et al. 2016). In these mice, the number of oligodendrocyte progenitor cells (OPCs), premyelinating oligodendrocytes and the mature oligodendrocytes were dramatically reduced. Besides, the mature oligodendrocytes were severely hypomyelination (Hashimoto et al. 2016). Moreover, mice with microglia PRMT1 deficiency showed the failure of remyelination upon cuprizone diet-induced demyelination, characterized by the prolonged microgliosis, astrogliosis, and decreased accumulation of OPCs during remyelination phase (Lee et al. 2022a, b). PRMT1 deletion led to the reduced active histone mark acetylation of H3 at lysine 27 (H3K27ac) deposition in the promoter of major histocompatibility complex (MHC)associated genes, impairing their transcriptional programs (Lee et al. 2022a, b). This ultimately led to the loss of MHCassociated microglia required for efficient remyelination (Lee et al. 2022a, b). PRMT1 was also involved in postnatal microgliosis and astrogliosis in mice (Hashimoto et al. 2021a, b). Mice with PRMT1 knockout showed significantly heightened astrocytes and microglia reactivity at postnatal 8 days (Hashimoto et al. 2021a, b).

Inhibitors of differentiation or DNA binding 2 (Id2) and Id4 are known to be the repressors of oligodendrocyte

differentiation (Kondo and Raff 2000; Wegner 2007). As an epigenetic regulator, PRMT5-mediated H4R3me2a modification suppressed their expression via increasing the DNA methylation on their CpG regions (Huang et al. 2011). In the rat OPCs with downregulation of PRMT5, increased expression of Id2 and Id4 perturbed oligodendrocyte maturation (Huang et al. 2011). Additionally, PRMT5 can inhibit acetylation of neighboring lysine residue of histone via H4R3me2s deposition, affecting the expression of many genes critical for oligodendrocyte development (Scaglione et al. 2018). In PRMT5-deficient OPCs, the oligodendrocyte signature genes were significantly downregulated, whereas genes involved in p53 signaling pathway were upregulated, leading to a significant reduction of mature oligodendrocytes as well a severe hypo-myelination (Scaglione et al. 2018). In addition, PRMT5 can methylate platelet-derived growth factor receptor (PDGFRα) which plays a critical role in OPCs proliferation, migration, and commitment of oligodendrocytes (Calabretta et al. 2018). This methylarginine reduced the affinity of Cbl E3 ligase to PDGFRα, preserving PDGFRα from degradation (Calabretta et al. 2018). As a result, mice lacking PRMT5 showed decreased PDGFRα level at the plasma membrane, resulting in fewer mature oligodendrocytes, dysmyelination, and death at 3 weeks after birth (Calabretta et al. 2018).

The links of arginine methylation to neurological diseases.

PRMTs and Primary Brain Tumors

Medulloblastoma (MB) and glioblastoma (GBM) are the most common malignant primary brain tumors in the CNS, representing the leading cause of cancer-related death in children and young adults, respectively (Ostrom et al. 2022). PRMTs are frequently upregulated in GBM, and patients with elevated PRMT levels often experience poor outcome (Samuel et al. 2021). Below, we mainly discussed the pathogenic mechanisms that PRMTs contribute to GBM and MB, along with their potential as therapeutic targets for these tumors (Table 2).

PRMTs and Glioblastoma

In glioma, PRMT1 was upregulated in tumor cells and associated with poor outcome of the patients (Wang et al. 2012; Dong et al. 2018). Downregulation of PRMT1 in glioma cell lines caused decreased proliferation and increased apoptosis, and the nude mouse xenografts with PRMT1 depletion showed the reduced tumor growth (Wang et al. 2012). A recent study found that PRMT1 expression and its associated histone modification H4R3me2a were reduced in IDH1 mutant gliomas, impairing the transcriptional activation of PTX3, a key factor in inflammation and autophagy

Table 2 The association of PRMTs with neurological diseases occurred in CNS

Types of neurological diseases	Members	Targets	Function	Reference
Primary brain tumors				
Glioblastoma (GBM)	PRMT1	H4R3	Advantageous for the prolifera- tion and survival of tumor cell	Wang et al. 2012
	PRMT2	H3R8	Promoting GBM stem-like cell (GSC) proliferation and growth	Dong et al. 2018
	PRMT3	HIF1α	Helpful for tumor cell growth and progression	Liao et al. 2022
	PRMT5	Proliferation-associated genes	Promoting tumor cell growth	Braun et al. 2017
		hnRNPA1	Favoring the therapeutic resistance of mTOR therapy	Holmes et al. 2019
	PRMT6	RCC1	Helpful for GSC proliferation and growth	Huang et al. 2021
	PRMT8	Unknown	Its expression was reduced and associated with favorable outcome of patients, while the truncated isoform was helpful for the proliferation of tumor cells	Simandi et al. 2015; Hernandez and Dominko 2016
Medulloblastoma (MB)	PRMT1	BAD	Upregulated in neoplastic precursor cells and promoting apoptosis	Sakamaki et al. 2011
		MYC	Helpful for the survival of MB cell line	Gu et al. 2022
Naurada ganaratiya digaasas	PRMT5	MYC	Involved in MYC-amplified Group 3 MB and beneficial for cell survival	Chaturvedi et al. 2019
Neurodegenerative diseases ALS/FTD	PRMT1	FUS	Modulating FUS subcellular localization and aggregates	Dormann et al. 2012; Scaramuz- zino et al. 2013; Suarez-Calvet et al. 2016; Tradewell et al. 2012; Yamaguchi and Kitajo 2012
	PRMT8	FUS	Modulating FUS aggregates	Scaramuzzino et al. 2013
		CREB1	Acting as a protective role for spinal cord motor neurons	Simandi et al. 2018
AD	PRMT4	NOS	Regulating NO production and cerebral blood flow	Clemons et al. 2022
	PRMT5	E2F-1	Inhibiting E2F-1-activated apoptotic signaling and reducing Aβ-induced toxicity	Quan et al. 2015
PD	PRMT1	AIF	Promoting the nuclear trans- location of AIF and activat- ing PARP1-mediated cell apoptosis	Nho et al. 2020
HD and polyQ diseases	PRMT4	НТТ	Beneficial for HTT solubility and providing protection for neuron survival	Ratovitski et al. 2022
	PRMT5	H2AR3 and H4R3	Restoring aberrant gene expression and RNA processing	Ratovitski et al. 2015
	PRMT6	НТТ	Required for HTT axon transportation and neuron viability	Ratovitski et al. 2022; Migazzi et al. 2021
		mutant AR	Enhancing the transactivation of mutant AR	
MS	PRMT1	H4R3	Promoting IL-17 expression and Th17-induced EAE	Sen et al. 2018a, b

Table 2 (continued)

Types of neurological diseases	Members	Targets	Function	Reference
	PRMT4	H3R17	Activating IL-17 expression and Th17-induced EAE	Sen et al. 2018a, b
	PRMT5	SREBP1	Promoting transcriptional programs of Th17 differentiation by enhancing SREBP1 stability and transcriptional activity	Webb et al. 2020
		Sm, Snrp A1, and hnRNPK	Favoring the normal splicing of Trpm4, and consequently helpful for IL-2 production	Sengupta et al. 2021
Neurodevelopmental disorders				
Rett syndrome	PRMT1	MeCP2	Inhibiting the heterochromatin accumulation of MeCP2	Schmidt et al. 2022
	PRMT6	MeCP2	Inhibiting the heterochromatin accumulation of MeCP2	Schmidt et al. 2022
Fragile X syndrome	PRMT1	FMRP	Leading to abnormal function of FMRP	Stetler et al. 2006; Blackwell et al. 2010
Intellectual disability	PRMT7	Unknown	Patients with PRMT7 mutation underwent intellectual disability	Akawi et al. 2015; Kernohan et al. 2016; Agolini et al. 2018
Epilepsy	PRMT1	KCNQ2	Promoting KCNQ2 activity	Kim et al. 2016
	PRMT7	Unknown	Patients with PRMT7 mutation underwent epilepsy	Akawi et al. 2015; Kernohan et al. 2016; Agolini et al. 2018
SCZ	PRMT7	Unknown	Acting as a risk gene of SCZ	Fiorica and Wheeler 2019

regulation (Lathoria et al. 2023). This deficiency in PRMT1-mediated activation led to increased ferritinophagic and autophagic flux, possibly accounting for the better prognosis of glioma patients with IDH1 mutant (Lathoria et al. 2023). Therefore, targeting this PRMT1-PTX3 axis could provide therapeutic opportunities, particularly in enhancing the sensitivity of glioma cells to ferroptosis inducers (Lathoria et al. 2023).

PRMT2 activated oncogenic transcriptional program via asymmetric dimethylation of H3 at R8 (H3R8m2a) modification in GBM (Dong et al. 2018). Depletion of PRMT2 in GBM cell lines suppressed several oncogenic signaling pathways, including PI3K-AKT, MAPK, JAK-STAT and Wnt/β-catenin pathways, were strikingly repressed upon (Dong et al. 2018). Therefore, these cells showed decreased cell growth, GBM stem-like cell (GSC) self-renewal, and reduced tumor growth (Dong et al. 2018).

PRMT3 expression was upregulated in GBM patients and negatively associated with their outcome (Liao et al. 2022). PRMT3 promoted the expression and stability of HIF1 α , as the key regulator of glycolysis pathway in GBM (Liao et al. 2022). Consequently, GBM cells with PRMT3 downregulation or inhibition showed impaired glycolytic metabolism, leading to reduced tumor growth and progression (Liao et al. 2022).

In GBM, PRMT5 can regulate the splicing of proliferation-associated genes to support the survival of tumor cells (Braun et al. 2017). PRMT5 knockdown caused the intron retention in genes involved in regulating cell cycle and DNA replication, resulting in their decreased expression in GBM cells (Braun et al. 2017). As a result, these cells suffered from cell cycle arrest, cell senescence and apoptosis (Braun et al. 2017). PRMT5 was also involved in therapeutic resistance to mechanistic target of rapamycin (mTOR) inhibition in GBM (Holmes et al. 2019). The activation of salvage pathway stimulating internal ribosome entry site (IRES)mediated protein synthesis is the major cause of the resistance to mTOR therapy (Martin et al. 2011). The methylation activity of PRMT5 was increased responding to mTOR inhibition (Holmes et al. 2019). This promoted the methylation of hnRNPA1 and facilitated its binding to the internal IRES of mRNAs, thus supporting protein synthesis under mTOR inhibition (Holmes et al. 2019). Multiple studies have showed that PRMT5 expression was positively associated with growth of GBM tumor cells and negatively correlated with patient outcomes, making it a promising therapeutic target of GBM (Han et al. 2014a, b; Yan et al. 2014; Banasavadi-Siddegowda et al. 2017; Braun et al. 2017). Nowadays, clinical trials have been underway using PRMT5 inhibitors in GBM patients, with GSK3326595 showing efficacy in several tumor types including GBM, in a phase I study (Banasavadi-Siddegowda et al. 2018; Siu et al. 2019).

