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Live-attenuated vaccines have been historically used to successfully prevent numerous
diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and
perdurable immune-protective responses. In recent years, various strategies have been
explored to achieve viral attenuation by rational genetic design rather than using classic
and empirical approaches, based on successive passages in cell culture. A deeper
understanding of evolutionary implications of distinct viral genomic compositional
aspects, as well as substantial advances in synthetic biology technologies, have
provided a framework to achieve new viral attenuation strategies. Herein, we will discuss
different approaches that are currently applied to modify compositional features of
viruses in order to develop novel live-attenuated vaccines.

Keywords: RNA viruses, genome composition, codon usage, codon pair bias, mutational robustness, attenuation,
vaccines

INTRODUCTION

Recent technological advancements in the field of synthetic biology have enabled the design of
synthetic viruses with customized genome. Moreover, affordable DNA synthesis combined with
reverse genetics improved the infrastructure to develop live-attenuated vaccines (LAVs). In the
near future, synthetic RNA technology will also play an important role in reducing laboratory
time and technical steps (Abil et al., 2015; Martínez et al., 2016, 2019; Pardi et al., 2018).
The main goal of a LAV is to obtain a virus that does not cause disease but elicits a strong
protective immune response against viral diseases. Classically, the generation of attenuated viruses
is achieved by passaging the virus in tissue culture under different conditions (e.g., different
host species or low temperature), which accumulates mutations supporting viral adaptation
to the specific condition (Minor, 2015). As a result, several of these mutations will have a
fitness cost in the original host or growth under physiological conditions and thus provide
the basis for attenuation. However, the exact mechanisms by which these mutations lead to
attenuated phenotypes are usually poorly characterized (Lauring et al., 2010). Despite their
great capacity to induce a protective immune response, LAVs have the potential to revert to
virulent phenotype by both reversions and/or introduction of compensatory mutations or by
recombination with similar viruses (Cann et al., 1984; Kew et al., 2002; Bull et al., 2018). This
is of special relevance to RNA viruses, due to their high mutation rates and rapid evolution
(Duffy et al., 2008; Sanjuán et al., 2010). In order to overcome the risks presented by traditional
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LAV development approaches, several methods based on reverse
genetics and genome recoding strategies have been developed.
For instance, synthetic genome recoding approaches are based on
introducing synonymous mutations into a protein coding region
without modifying the protein sequence. The goal behind these
strategies is that recoded viruses can replicate efficiently in vitro
but can have limited or absent virulence in vivo, allowing the
host to adopt effective immune responses with minimal risks
of disease (Wimmer et al., 2009; Osterrieder and Kunec, 2018).
It is worth noting that although numerous point mutations
are introduced, the amino acid sequence of the parental virus
and, therefore, its antigenic properties are preserved in the
genome recoding strategies. In this review, we will focus on the
fundamental role that genome composition has on RNA virus
biology and evolution to design different attenuation strategies.

THE RELEVANCE OF GENOME
COMPOSITION

Genome composition is a highly variable trait that has a
significant impact on the overall biology of organisms. Variability
in genome composition can be readily observed by looking into
codon usage and codon pair bias. For each species, a preferred set
of codons is more frequently used than other synonymous ones
that could perform the same role. Also, certain codons tend to
be found next to each other more frequently than others, while
some codon pair combinations are found infrequently. These
results in codon usage or codon pair biases. Compelling evidence
suggests that one of the key factors explaining codon usage
bias in organisms, including viruses, is their specific nucleotide
composition (Knight et al., 2001; Chen et al., 2004; Palidwor
et al., 2010; van Hemert et al., 2016; Novoa et al., 2019). In
RNA viruses, nucleotide composition is highly influenced by
mutational pressure, referring to a bias toward, or away from,
certain types of nucleotide substitutions or mutations (Jenkins
et al., 2002; Seronello et al., 2011). In fact, studies have shown
that mutational pressure or uneven base composition accounts
for much of codon usage in RNA viruses (Woelk and Holmes,
2002; Seronello et al., 2011).

Mutational pressure will also determine the genome GC
content, referred to as the percentage of guanines and cytosines
in a given DNA or RNA sequence, which is also believed
to be an important factor shaping codon usage (Sharp et al.,
1993; Belalov and Lukashev, 2013). In addition, dinucleotide
frequencies – that is, the occurrence of two nucleotides together
in a DNA or RNA sequence – can also have significant impact
on codon usage or codon pair biases. For instance, CpG
dinucleotides are underrepresented in small DNA viruses and
most vertebrate RNA viruses, including retroviruses (Karlin
et al., 1994; Rima and McFerran, 1997; Shackelton et al.,
2006). This CpG restriction is beneficial because it allows
the evasion of the host innate immune responses by several
pattern recognition receptors. UpA dinucleotide frequency
is also strongly underrepresented among both RNA viruses
and their corresponding hosts mRNA (Simmonds et al.,
2013). This dinucleotide pattern could be explained by the

presence of TpA in two out of three stop codons, thus
decreasing the probability of generating non-sense mutations
(Lobo et al., 2009). Also, some RNA-degrading enzymes
involved in RNA stability and protein expression target UpA
dinucleotides and present additional explanations for UpA bias
in organisms (Beutler et al., 1989; Duan and Antezana, 2003;
Simmonds et al., 2013).

Some other factors like RNA secondary structure, viral
genomic organization, and life cycle may also contribute to
codon bias in RNA viruses: for example, segmented viruses
have stronger codon bias than non-segmented ones, and vector-
borne viruses have lower codon bias than other viruses,
likely due to their need to replicate in disparate hosts
(Jenkins and Holmes, 2003).

Other explanations for codon usage bias proposes that as
viruses depend on the host cell machinery for their own
replication, genome composition and codon biases could reflect
their host (Lobo et al., 2009; Simón et al., 2017). For instance,
a virus may avoid using less abundant tRNAs present in the
host to avoid slower rates of translation (Cattaneo et al., 1988;
Hajjar and Linial, 1995). In this sense, it has been observed
that some viruses seem to mimic the codon usage of their
host (Carbone, 2008; Bahir et al., 2009; Su et al., 2009), but
also others show different codon preferences (Gu et al., 2004;
Sau et al., 2005, 2006). In addition, some codon pairs deviate
significantly from their expected frequency (Moura et al., 2005),
which seems to influence elongation rates during translation
(Irwin et al., 1995).

Genome composition also plays a very important role in
defining the mutational robustness of organisms, which refers
to the capacity to withstand mutations, showing little or
no phenotypic variation when a mutation is introduced (de
Visser et al., 2003; Wagner, 2005). Mutational robustness is
intrinsically linked to codon usage, since synonymous codons
will code for the same amino acid, but they can differ in their
evolutionary potential or evolutionary trajectories after single
mutations, the most common type of mutations in RNA viruses.
The evolutionary potential for any codon within a group of
synonymous codons will be determined by two main factors:
the base composition and the mutation itself. The nucleotide
composition for a given codon is fixed and defines its coding
capacity. Also, it will define the genetic relation or proximity
to other neighboring synonymous or non-synonymous codons.
On the other hand, mutation is a random trait that will have
different