In glioma, PRMT6 displayed a positive association with glioma grade and adverse prognosis of patients (Huang et al. 2021). Casein kinase 2 (CK2) catalyzed the phosphorylation of PRMT6, impeding its ubiquitination and enhancing its

stability in GBM (Huang et al. 2021). High levels of PRMT6 promoted the methylation of regulator of chromatin condensation 1 (RCC1) at R214, favoring its association with chromatin and activation of RAN-GTP which is beneficial for cell proliferation (Huang et al. 2021). Consequently, PRMT6 upregulation enhanced the mitotic activity of tumor cells (Huang et al. 2021).

PRMT8's role in glioma is less well defined, but some evidence suggests it may act as a tumor suppressor. In mESCs-derived neural cells, PRMT8 depletion led to changes in gene expression patterns linked to gliomagenesis (Simandi et al. 2015). Additionally, the expression of PRMT8 was identified to be decreased following the glioma development and associated with favorable outcome of GBM patients, suggesting a suppressor role in GBM (Dong et al. 2018). However, a truncated PRMT8 isoform was shown to be required for the proliferation of GBM cells (Hernandez and Dominko 2016). These findings indicate the involvement of PRMT8 in glioma, but its precise function and mechanism require further exploration.

PRMTs and Medulloblastoma

41

Transformation of cerebellar granule cell precursors (GCPs) due to Sonic hedgehog (Shh) pathway activation can lead to the development of a specific subgroup of MB known as Shh-type, which accounts for approximately 30% of MB cases (Northcott et al. 2019). In Patched1 heterozygous mice, a Shh-type MB model, the deletion of Btg1 identified as a negative regulator of GCPs proliferation did not cause the increased cell proliferation as well as tumor frequency (Ceccarelli et al. 2020). Interestingly, PRMT1 was found to be upregulated in the neoplastic GCPs of these mice (Ceccarelli et al. 2020). PRMT1 can activate apoptosis pathway by arginine methylation of pro-apoptotic factor Bcl-2 antagonist of cell death (BAD), preventing the Akt-mediated BAD phosphorylation and promoting its mitochondrial translocation (Sakamaki et al. 2011). This PRMT1-mediated apoptosis may counterbalance the effects of Btg1 loss on. However, contrary findings were observed in human MB cells, where shRNA-mediated downregulation or diamidineinduced inhibition of PRMT1 increased the apoptosis (Gu et al. 2022). These conflicting results suggest that PRMT1 is involved in regulating the survival of MB cells, but the discrepancy between the mouse model and human study likely reflects differences in genetic context. Further investigation is need to be performed in consideration of PRMT1 as the drug target of MB.

In MYC-amplified Group 3 MB, genetic downregulation or pharmacological inhibition of PRMT5 caused the decreased MYC protein abundance, leading to increased apoptosis (Chaturvedi et al. 2019). PRMT5 catalyzed arginine methylation in MYC, which was beneficial for MYC

stability (Chaturvedi et al. 2019). This interaction of PRMT5 and MYC has been previously described in GBM, where PRMT5 contributed to the activation of MYC target genes through depositing H4R3me2s as an epigenetic modifier (Mongiardi et al. 2015). Additionally, PRMT5 acted as a key regulator of another member of MYC family MYCN protein which is a major driver of neuroblastomas (NBs), a solid tumor arising in the sympathetic nervous system (Park et al. 2015). PRMT5-mediated arginine methylation also enhanced MYCN stability, thereby promoting the survival of the NBs cell lines (Park et al. 2015). Collectively, these findings suggest that PRMT5 may be an attractive therapeutic target for tumors driven by the members of MYC family in the nervous system.

PRMTs and Neurodegenerative Diseases

Neurodegenerative diseases are characterized by the progressive loss of neurons in the central or peripheral nervous system, affecting millions of people worldwide (Wilson et al. 2023). PRMTs-mediated arginine methylation is implicated in several pathological processes associated with neurodegenerative diseases, including protein aggregation, synaptic and neuronal network dysfunction, and inflammation. Below, we discussed the involvement of PRMTs in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and other polyglutamine (polyQ) diseases, and Multiple sclerosis (MS) (Table 2).

PRMTs and Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)

In ALS and FTD, nuclear import defects and cytoplasmic aggregation of Fused in sarcoma (FUS) are the key pathological mechanisms. Arginine methylation plays a crucial role in regulating FUS subcellular localization and aggregation (Dormann et al. 2012; Scaramuzzino et al. 2013; Hofweber et al. 2018; Qamar et al. 2018; Ryan et al. 2018). FUS nuclear import is mediated by Transportin TRN which binds to the proline-tyrosine nuclear localization signal (PY-NLS) of FUS (Dormann et al. 2012). There are three RGG domains, the preferential methylation sites of PRMTs, preceding PY-NLS (Dormann et al. 2012). The arginine methylation in these RGG domains disrupted the interaction of Transportin with PY-NLS, thereby affecting the nuclear localization of FUS (Dormann et al. 2012). Additionally, the RGG/RG motifs in FUS C-terminal domain are crucial for FUS phase separation (Suarez-Calvet et al. 2016; Hofweber et al. 2018; Qamar et al. 2018). Arginine methylation in these motifs reduced FUS-mediated phase separation and stress granule (SG) formation, while un- or mono-argininemethylation of FUS was helpful for the formation of FUS

inclusions as seen in FTD-FUS patients but not ALS-FUS patients (Suarez-Calvet et al. 2016; Hofweber et al. 2018; Qamar et al. 2018).

The concentrations of PRMT1 and ADMA were upregulated in the cerebrospinal fluid of ALS patients compared to the controls (Ikenaka et al. 2019). Accordingly, the high ratio of ADMA/L-arginine was associated with the progression and poor outcome of ALS (Ikenaka et al. 2019). Actually, PRMT1-mediated arginine methylation of FUS has been linked to its subcellular localization and aggregates in ALS/ FTD (Dormann et al. 2012; Tradewell et al. 2012; Yamaguchi and Kitajo 2012; Scaramuzzino et al. 2013; Suarez-Calvet et al. 2016). PRMT1 downregulation reduced the cytoplasmic localization of FUS mutants, suggesting that PRMT1-mediated arginine methylation may contribute to toxic gain-of-function in FUS mutants (Dormann et al. 2012; Tradewell et al. 2012). Furthermore, genetic or pharmacologic inactivation of PRMT1 was observed to cause FUS methylation state from ADMA to un-methylation or MMA FUS state, enhancing FUS binding affinity with the nuclear import receptor transportin-1 and promoting its cytoplasmic protein aggregation with transportin-1 (Suarez-Calvet et al. 2016).

PRMT8 may play a protective role for spinal cord motor neuron (MNs), whose progressive loss is a typical pathological feature of ALS. Like PRMT1, PRMT8 co-localized with FUS (Scaramuzzino et al. 2013). Pharmacologic inhibition of PRMT8 resulted in both nuclear and cytosolic accumulation of FUS wild-type and ALS-linked FUS mutants in MNs (Scaramuzzino et al. 2013). Additionally, PRMT8 expression was gradually increased compared to other PRMTs members and had a relative enrichment in MNs over other spinal cord cell types during MNs differentiation (Simandi et al. 2018). The spinal cord MNs with PRMT8 deficiency underwent seriously neurodegenerative-related phenotypes, such as neuron muscle junction (NMJ) fragmentation, impaired axonal transport and premature accumulation of aging pigments (Simandi et al. 2018). In these MNs, deletion or inhibition of PRMT8 caused accumulation of unrepaired DNA double-strand breaks and decreased cAMP responseelement-binding protein 1 (CREB1) expression level, disrupting the cAMP-mediated neuron-protection transcriptional network (Simandi et al. 2018).

PRMTs and Alzheimer's Disease (AD)

In addition to amyloid- β (A β) plaques and tau neurofibrillary tangles, dysregulation of nitric oxide (NO) signaling which results in the derangement of cerebral blood flow (CBF) contributes to the pathogenesis of AD (Hansra et al. 2019). ADMA, a non-canonic ligand of nitric oxide synthase (NOS), caused NOS uncoupling and inhibited its function (Choi et al. 2020). In the aged female 3xTg-AD mice,

which exhibit tau and Aβ pathologies, the levels of PRMT4 in the hippocampus compared to controls were found to be elevated (Clemons et al. 2022). This PRMT4 overexpression correlated with NOS uncoupling, reduced NO production and increased oxidative stress via peroxynitrite, ultimately resulting in impaired CBF. Pharmacologic inhibition of PRMT4 using TP-064 was shown to reverse these effects, improving NOS function, NO metabolite production, and restoring CBF (Clemons et al. 2022). This finding suggests that targeting PRMT4 may offer therapeutic strategies for improving vascular function in AD (Clemons et al. 2022).

On the contrary, PRMT5 expression was decreased in hippocampus tissue of AD patients (Quan et al. 2015). Similar PRMT5 downregulation was observed in mice primary cortical neurons and human SH-SY5Y cells both treated by A β peptide (Quan et al. 2015). When PRMT5 was knockdown in SH-SY5Y cells with overexpression of human A β precursor protein, these cells had an increased apoptosis (Quan et al. 2015). Additionally, PRMT5 depletion caused exacerbated A β -induced paralysis in a transgenic Caenorhabditis elegans strain CL2006, the worm model of AD (Quan et al. 2015).

PRMTs and Parkinson's Disease (PD)

PRMT1 was found to be upregulated in human dopaminergic neuronal cell line treated by 1-Methyl4-phenylpyridinium iodide (MPP⁺), a toxic metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to selectively kill dopaminergic neurons in substantia nigra to induce symptom of PD in animal models (Nho et al. 2020). Under this condition, nuclear translocation of apoptosis-inducing factor (AIF) was enhanced, promoting Poly (ADP-ribose) polymerase-1 (PARP1)-mediated apoptosis (Nho et al. 2020). However, when PRMT1 was downregulated, this apoptotic activity was inhibited, attenuating MPP⁺-induced cell death (Nho et al. 2020). Additionally, in PRMT1 haploinsufficient mice treated with MPTP, neuronal death in substantia nigra was reduced and motor symptoms were less severe (Nho et al. 2020).

PRMTs and Huntington's Disease (HD) and Other PolyQ Diseases

Huntingtin (HTT) has been shown to stimulate PRMT5 activity toward histone modification, while mutant HTT impaired PRMT5-mediated SDMA of substrates like H2A, H4 and Cajal body marker coilin (Ratovitski et al. 2015). This disruption in PRMT5-mediated SDMA activity may partially explain the aberrant gene expression and RNA processing in HD (Ratovitski et al. 2015). Therefore, restoration of PRMT5 function either by overexpressing the PRMT5/MEP50 complexes or deleting H4R3me2s demethylase

JMJD6 attenuated the toxic effects of mutant HTT in mouse primary cortical neurons (Ratovitski et al. 2015).

HTT protein itself harbors multiple arginine methylation sites, which is advantageous for HTT solubility (Ratovitski et al. 2022). Alterations of arginine methylation at specific sites were detected in HD patient-derived immortalized striatal precursor cells (ISPNs) lines compared to the normal (Ratovitski et al. 2022). PRMT4/CARM1 and PRMT6 were identified as the major enzymes responsible for HTT methylation (Ratovitski et al. 2022). Overexpression of PRMT4 or PRMT6 in HD ISPNs protected neurons from stress induced by deprivation of growth factor (Ratovitski et al. 2022). Additionally, PRMT6-mediated arginine methylation at R118 of HTT was required for HTT axonal transportation (Migazzi et al. 2021). PRMT6 downregulation in mice striatal and cortical cells expressing mutant HTT disrupted trafficking of HTT and caused neuronal death, while PRMT6 overexpression restored HTT axonal transport and neuronal viability (Migazzi et al. 2021). In HD fly model, PRMT6 overexpression also restored axonal and neuromuscular junction defects to normal level (Migazzi et al. 2021).

In contrast, PRMT6 had an antagonistic role in spinal and bulbar muscular atrophy (SBMA), a polyQ diseases ascribing to polyglutamine expansion of androgen receptor (AR) (Scaramuzzino et al. 2015). PRMT6 enhanced the toxicity of mutant AR in SBMA by promoting its transactivation through arginine methylation (Scaramuzzino et al. 2015). Therefore, downregulation of PRMT6 Drosophila ortholog DART8 suppressed polyglutamine-expanded AR-induced neurodegenerative phenotypes in SBMA fly model (Scaramuzzino et al. 2015).

PRMTs and Multiple Sclerosis (MS)

MS is a chronic inflammatory neurodegenerative disease of CNS, characterized by demyelinating lesions in the brain and spinal cord due to the infiltration of immune cells, including T cells and B cells, into CNS (Filippi et al. 2018). Immune system dysregulation, like the increased Th1 and Th17 inflammatory responses, deficient Th2 and regulatory T cell responses, is currently known cause for MS (Webb et al. 2017; Filippi et al. 2018). The roles of PRMTs on T cell function associated with MS has been explored.

PRMT1 has been identified as a potential therapeutic target for Th17-mediated MS (Sen et al. 2018a, b). PRMT1 promoted the expression of IL-17 expression by depositing H4R3me2a modification on IL-17 promoter, facilitating the stimulatory STAT3 binding and blocking the inhibitory STAT5 binding (Sen et al. 2018a, b). Downregulation or pharmacological inhibition of PRMT1 in mouse naïve T cells severely impaired the generation of IL-17⁺ cells (Sen et al. 2018a, b). Consequently, inhibiting PRMT1 activity alleviated Th17-induced experimental autoimmune

encephalomyelitis (EAE), a mouse model of MS. (Sen et al. 2018a, b).

PRMT4, working in concert with steroid receptor coactivator 1 (SRC1), also promoted Th17 differentiation (Sen et al. 2018a, b). Phosphorylation of SRC1 by protein kinase C theta (PKC-θ), a key signaling T cell receptor (TCR) molecule, recruited PRMT4 to the IL-17 promoter locus to deposit the active histone mark H3R17me2a while preventing the repressive histone mark H3K9me3, thereby, enhancing the IL-17 transcriptional program (Sen et al. 2018a, b). Hence, SRC1 deletion led to reduced IL-17 + T cells, inflammation, and MS development in EAE model (Sen et al. 2018a, b).

PRMT5 is implicated in MS pathogenesis by its regulation of memory CD4⁺ Th cell responses to antigen stimulation (Webb et al. 2017, 2020; Sengupta et al. 2021). PRMT5 was essential for the reactivation of memory CD4⁺ Th cells by affecting the secretion of IL-2, an important pro-proliferative T cell cytokine (Webb et al. 2017). As a result, PRMT5-specific inhibitor impaired the proliferation and expansion of resting memory Th1 and Th2 CD4+ T cells under the inducing condition, consequently, suppressing T cell response and inflammation in EAE model (Webb et al. 2017). Additionally, the regulatory role of PRMT5 on alternative splicing (AS) may be responsible for the association of PRMT5 with CD4⁺ Th cell proliferation (Sengupta et al. 2021). PRMT5 knockout led to the 20th exon loss of transient receptor potential melastatin 4 (Trpm4), a Ca²⁺ activated Na⁺ channel regulating T cell cytokine production, which would undergo nonsense-mediated decay due to the production of out-of-frame shift (Sengupta et al. 2021). The decreased Trpm4 protein level attenuated the translocation of nuclear factor of activated T cells (NFAT) into the nuclear, suppressing IL-2 transcription, and consequently leading to reduced T cell growth and proliferation (Sengupta et al. 2021). PRMT5 was also associated with MS by modulating Th17 differentiation (Webb et al. 2020). In T cells, PRMT5 methylated the cholesterol biosynthesis regulator SREBP1, promoting the activity of retinoid-related orphan receptor gamma (RORyt), a critical transcriptional factor controlling Th17 signature genes expression (Webb et al. 2020). Loss of PRMT5 in the CD4⁺ Th cell reduced Th17 differentiation and pathogenic Th17 in response to myelin oligodendrocyte glycoprotein (MOG), protecting mice from developing EAE (Webb et al. 2020).

PRMTs and Neurodevelopmental Disorders

Neurodevelopmental disorders are a class of diseases that affect brain development and function, harming the health of about three percent children worldwide. Although numerous genes associated with neurodevelopmental disorders have been identified, functional studies suggest that these genes

are often linked to common pathways, like synaptic signaling, transcriptional or epigenetic regulation, and protein synthesis. Increasing evidence indicates that PRMTs play a significant role in brain cell development and function through acting as transcriptional regulators or epigenetic factors. Below, we explored the role of PRMTs in intellectual disability, epilepsy, and schizophrenia (SCZ) (Table 2).

PRMTs and Intellectual Disability

The regulation of PRMTs-mediated arginine methylation on the function of several factors associated with intellectual disability has been investigated, such as methyl CpG binding protein 2 (MeCP2). In Rett syndrome, a type of intellectual disability disorder, methylation at multiple arginine sites of MeCP2 affected its role in chromatin organization (Schmidt et al. 2022). The accumulation of MeCP2 on the heterochromatin was drastically inhibited when R92, R162 and R167 of MeCP2 were methylated (Schmidt et al. 2022). Additionally, methylation at the commonly mutated R106 site in Rett syndrome was identified (Schmidt et al. 2022). R106 mutants was found to reduce DNA binding and heterochromatin clustering, indicating this methylation may be involved in regulating the interaction of MeCP2 with chromatin (Schmidt et al. 2022). Of PRMTs, PRMT1 or PRMT6 are likely responsible for these modifications of MeCP2, and their upregulation disrupted MeCP2-mediated heterochromatin organization (Schmidt et al. 2022).

Fragile X Mental Retardation Protein (FMRP) is a significant mRNA-translational regulator in the brain (Brown et al. 2001). Loss-of-function of FMRP is the known cause of Fragile X syndrome, characterized by intellectual disability, learning and memory impairments (Prieto et al. 2019). Arginine methylation was detected in the RGG domain of FMRP, and PRMT1 may be responsible for this modification (Stetler et al. 2006; Blackwell et al. 2010). (Stetler et al. 2006; Blackwell et al. 2010). Among these modified sites, methylation at R533 and R538, or R543 and R545 particularly enhanced the binding of FMRP with G-quadruplex mRNA and polyribosome (Blackwell et al. 2010).

The methyltransferase activity of PRMT7 is also indispensable for intellectual development. Mutations in PRMT7 were linked to intellectual disability syndrome (Akawi et al. 2015; Kernohan et al. 2016; Agolini et al. 2018; Cali et al. 2023). Of these mutations, homozygous deletion at the transcription start site of PRMT7 or a homozygous nonsense mutation contributed to severe intellectual disability, likely due to reduced arginine methylation in the core histones H2B and H4 (Kernohan et al. 2016; Agolini et al. 2018). These mutations may alter the expression of genes critical for intellectual development, leading to the observed disability phenotype.

PRMTs and Epilepsy

Mutations in KCNQ potassium channel, a key determinant of neuronal excitability, are associated with epilepsy (Maljevic et al. 2010). PRMT1-catalyzed arginine methylation of KCNQ2 facilitated the interaction of KCNQ2 with PIP2, enhancing the channel activity (Kim et al. 2016). Hence, mice with Prmt1-heterozygous displayed neuronal hyperexcitability and epileptic seizures (Kim et al. 2016).

PRMT7 is also implicated in epilepsy. Individual with PRMT7 null mutation underwent symptomatic generalized epilepsy along with severe intellectual disability, and was treated with anti-epilepsy drugs valproic acid and levetiracetam at age 4 (Kernohan et al. 2016). Other patients harboring PRMT7 mutations also had epileptic seizures (Akawi et al. 2015; Agolini et al. 2018).

PRMTs and Schizophrenia

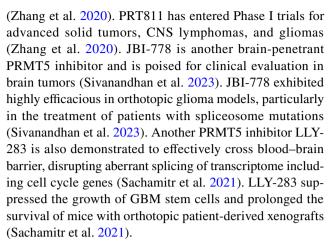
Transcriptome-wide association study suggest PRMT7 as a risk gene of SCZ (Fiorica and Wheeler 2019). A recent study demonstrated that PRMT7 is the target gene of SCZ risk SNPs at 16q22.1 (Shen et al. 2025). In monolayer cell and cerebral organoids models, PRMT7 downregulation led to reduced NPCs proliferation and increased neuronal differentiation (Shen et al. 2025). The dysregulation of PRMT7 on NPCs' function may contribute to SCZ pathogenesis (Shen et al. 2025).

Biological Models for Studying the Function of PRMTs in the Central Nervous System

Monolayer cell lines and transgenic mice are primarily used models for exploring the roles of PRMTs in neural cells and neurological diseases. These models have revealed that PRMTs were crucial for neural stem cell self-renewal and differentiation (Bezzi et al. 2013; Chen et al. 2021; Hashimoto et al. 2022; Shen et al. 2025), neuronal morphogenesis and function (Miyata et al. 2010; Lee et al. 2017; Hou et al. 2018; Shen et al. 2024), and glial cell lineage specification during neurodevelopment (Selvi et al. 2015; Hashimoto et al. 2016; Calabretta et al. 2018). Their association with neurological diseases pathogenesis also has been demonstrated in these models (Tradewell et al. 2012; Scaramuzzino et al. 2015; Banasavadi-Siddegowda et al. 2017; Dong et al. 2018; Sen et al. 2018a, b; Simandi et al. 2018; Ceccarelli et al. 2020; Webb et al. 2020; Huang et al. 2021; Liao et al. 2022; Ratovitski et al. 2022). However, both model systems exhibit limitations. For instance, monolayer cell lines fail to recapitulate the ordered interactions among heterogeneous neural cell populations, potentially obscuring mechanistic insights. Murine models are valuable to simulate how neurological disorders progress, while they may not fully

recapitulate the complexity of the human brain due to the difference in genetic background and brain architecture. For example, human neural progenitor cells display greater diversity and longer cell cycles compared to mice (Haldipur et al. 2019; Liu et al. 2023). Additionally, murine cerebellar development lacks radial glial progenitor cells, which is a human-specific cell type critical for higher cognitive functions such as memory and language (Haldipur et al. 2019).

41


In recent years, three-dimensional (3D) human brain organoids derived from induced pluripotent stem cells (iPSCs) have emerged as a transformative platform for studying human brain development and neurological diseases. These self-organizing structures mimic the cellular diversity and spatial organization of the early human brain, offering a more physiologically relevant system than monolayer cell lines and animal models (Lancaster et al. 2013; Bose et al. 2021). Transcriptomic analyses showed that brain organoids cultured for 250–300 days exhibited developmental trajectories analogous to the perinatal human brain (Gordon et al. 2021). Long-term cultured organoids develop spontaneously active neural networks, with action potentials that can be abolished by neurotransmitter receptor antagonists (Ghatak et al. 2021).

Brain organoids are increasingly employed to investigate neuropathological mechanisms and screen therapeutic candidates (Mariani et al. 2015; Qian et al. 2016; Meng et al. 2020; Szebényi et al. 2021; Zhao et al. 2021; Liu et al. 2022; Notaras et al. 2022; Li et al. 2023; Zhang et al. 2023; Shen et al. 2025). By employing 3D brain organoid models, PRMT7 is well established as a risk of gene of SCZ by regulating NPC proliferation and differentiation (Shen et al. 2025). Further research can apply brain organoids to model PRMTs-related neurological diseases and test clinical interventions.

PRMT Inhibitors in Therapeutic Development: Current Landscape and Clinical Perspectives

PRMTs have emerged as promising therapeutic targets, particularly in oncology. Among the PRMTs family, inhibitors against PRMT1 and PRMT5 dominate current drug development pipelines, with over 30 candidates under investigation, half of which are in clinical trials. The most advanced candidate, GSK3326595, represents the sole PRMT5 inhibitor progressing through Phase II trials in myeloid neoplasms (Watts et al. 2024). The detailed information of PRMTs inhibitors clinical trials has been recently reviewed and summarized in REF (Li et al. 2019; Wu et al. 2021).

Recent advances highlight brain-penetrant PRMT5 inhibitors as potential therapies for CNS malignancies. PRT811, a selective PRMT5 inhibitor, shows high brain penetrance and can effectively inhibit cell growth in a panel of patient-derived xenograft models of GBM in ex vivo 3D cultures

These findings emphasize the translational potential of PRMT5 inhibition in recalcitrant CNS cancers, while challenges remain. Early trials targeting mTOR in GBM yielded limited success, partly due to adaptive PRMT5 upregulation (Holmes et al. 2019). This highlights the need for combinatorial strategies or next-generation inhibitors to address resistance mechanisms. Furthermore, the development of isoform-selective PRMT inhibitors and rigorous biomarker-driven studies will be critical to optimizing therapeutic efficacy and minimizing off-target effects.

Conclusions and Future Perspective

As a common PTM like phosphorylation and ubiquitination, arginine methylation has gathered increasing attention. Through modulating protein–protein and protein-RNA interactions, PRMTs-mediated arginine methylation plays the critical roles in a range of biological processes in neural cells, and their dysregulation are associated with neurological diseases.

PRMTs have clearly been implicated in the proliferation and differentiation of NSCs, neurogenesis and neuron function, and the development of oligodendrocyte lineages. However, their roles in microglia and astrocyte remain largely unexplored. Microglia, the primary innate immune cell of brain, are key player in brain development, homeostasis, and diseases (Li and Barres 2017; Butovsky and Weiner 2018). Astrocytes, the most abundant glia cell type in CNS, are closely associated with both physiological and pathological processes of the CNS (Lee et al. 2022a, b). The two kinds of cells exhibit strong heterogeneity and plasticity in response to the environmental stimulation, which is relevant to health and diseases (Butovsky and Weiner 2018; Lee et al. 2022a, b). A recent study revealed that PRMT1-mediated arginine methylation is essential for remyelination following cuprizone (CPZ) diet-induced demyelination in mice through controlling the transition of phagocytic microglia into MHC-associated microglia, suggesting the involvement

of PRMTs in modulating the generation and activation of different microglia population (Lee et al. 2022a, b). Therefore, further investigation into the roles of PRMTs in microgliosis and astrogliosis, both in normal and disease contexts, is warranted.

Currently, research has primarily focused on exploring the role of PRMTs in brain tumors. PRMT5 has been identified as a valuable therapy target for GBM, with small molecular drugs specifically inhibiting the activity of PRMT5 already undergoing clinical trial. However, there are significant gaps in our understanding of the links between PRMTs and neurodevelopment disorders. PRMT7 is the only member of PRMT family that display a direct association with neurodevelopment disorders, where its mutations lead to intellectual disability and seizures (Akawi et al. 2015; Kernohan et al. 2016; Agolini et al. 2018). Additionally, PRMT7 has been suggested as the risk gene of SCZ (Fiorica and Wheeler 2019; Shen et al. 2025). Actually, a line of evidence has implied that PRMTs might be linked to neurodevelopment disorders. Defects in the myelination are reported to be associated with autism (Deoni et al. 2014; Hardan et al. 2016). Both PRMT1 and PRMT5 are essential for oligodendrocyte maturation and myelination, whose defects have been wellknown to be associated with ASD (Hashimoto et al. 2016; Scaglione et al. 2018). Conditional deficiency of PRMT1 or PRMT5 in mouse brain led to serious hypomyelination, indicating that dysregulation of these PRMTs may be involved in ASD. However, the relevance of PRMTs with neurodevelopment disorders urgently needs to be extensively elucidated.

Acknowledgements This work is supported by the Natural Science Foundation of Hunan province (No. 2023JJ40789) and the National Key Research and Development Program of China (No. 2024YFA1108000).

Author Contributions T.S., B.X., and J.Y. wrote the main manuscript text. B.X. prepared a graphic abstract, and Figs. 1 and 2. T.S and C.C. revised the manuscript. All authors have reviewed and approved the final paper.

Funding National Key Research and Development Program of China, 2024YFA1108000, Natural Science Foundation of Hunan Province, 2023JJ40789.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material

derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Agolini E, Dentici ML, Bellacchio E, Alesi V, Radio FC, Torella A, Musacchia F, Tartaglia M, Dallapiccola B, Nigro V, Digilio MC, Novelli A (2018) Expanding the clinical and molecular spectrum of PRMT7 mutations: 3 additional patients and review. Clin Genet 93(3):675–681. https://doi.org/10.1111/cge.13137
- Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, Qualmann B (2007) Cordon-Bleu is an actin nucleation factor and controls neuronal morphology. Cell 131(2):337–350. https://doi.org/10.1016/j.cell.2007.08.030
- Akawi N, McRae J, Ansari M, Balasubramanian M, Blyth M, Brady AF, Clayton S, Cole T, Deshpande C, Fitzgerald TW, Foulds N, Francis R, Gabriel G, Gerety SS, Goodship J, Hobson E, Jones WD, Joss S, King D, Klena N, Kumar A, Lees M, Lelliott C, Lord J, McMullan D, O'Regan M, Osio D, Piombo V, Prigmore E, Rajan D, Rosser E, Sifrim A, Smith A, Swaminathan GJ, Turnpenny P, Whitworth J, Wright CF, Firth HV, Barrett JC, Lo CW, FitzPatrick DR, Hurles ME (2015) Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet 47(11):1363–1369. https://doi.org/10.1038/ng.3410
- Amano G, Matsuzaki S, Mori Y, Miyoshi K, Han S, Shikada S, Takamura H, Yoshimura T, Katayama T (2020) SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis. Mol Biol Cell 31(18):1963–1973. https://doi.org/10.1091/mbc.E20-02-0100
- Banasavadi-Siddegowda YK, Russell L, Frair E, Karkhanis VA, Relation T, Yoo JY, Zhang J, Sif S, Imitola J, Baiocchi R, Kaur B (2017) PRMT5-PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene 36(2):263–274. https://doi.org/10.1038/onc.2016.199
- Banasavadi-Siddegowda YK, Welker AM, An M, Yang XZ, Zhou W, Shi GQ, Imitola J, Li CL, Hsu S, Wang J, Phelps M, Zhang JY, Beattie CE, Baiocchi R, Kaur B (2018) PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol 20(6):753–763. https://doi.org/10.1093/neuonc/nox206
- Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E (2013) Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27(17):1903–1916. https://doi.org/10.1101/gad.219899.113
- Blackwell E, Zhang X, Ceman S (2010) Arginines of the RGG box regulate FMRP association with polyribosomes and mRNA. Hum Mol Genet 19(7):1314–1323. https://doi.org/10.1093/hmg/ddq007
- Blanc RS, Richard S (2017) Arginine methylation: the coming of age.
 Mol Cell 65(1):8–24. https://doi.org/10.1016/j.molcel.2016.11.
- Bonnici J, Oueini R, Salah E, Johansson C, Pires E, Abboud M, Dawber RS, Tumber A, Rabe P, Saraç H, Schofield CJ, Kawamura A (2024) JmjC catalysed histone H2a N-methyl arginine demethylation and C4-arginine hydroxylation reveals importance of sequence-reactivity relationships. Commun Biol. https://doi.org/10.1038/s42003-024-07183-5

- Bose R, Banerjee S, Dunbar GL (2021) Modeling neurological disorders in 3D organoids using human-derived pluripotent stem cells. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.640212
- Bouchard C, Sahu P, Meixner M, Nötzold RR, Rust MB, Kremmer E, Feederle R, Hart-Smith G, Finkernagel F, Bartkuhn M, Pullamsetti SS, Nist A, Stiewe T, Philipsen S, Bauer UM (2018) Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep 24(12):3339–3352. https://doi.org/10.1016/j.celrep.2018. 08.052
- Bowitch A, Michaels KL, Yu MC, Ferkey DM (2018) The protein Arginine Methyltransferase PRMT-5 regulates SER-2 tyramine receptor-mediated behaviors in Caenorhabditis elegans. G3(Bethesda) 8(7):2389–2398. https://doi.org/10.1534/g3.118.200360
- Brahms H, Meheus L, De Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542. https://doi.org/10.1017/S135583820101442x
- Braun CJ, Stanciu M, Boutz PL, Patterson JC, Calligaris D, Higuchi F, Neupane R, Fenoglio S, Cahill DP, Wakimoto H, Agar NYR, Yaffe MB, Sharp PA, Hemann MT, Lees JA (2017) Coordinated splicing of regulatory detained Introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32(4):411–426. https://doi.org/10.1016/j.ccell.2017. 08.018
- Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, Jin XK, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107(4):477–487. https://doi.org/10.1016/S0092-8674(01)00568-2
- Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19(10):622–635. https://doi.org/10.1038/s41583-018-0057-5
- Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S (2018) Loss of PRMT5 promotes PDG-FRalpha degradation during oligodendrocyte differentiation and myelination. Dev Cell 46(4):426–440. https://doi.org/10.1016/j. devcel.2018.06.025
- Cali E, Suri M, Scala M, Ferla M, Houlden H, Maroofian R, Grp PS (2023) Biallelic PRMT7 pathogenic variants are associated with a recognizable syndromic neurodevelopmental disorder with short stature, obesity, craniofacial and digital abnormalities. Eur J Hum Genet 31:208–208
- Ceccarelli M, D'Andrea G, Micheli L, Tirone F (2020) Deletion of Btg1 induces Prmt1-dependent apoptosis and increased stemness in Shh-type medulloblastoma cells without affecting tumor frequency. Front Oncol 10:226. https://doi.org/10.3389/fonc.2020.00226
- Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 Is a histone arginine demethylase. Science 318(5849):444–447. https://doi.org/10.1126/science.1145801
- Chaturvedi NK, Mahapatra S, Kesherwani V, Kling MJ, Shukla M, Ray S, Kanchan R, Perumal N, McGuire TR, Sharp JG, Joshi SS, Coulter DW (2019) Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) medulloblastoma. BMC Cancer 19(1):1056. https://doi.org/10.1186/s12885-019-6291-z
- Chen L, Zhang M, Fang L, Yang XL, Cao N, Xu LY, Shi LH, Cao Y (2021) Coordinated regulation of the ribosome and proteasome by PRMT1 in the maintenance of neural stemness in cancer cells and neural stem cells. J Biol Chem. https://doi.org/10.1016/j.jbc. 2021.101275
- Chittka A, Nitarska J, Grazini U, Richardson WD (2012) Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone

- arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 287(51):42995–43006. https://doi.org/10.1074/jbc.M112.392746
- Choi S, Singh I, Singh AK, Khan M, Won J (2020) Asymmetric dimethylarginine exacerbates cognitive dysfunction associated with cerebrovascular pathology. FASEB J 34(5):6808–6823. https://doi.org/10.1096/fj.201901318R
- Clemons GA, Silva AC, Acosta CH, Udo MS, Tesic V, Rodgers KM, Wu CY, Citadin CT, Lee RH, Neumann JT, Allani S (2024) Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer's disease. J Cell Physiol 239(6):e30858. https://doi.org/10.1002/jcp.30858
- Cockman ME, Sugimoto Y, Pegg HB, Masson N, Salah E, Tumber A, Flynn HR, Kirkpatrick JM, Schofield CJ, Ratcliffe PJ (2022) Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6. Proc Nat Acad Sci USA. https://doi.org/10.1073/pnas.2201483119
- Damez-Werno DM, Sun HS, Scobie KN, Shao NY, Rabkin J, Dias C, Calipari ES, Maze I, Pena CJ, Walker DM, Cahill ME, Chandra R, Gancarz A, Mouzon E, Landry JA, Cates H, Lobo MK, Dietz D, Allis CD, Guccione E, Turecki G, Defilippi P, Neve RL, Hurd YL, Shen L, Nestler EJ (2016) Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci USA 113(34):9623–9628. https://doi.org/10.1073/pnas.1605045113
- Deoni SCL, Zinkstok JR, Daly E, Ecker C, Williams SCR, Murphy DGM (2014) White-matter relaxation time and myelin water fraction differences in young adults with autism. Psychol Med 45(4):795–805. https://doi.org/10.1017/s0033291714001858
- Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X, Reinberg D, Lee MG (2012) Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 26(24):2749–2762. https://doi.org/10.1101/gad.203356.112
- Dong F, Li Q, Yang C, Huo D, Wang X, Ai C, Kong Y, Sun X, Wang W, Zhou Y, Liu X, Li W, Gao W, Liu W, Kang C, Wu X (2018) PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat Commun 9(1):4552. https://doi.org/10.1038/s41467-018-06968-7
- Dormann D, Madl T, Valori CF, Bentmann E, Tahirovic S, Abou-Ajram C, Kremmer E, Ansorge O, Mackenzie IR, Neumann M, Haass C (2012) Arginine methylation next to the PY-NLS modulates transportin binding and nuclear import of FUS. EMBO J 31(22):4258–4275. https://doi.org/10.1038/emboj.2012.261
- Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C, Al-Hadid Q, Clark AT, Bedford MT, Masson J-Y, Clarke SG (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in Lysine-and Arginine-rich regions. J Biol Chem 288(52):37010–37025. https://doi.org/10.1074/jbc.M113.525345
- Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Rev Dis Primers. https://doi.org/10.1038/s41572-018-0041-4
- Fiorica PN, Wheeler HE (2019) Transcriptome association studies of neuropsychiatric traits in African Americans implicate PRMT7 in schizophrenia. PeerJ 7:e7778. https://doi.org/10.7717/peerj.
- Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7(5):1111–1117. https://doi.org/10.1016/S1097-2765(01) 00244-1
- Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461. https://doi.org/10.1021/acs.chemrev. 5b00003

- Fujiwara T, Mori Y, Chu DL, Koyama Y, Miyata S, Tanaka H, Yachi K, Kubo T, Yoshikawa H, Tohyama M (2006) CARM1 regulates proliferation of PC12 cells by methylating HuD. Mol Cell Biol 26(6):2273–2285. https://doi.org/10.1128/MCB.26.6.2273-2285. 2006
- Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710. https://doi.org/ 10.1016/j.bbagrm.2014.02.015
- Ghatak S, Dolatabadi N, Gao R, Wu Y, Scott H, Trudler D, Sultan A, Ambasudhan R, Nakamura T, Masliah E, Talantova M, Voytek B, Lipton SA (2021) NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry 26(10):5751–5765. https://doi.org/10.1038/s41380-020-0776-7
- Gillespie MS, Chiang KLY, Regan-Mochrie GL, Choi SY, Ward CM, Sahay D, Garcia P, Arnold R, Davies CC (2024) PRMT5regulated splicing of DNA repair genes drives chemoresistance in breast cancer stem cells. Oncogene. https://doi.org/10.1038/ s41388-024-03264-1
- Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, Valencia AM, Horvath S, Xiao XS, Huguenard JR, Pasca SP, Geschwind DH (2021) Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 24(3):331–342. https://doi.org/10.1038/s41593-021-00802-y
- Gu X, He M, Lebedev T, Lin CH, Hua ZY, Zheng YG, Li ZJ, Yang JY, Li XG (2022) PRMT1 is an important factor for medulloblastoma cell proliferation and survival. Biochem Biophys Rep 32:101364. https://doi.org/10.1016/j.bbrep.2022.101364
- Guan F, Ni T, Zhu W, Williams LK, Cui L-B, Li M, Tubbs J, Sham P-C, Gui H (2021) Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Mol Psychiatry 27(1):113–126. https://doi.org/10.1038/s41380-021-01201-2
- Guccione E, Richard S (2019) The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 20(10):642–657. https://doi.org/10.1038/s41580-019-0155-x
- Haldipur P, Aldinger KA, Bernardo S, Deng M, Timms AE, Overman LM, Winter C, Lisgo SN, Razavi E, Silvestri L, Manganaro H, Adle-Biassette F, Guimiot R, Russo D, Kidron PR, Hof D, Gerrelli SJ, Lindsay WB, Dobyns IA, Glass PA, Millen KJ (2019) Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science 366(6464):454–460. https://doi.org/10.1126/science.aax7526
- Han X, Gui B, Xiong C, Zhao L, Liang J, Sun L, Yang X, Yu W, Si W, Yan R, Yi X, Zhang D, Li W, Li L, Yang J, Wang Y, Sun YE, Zhang D, Meng A, Shang Y (2014a) Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol Cell 55(3):482–494. https://doi.org/10.1016/j.molcel.2014.06.006
- Han X, Li R, Zhang W, Yang X, Wheeler CG, Friedman GK, Province P, Ding Q, You Z, Fathallah-Shaykh HM, Gillespie GY, Zhao X, King PH, Nabors LB (2014b) Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro. J Neurooncol 118(1):61–72. https://doi.org/10. 1007/s11060-014-1419-0
- Hansra GK, Popov G, Banaczek PO, Vogiatzis M, Jegathees T, Goldbury CS, Cullen KM (2019) The neuritic plaque in Alzheimer's disease: perivascular degeneration of neuronal processes. Neurobiol Aging 82:88–101. https://doi.org/10.1016/j.neurobiolaging. 2019.06.009
- Hardan AY, Fung LK, Frazier T, Berquist SW, Minshew NJ, Keshavan MS, Stanley JA (2016) A proton spectroscopy study of white matter in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 66:48–53. https://doi.org/10.1016/j.pnpbp.2015.11.005

- Hasegawa M, Toma-Fukai S, Kim JD, Fukamizu A, Shimizu T (2014) Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats. FEBS Lett 588(10):1942– 1948. https://doi.org/10.1016/j.febslet.2014.03.053
- Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A (2016) Severe hypomyelination and developmental defects are caused in mice lacking protein arginine methyltransferase 1 (PRMT1) in the central nervous system. J Biol Chem 291(5):2237–2245. https://doi.org/10.1074/jbc.M115.684514
- Hashimoto M, Fukamizu A, Nakagawa T, Kizuka Y (2021a) Roles of protein arginine methyltransferase 1 (PRMT1) in brain development and disease. Biochim Et Biophys Acta-Gen Subj. https:// doi.org/10.1016/j.bbagen.2020.129776
- Hashimoto M, Kumabe A, Kim JD, Murata K, Sekizar S, Williams A, Lu W, Ishida J, Nakagawa T, Endo M, Minami Y, Fukamizu A (2021b) Loss of PRMT1 in the central nervous system (CNS) induces reactive astrocytes and microglia during postnatal brain development. J Neurochem 156(6):834–847. https://doi.org/10.1111/jnc.15149
- Hashimoto M, Takeichi K, Murata K, Kozakai A, Yagi A, Ishikawa K, Suzuki-Nakagawa C, Kasuya Y, Fukamizu A, Nakagawa T (2022) Regulation of neural stem cell proliferation and survival by protein arginine methyltransferase 1. Front Neurosci. https://doi.org/10.3389/fnins.2022.948517
- Hernandez S, Dominko T (2016) Novel protein arginine methyltransferase 8 isoform is essential for cell proliferation. J Cell Biochem 117(9):2056–2066. https://doi.org/10.1002/jcb.25508
- Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, Dormann D (2018) Phase separation of FUS Is suppressed by its nuclear import receptor and arginine methylation. Cell 173(3):706–719. https://doi.org/10.1016/j.cell.2018.03.004
- Holmes B, Benavides-Serrato A, Saunders JT, Landon KA, Schreck AJ, Nishimura RN, Gera J (2019) The protein arginine methyltransferase PRMT5 confers therapeutic resistance to mTOR inhibition in glioblastoma. J Neurooncol 145(1):11–22. https://doi.org/10.1007/s11060-019-03274-0
- Honda M, Nakashima K, Katada S (2017) PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells. J Neurochem 142(6):901–907. https://doi.org/10.1111/jnc.14123
- Hou W, Nemitz S, Schopper S, Nielsen ML, Kessels MM, Qualmann B (2018) Arginine methylation by PRMT2 controls the functions of the actin nucleator Cobl. Dev Cell 45(2):262–275. https://doi.org/10.1016/j.devcel.2018.03.007
- Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101(47):16659–16664. https://doi.org/10.1073/pnas.0407643101
- Huang J, Vogel G, Yu Z, Almazan G, Richard S (2011) Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation. J Biol Chem 286(52):44424–44432. https://doi. org/10.1074/jbc.M111.277046
- Huang T, Yang Y, Song X, Wan X, Wu B, Sastry N, Horbinski CM, Zeng C, Tiek D, Goenka A, Liu F (2021) PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell 81(6):1276–1291. https:// doi.org/10.1016/j.molcel.2021.01.015
- Hwang JW, Cho Y, Bae G-U, Kim S-N, Kim YK (2021) Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 53(5):788–808. https://doi.org/10.1038/ s12276-021-00613-y
- Ikenaka K, Miyata S, Mori Y, Koyama Y, Taneda T, Okuda H, Kousaka A, Tohyama M (2006) Immunohistochemical and western analyses of protein arginine-methyltransferase 3 in the mouse brain.

- Neuroscience 141(4):1971–1982. https://doi.org/10.1016/j.neuroscience.2006.05.022
- Ikenaka K, Atsuta N, Maeda Y, Hotta Y, Nakamura R, Kawai K, Yokoi D, Hirakawa A, Taniguchi A, Morita M, Mizoguchi K, Mochizuki H, Kimura K, Katsuno M, Sobue G (2019) Increase of arginine dimethylation correlates with the progression and prognosis of ALS. Neurology 92(16):e1868–e1877. https://doi.org/10.1212/WNL.0000000000007311
- Kernohan KD, McBride A, Xi Y, Martin N, Schwartzentruber J, Dyment DA, Majewski J, Blaser S, Boycott KM, Chitayat D (2016) Loss of the arginine methyltranserase PRMT7 causes syndromic intellectual disability with microcephaly and brachydactyly. Clin Genet 91(5):708–716. https://doi.org/10.1111/cge. 12884
- Kim HJ, Jeong MH, Kim KR, Jung CY, Lee SY, Kim H, Koh J, Vuong TA, Jung S, Yang H, Park SK, Choi D, Kim SH, Kang K, Sohn JW, Park JM, Jeon D, Koo SH, Ho WK, Kang JS, Kim ST, Cho H (2016) Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. Elife. https://doi. org/10.7554/eLife.17159
- Kondo T, Raff M (2000) The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J 19(9):1998–2007. https://doi.org/10.1093/emboj/19.9.1998
- Kousaka A, Mori Y, Koyama Y, Taneda T, Miyata S, Tohyama M (2009) The distribution and characterization of endogenous protein arginine N-Methyltransferase 8 in mouse Cns. Neuroscience 163(4):1146–1157. https://doi.org/10.1016/j.neuroscience.2009. 06.061
- Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature. https://doi.org/10.1038/nature12517
- Lathoria K, Gowda P, Umdor SB, Patrick S, Suri V, Sen E (2023) PRMT1 driven PTX3 regulates ferritinophagy in glioma. Autophagy 19(7):1997–2014. https://doi.org/10.1080/15548 627.2023.2165757
- Lee J, Sayegh J, Daniel J, Clarke S, Bedford MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280(38):32890–32896. https://doi.org/10.1074/jbc.M506944200
- Lee PK, Goh WW, Sng JC (2017) Network-based characterization of the synaptic proteome reveals that removal of epigenetic regulator Prmt8 restricts proteins associated with synaptic maturation. J Neurochem 140(4):613–628. https://doi.org/10.1111/jnc.13921
- Lee SY, Vuong TA, Wen X, Jeong HJ, So HK, Kwon I, Kang JS, Cho H (2019) Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells. Exp Mol Med 51(10):1–14. https://doi.org/10.1038/s12276-019-0325-0
- Lee SY, Vuong TA, So HK, Kim HJ, Kim YB, Kang JS, Kwon I, Cho H (2020) PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Exp Mol Med 52(4):604–614. https://doi.org/10.1038/s12276-020-0417-x
- Lee H-G, Wheeler MA, Quintana FJ (2022a) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21(5):339–358. https://doi.org/10.1038/s41573-022-00390-x
- Lee J, Villarreal OD, Wang YC, Ragoussis J, Rivest S, Gosselin D, Richard S (2022b) PRMT1 is required for the generation of MHC-associated microglia and remyelination in the central nervous system. Life Science Alliance 5(10):e202201467. https://doi. org/10.26508/lsa.202201467
- Lei A, Chen L, Zhang M, Yang X, Xu L, Cao N, Zhang Z, Cao Y (2019) EZH2 regulates protein stability via recruiting USP7 to mediate neuronal gene expression in cancer cells. Front Genet. https://doi.org/10.3389/fgene.2019.00422

- Li Q, Barres BA (2017) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242. https://doi. org/10.1038/nri.2017.125
- Li SH, Ali S, Duan XT, Liu SB, Du J, Liu CW, Dai HF, Zhou M, Zhou L, Yang L, Chu PG, Li L, Bhatia R, Schones DE, Wu XW, Xu H, Hua YJ, Guo ZG, Yang YZ, Zheng L, Shen BH (2018) JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep 23(2):389–403. https://doi.org/10.1016/j.celrep.2018.03.051
- Li X, Wang C, Jiang H, Luo C (2019) A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin Ther Pat 29(2):97–114. https://doi.org/10.1080/13543776.2019.1567711
- Li C, Fleck JS, Martins-Costa C, Burkard TR, Themann J, Stuempflen M, Peer AM, Vertesy A, Littleboy JB, Esk C, Elling U, Kasprian G, Corsini NS, Treutlein B, Knoblich JA (2023) Single-cell brain organoid screening identifies developmental defects in autism. Nature. https://doi.org/10.1038/s41586-023-06473-y
- Liao Y, Luo Z, Lin Y, Chen H, Chen T, Xu L, Orgurek S, Berry K, Dzieciatkowska M, Reisz JA, D'Alessandro A, Zhou W, Lu QR (2022) PRMT3 drives glioblastoma progression by enhancing HIF1A and glycolytic metabolism. Cell Death Dis 13(11):943. https://doi.org/10.1038/s41419-022-05389-1
- Likhite N, Jackson CA, Liang MS, Krzyzanowski MC, Lei P, Wood JF, Birkaya B, Michaels KL, Andreadis ST, Clark SD, Yu MC, Ferkey DM (2015) The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Sci Signal. https://doi.org/10.1126/scisignal.aad0872
- Lim CS, Alkon DL (2017) Inhibition of coactivator-associated arginine methyltransferase 1 modulates dendritic arborization and spine maturation of cultured hippocampal neurons. J Biol Chem 292(15):6402–6413. https://doi.org/10.1074/jbc.M117.775619
- Lim CS, Alkon DL, Stephenson FA (2017) Inhibition of coactivatorassociated arginine methyltransferase 1 modulates dendritic arborization and spine maturation of cultured hippocampal neurons. J Biol Chem 292(15):6402–6413. https://doi.org/10.1074/jbc. M117.775619
- Liu CY, Fu ZX, Wu SS, Wang XS, Zhang SR, Chu C, Hong Y, Wu WB, Chen SQ, Jiang YQ, Wu Y, Song YB, Liu Y, Guo X (2022) Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. Embo Mol Med. https://doi.org/10.15252/emmm.202215851
- Liu DD, He JQ, Sinha R, Eastman AE, Toland AM, Morri M, Neff NF, Vogel H, Uchida N, Weissman IL (2023) Purification and characterization of human neural stem and progenitor cells. Cell 186(6):1179-1194.e1115. https://doi.org/10.1016/j.cell.2023.02. 017
- Lo LH, Dong R, Lyu Q, Lai KO (2020) The protein arginine methyltransferase PRMT8 and substrate G3BP1 control Rac1-PAK1 signaling and actin cytoskeleton for dendritic spine maturation. Cell Rep 31(10):107744. https://doi.org/10.1016/j.celrep.2020. 107744
- Maljevic S, Wuttke TV, Seebohm G, Lerche H (2010) KV7 channelopathies. Pflügers Arch Eur J Physiol 460(2):277–288. https://doi. org/10.1007/s00424-010-0831-3
- Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, Gerstein M, Grigorenko EL, Chawarska K, Pelphrey KA, Howe JR, Vaccarino FM (2015) FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell 162(2):375–390. https://doi.org/10.1016/j.cell.2015.06.034
- Martin J, Masri J, Cloninger C, Holmes B, Artinian N, Funk A, Ruegg T, Anderson L, Bashir T, Bernath A, Lichtenstein A, Gera J (2011) Phosphomimetic substitution of heterogeneous nuclear ribonucleoprotein A1 at serine 199 abolishes AKT-dependent internal ribosome entry site-transacting factor (ITAF) function

- via effects on strand annealing and results in mammalian target of rapamycin complex 1 (mTORC1) inhibitor sensitivity. J Biol Chem. https://doi.org/10.1074/jbc.M110.205096
- Meng Q, Wang L, Dai R, Wang J, Ren Z, Liu S, Xia Y, Jiang Y, Duan F, Wang K, Liu C, Chen C (2020) Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Mol Psychiatry 25(11):2672–2684. https://doi.org/10.1038/s41380-020-00866-5
- Migazzi A, Scaramuzzino C, Anderson EN, Tripathy D, Hernandez IH, Grant RA, Roccuzzo M, Tosatto L, Virlogeux A, Zuccato C, Caricasole A, Ratovitski T, Ross CA, Pandey UB, Lucas JJ, Saudou F, Pennuto M, Basso M (2021) Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Rep 35(2):108980. https://doi.org/10.1016/j.celrep.2021.108980
- Miyata S, Mori Y, Tohyama M (2008) PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells. Neurosci Lett 445(2):162–165. https://doi.org/10.1016/j.neulet.2008.08.065
- Miyata S, Mori Y, Tohyama M (2010) PRMT3 is essential for dendritic spine maturation in rat hippocampal neurons. Brain Res 1352:11–20. https://doi.org/10.1016/j.brainres.2010.07.033
- Mongiardi MP, Savino M, Bartoli L, Beji S, Nanni S, Scagnoli F, Falchetti ML, Favia A, Farsetti A, Levi A, Nasi S, Illi B (2015) Myc and Omomyc functionally associate with the protein arginine methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep. https://doi.org/10.1038/srep15494
- Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284(5413):479–482. https://doi.org/10.1126/science.284. 5413.479
- Nho JH, Park MJ, Park HJ, Lee JH, Choi JH, Oh SJ, Lee YJ, Yu YB, Kim HS, Kim DI, Choi WS (2020) Protein arginine methyltransferase-1 stimulates dopaminergic neuronal cell death in a Parkinson's disease model. Biochem Biophys Res Commun 530(2):389–395. https://doi.org/10.1016/j.bbrc.2020.05.016
- Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, Rutkowski S, Ellison DW, Malkin D, Taylor MD, Gajjar A, Pfister SM (2019) Medulloblastoma. Nat Rev Dis Primers. https://doi.org/10.1038/s41572-019-0063-6
- Notaras M, Lodhi A, Dündar F, Collier P, Sayles NM, Tilgner H, Greening D, Colak D (2022) Schizophrenia is defined by cellspecific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psych 27(3):1416–1434. https://doi.org/10.1038/s41380-021-01316-6
- Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2022) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol 24(Suppl 5):v1–v95. https://doi.org/10.1093/neuonc/noac202
- Park JH, Szemes M, Vieira GC, Melegh Z, Malik S, Heesom KJ, Von Wallwitz-Freitas L, Greenhough A, Brown KW, Zheng YG, Catchpoole D, Deery MJ, Malik K (2015) Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells. Mol Oncol 9(3):617–627. https://doi.org/ 10.1016/j.molonc.2014.10.015
- Penney J, Seo J, Kritskiy O, Elmsaouri S, Gao F, Pao PC, Su SC, Tsai LH (2017) Loss of protein arginine methyltransferase 8 alters synapse composition and function, resulting in behavioral defects. J Neurosci 37(36):8655–8666. https://doi.org/10.1523/ JNEUROSCI.0591-17.2017
- Prieto M, Folci A, Martin S (2019) Post-translational modifications of the fragile X mental retardation protein in neuronal function and dysfunction. Mol Psych 25(8):1688–1703. https://doi.org/10.1038/s41380-019-0629-4
- Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA, Lin JQ, Phillips EC, Miyashita A, Williams D, Strohl F, Meadows W, Ferry R, Dardov VJ, Tartaglia GG, Farrer LA, Kaminski Schierle

- GS, Kaminski CF, Holt CE, Fraser PE, Schmitt-Ulms G, Klenerman D, Knowles T, Vendruscolo M, St George-Hyslop P (2018) FUS phase separation is modulated by a molecular Chaperone and methylation of arginine cation-pi interactions. Cell 173(3):720–734. https://doi.org/10.1016/j.cell.2018.03.
- Qian XY, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li YJ, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen ZX, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang HL, Song HJ, Ming GL (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165(5):1238–1254. https://doi.org/10.1016/j.cell. 2016.04.032
- Quan X, Yue W, Luo Y, Cao J, Wang H, Wang Y, Lu Z (2015) The protein arginine methyltransferase PRMT5 regulates Abeta-induced toxicity in human cells and Caenorhabditis elegans models of Alzheimer's disease. J Neurochem 134(5):969–977. https://doi.org/10.1111/jnc.13191
- Ratovitski T, Arbez N, Stewart JC, Chighladze E, Ross CA (2015) PRMT5—mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD). Cell Cycle 14(11):1716–1729. https://doi.org/10.1080/15384101.2015.1033595
- Ratovitski T, Jiang M, O'Meally RN, Rauniyar P, Chighladze E, Farago A, Kamath SV, Jin J, Shevelkin AV, Cole RN, Ross CA (2022) Interaction of huntingtin with PRMTs and its subsequent arginine methylation affects HTT solubility, phase transition behavior and neuronal toxicity. Hum Mol Genet 31(10):1651–1672. https://doi.org/10.1093/hmg/ddab351
- Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J, Fawzi NL (2018) Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell 69(3):465–479. https://doi.org/10.1016/j. molcel.2017.12.022
- Sachamitr P, Ho JC, Ciamponi FE, Ba-Alawi W, Coutinho FJ, Guilhamon P, Kushida MM, Cavalli FMG, Lee L, Rastegar N, Vu V, Sánchez-Osuna M, Coulombe-Huntington J, Kanshin E, Whetstone H, Durand M, Thibault P, Hart K, Mangos M, Veyhl J, Chen WJ, Tran N, Duong BC, Aman AM, Che XH, Lan XY, Whitley O, Zaslaver O, Barsyte-Lovejoy D, Richards LM, Restall I, Caudy A, Röst HL, Bonday ZQ, Bernstein M, Das S, Cusimano MD, Spears J, Bader GD, Pugh TJ, Tyers M, Lupien M, Haibe-Kains B, Luchman HA, Weiss S, Massirer KB, Prinos P, Arrowsmith CH, Dirks PB (2021) PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun. https://doi.org/10.1038/s41467-021-21204-5
- Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A (2011) Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci USA 108(15):6085–6090. https://doi.org/10.1073/pnas.1015328108
- Samuel SF, Barry A, Greenman J, Beltran-Alvarez P (2021) Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 53(4):489–506. https://doi.org/10.1007/s00726-020-02937-x
- Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, Chen S, Bernstein E, Canoll P, Guccione E, Casaccia P (2018) PRMT5-mediated regulation of developmental myelination. Nat Commun 9(1):2840. https://doi.org/10.1038/s41467-018-04863-9
- Scaramuzzino C, Monaghan J, Milioto C, Lanson NA Jr, Maltare A, Aggarwal T, Casci I, Fackelmayer FO, Pennuto M, Pandey UB (2013) Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro

- and in vivo. PLoS ONE 8(4):e61576. https://doi.org/10.1371/journal.pone.0061576
- Scaramuzzino C, Casci I, Parodi S, Lievens PMJ, Polanco MJ, Milioto C, Chivet M, Monaghan J, Mishra A, Badders N, Aggarwal T, Grunseich C, Sambataro F, Basso M, Fackelmayer FO, Taylor JP, Pandey UB, Pennuto M (2015) Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron 85(1):88–100. https://doi.org/10.1016/j.neuron.2014.12.031
- Schmidt A, Frei J, Poetsch A, Chittka A, Zhang H, Aßmann C, Lehmkuhl A, Bauer U-M, Nuber UA, Cardoso MC (2022) MeCP2 heterochromatin organization is modulated by arginine methylation and serine phosphorylation. Front Cell Dev Biol. https://doi. org/10.3389/fcell.2022.941493
- Selvi BR, Swaminathan A, Maheshwari U, Nagabhushana A, Mishra RK, Kundu TK (2015) CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a. Mol Biol Cell 26(2):316–326. https://doi.org/10.1091/mbc.E14-01-0019
- Sen S, He Z, Ghosh S, Dery KJ, Yang L, Zhang J, Sun Z (2018a) PRMT1 plays a critical role in Th17 differentiation by regulating reciprocal recruitment of STAT3 and STAT5. J Immunol 201(2):440–450. https://doi.org/10.4049/jimmunol.1701654
- Sen S, Wang F, Zhang J, He Z, Ma J, Gwack Y, Xu J, Sun Z (2018b) SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate RORgammat activity in a PKC-thetadependent manner. Proc Natl Acad Sci USA 115(3):E458–E467. https://doi.org/10.1073/pnas.1717789115
- Sengupta S, West KO, Sanghvi S, Laliotis G, Agosto LM, Lynch KW, Tsichlis PN, Singh H, Patrick KL, Guerau-de-Arellano M (2021) PRMT5 promotes symmetric dimethylation of RNA processing proteins and modulates activated T cell alternative splicing and Ca(2+)/NFAT signaling. Immunohorizons 5(10):884–897. https://doi.org/10.4049/immunohorizons.2100076
- Shen L, Ma XK, Wang YY, Wang ZH, Zhang Y, Pham HQH, Tao XQ, Cui YH, Wei J, Lin DMT, Abeywanada T, Hardikar S, Halabelian L, Smith N, Chen TP, Barsyte-Lovejoy D, Qiu SF, Xing Y, Yang YZ (2024) Loss-of-function mutation in PRMT9 causes abnormal synapse development by dysregulation of RNA alternative splicing. Nat Commun. https://doi.org/10.1038/s41467-024-47107-9
- Shen T, Yu J, Xie B, Huang C, Cui J, Liu K, Liu C, Chen C (2025) Protein arginine methyltransferase 7 linked to schizophrenia through regulation of neural progenitor cell proliferation and differentiation. Cell Rep. https://doi.org/10.1016/j.celrep.2025.115279
- Shishkova E, Zeng H, Liu FB, Kwiecien NW, Hebert AS, Coon JJ, Xu W (2017) Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun. https://doi.org/10.1038/ncomms15571
- Simandi Z, Czipa E, Horvath A, Koszeghy A, Bordas C, Poliska S, Juhasz I, Imre L, Szabo G, Dezso B, Barta E, Sauer S, Karolyi K, Kovacs I, Hutoczki G, Bognar L, Klekner A, Szucs P, Balint BL, Nagy L (2015) PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology. Stem Cells 33(3):726–741. https://doi.org/10.1002/stem.1894
- Simandi Z, Pajer K, Karolyi K, Sieler T, Jiang LL, Kolostyak Z, Sari Z, Fekecs Z, Pap A, Patsalos A, Contreras GA, Reho B, Papp Z, Guo X, Horvath A, Kiss G, Keresztessy Z, Vamosi G, Hickman J, Xu H, Dormann D, Hortobagyi T, Antal M, Nogradi A, Nagy L (2018) Arginine methyltransferase PRMT8 provides cellular stress tolerance in aging motoneurons. J Neurosci 38(35):7683–7700. https://doi.org/10.1523/JNEUROSCI.3389-17.2018
- Siu LL, Rasco DW, Vinay SP, Romano PM, Menis J, Opdam FL, Heinhuis KM, Egger JL, Gorman SA, Parasrampuria R, Wang K, Kremer BE, Gounder MM (2019) METEOR-1: A phase I study of

- GSK3326595, a first-in-class protein arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumours. Ann Oncol 30:v159. https://doi.org/10.1093/annonc/mdz244
- Sivanandhan D, Gajendran C, Sadhu MN, Mohammed Z, Gosu R, Sher D, Mansur S, Friedmann-Morvinski D, Rajagopal S, Rastelli L (2023) JBI-778, a novel brain-penetrant small molecule PRMT5 inhibitor for treatment of cancer. Cancer Res. https://doi.org/10. 1158/1538-7445.Am2023-6269
- Sohail M, Zhang M, Litchfield D, Wang L, Kung S, Xie J (2015) Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5. Biochim Et Biophys Acta (BBA) Mol Cell Res 1853(10):2444–2452. https://doi.org/10.1016/j.bbamcr.2015. 07 003
- Stein C, Notzold RR, Riedl S, Bouchard C, Bauer UM (2016) The arginine methyltransferase PRMT6 cooperates with polycomb proteins in regulating HOXA gene expression. PLoS ONE 11(2):e0148892. https://doi.org/10.1371/journal.pone.0148892
- Stetler A, Winograd C, Sayegh J, Cheever A, Patton E, Zhang X, Clarke S, Ceman S (2006) Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Hum Mol Genet 15(1):87–96. https://doi.org/10.1093/ hmg/ddi429
- Suarez-Calvet M, Neumann M, Arzberger T, Abou-Ajram C, Funk E, Hartmann H, Edbauer D, Kremmer E, Gobl C, Resch M, Bourgeois B, Madl T, Reber S, Jutzi D, Ruepp MD, Mackenzie IR, Ansorge O, Dormann D, Haass C (2016) Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol 131(4):587–604. https://doi.org/10.1007/s00401-016-1544-2
- Szebényi K, Wenger LMD, Sun Y, Dunn AWE, Limegrover CA, Gibbons GM, Conci E, Paulsen O, Mierau SB, Balmus G, Lakatos A (2021) Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 24(11):1542–1554. https://doi.org/10.1038/s41593-021-00923-4
- Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR, Clarke S, Herschman HR (2000) PRMT1 Is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275(11):7723–7730. https://doi.org/10.1074/jbc.275.11.7723
- Tewary SK, Zheng YG, Ho M-C (2019) Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 76(15):2917–2932. https://doi.org/10.1007/s00018-019-03145-x
- Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S (2012) Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21(1):136–149. https://doi.org/10.1093/hmg/ddr448
- Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, Schofield CJ (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun. https://doi.org/10.1038/ncomms11974
- Wang YL, Bedford MT (2023) Effectors and effects of arginine methylation. Biochem Soc Trans 51(2):725–734. https://doi.org/10.1042/Bst20221147
- Wang S, Tan X, Yang B, Yin B, Yuan J, Qiang B, Peng X (2012) The role of protein arginine-methyltransferase 1 in gliomagenesis. BMB Rep 45(8):470–475. https://doi.org/10.5483/BMBRep. 2012.45.8.022
- Watts J, Minden MD, Bachiashvili K, Brunner AM, Abedin S, Crossman T, Zajac M, Moroz V, Egger JL, Tarkar A, Kremer BE, Barbash O, Borthakur G (2024) Phase I/II study of the clinical activity and safety of GSK3326595 in patients with myeloid neoplasms. Ther Adv Hematol. https://doi.org/10.1177/20406 207241275376

- Webb LM, Amici SA, Jablonski KA, Savardekar H, Panfil AR, Li L, Zhou W, Peine K, Karkhanis V, Bachelder EM, Ainslie KM, Green PL, Li C, Baiocchi RA, Guerau-de-Arellano M (2017) PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis. J Immunol 198(4):1439–1451. https://doi.org/10.4049/jimmunol. 1601702
- Webb LM, Sengupta S, Edell C, Piedra-Quintero ZL, Amici SA, Miranda JN, Bevins M, Kennemer A, Laliotis G, Tsichlis PN, Guerau-de-Arellano M (2020) Protein arginine methyltransferase 5 promotes cholesterol biosynthesis-mediated Th17 responses and autoimmunity. J Clin Invest 130(4):1683–1698. https://doi.org/10.1172/JCI131254
- Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, Nielsen ML, Schmitz C, Butler DS, Yates JR, Delahunty CM, Hahn P, Lengeling A, Mann M, Proudfoot NJ, Schofield CJ, Böttger A (2009) Jmjd6 catalyses Lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325(5936):90–93. https://doi.org/10.1126/science.1175865
- Wegner M (2007) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35(1):3–12. https://doi.org/10.1007/s12031-007-9008-8
- Wei H-H, Fan X-J, Hu Y, Tian X-X, Guo M, Mao M-W, Fang Z-Y, Wu P, Gao S-X, Peng C, Yang Y, Wang Z (2021) A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA splicing and translation. Sci Bulletin 66(13):1342–1357. https://doi.org/10.1016/j.scib.2021.01.004
- Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I (2023) Hallmarks of neurodegenerative diseases. Cell 186(4):693–714. https://doi.org/10.1016/j.cell. 2022.12.032
- Wu Q, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D (2021) Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 20(7):509–530. https://doi.org/ 10.1038/s41573-021-00159-8
- Yamaguchi A, Kitajo K (2012) The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS ONE 7(11):e49267. https://doi.org/10.1371/journal.pone.0049267
- Yan F, Alinari L, Lustberg ME, Martin LK, Cordero-Nieves HM, Banasavadi-Siddegowda Y, Virk S, Barnholtz-Sloan J, Bell EH, Wojton J, Jacob NK, Chakravarti A, Nowicki MO, Wu X, Lapalombella R, Datta J, Yu B, Gordon K, Haseley A, Patton JT, Smith PL, Ryu J, Zhang X, Mo X, Marcucci G, Nuovo G, Kwon CH, Byrd JC, Chiocca EA, Li C, Sif S, Jacob S, Lawler S, Kaur B,

- Baiocchi RA (2014) Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 74(6):1752–1765. https://doi.org/10.1158/0008-5472.CAN-13-0884
- Yang YZ, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C, Kelly R, Guo AL, Li W, Clarke SG, Bedford MT (2015) PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun. https://doi.org/10.1038/ncomms7428
- Zhang Y, Chen KN, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng SY, Liddelow SA, Zhang CL, Daneman R, Maniatis T, Barres BA, Wu JQ (2015) An RNA-sequencing transcriptome and splicing database of Glia, Neurons, and vascular cells of the cerebral Cortex (vol 35, pg 11929, 2014). J Neurosci 35(2):864–866. https://doi.org/10.1523/Jneurosci.4506-14.2015
- Zhang Y, Lin H, Wang M, Angelis D, Hawkins M, Rominger D, Emm T, Luengo J, Ruggeri B, Scherle P, Vaddi K (2020) Discovery of PRT811, a potent, selective, and orally bioavailable brain penetrant PRMT5 Inhibitor for the treatment of brain tumors. Cancer Res. https://doi.org/10.1158/1538-7445.Am2020-2919
- Zhang F, Kerbl-Knapp J, Rodriguez Colman MJ, Meinitzer A, Macher T, Vujic N, Fasching S, Jany-Luig E, Korbelius M, Kuentzel KB, Mack M, Akhmetshina A, Pirchheim A, Paar M, Rinner B, Horl G, Steyrer E, Stelzl U, Burgering B, Eisenberg T, Pertschy B, Kratky D, Madl T (2021) Global analysis of protein arginine methylation. Cell Rep Methods 1(2):100016. https://doi.org/10.1016/j.crmeth.2021.100016
- Zhang WD, Zhang M, Xu ZH, Yan HY, Wang HM, Jiang JM, Wan J, Tang BS, Liu CY, Chen C, Meng QT (2023) Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways. Nat Commun. https://doi.org/10.1038/s41467-023-40861-2
- Zhao J, Fu Y, Yamazaki Y, Ren YX, Davis MD, Liu CC, Lu WY, Wang X, Chen K, Cherukuri Y, Jia L, Martens YA, Job L, Shue F, Nguyen TT, Younkin SG, Graff-Radford NR, Wszolek ZK, Brafman DA, Asmann YW, Ertekin-Taner N, Kanekiyo T, Bu GJ (2021) APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat Commun. https://doi.org/10.1038/s41467-021-23081-4

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

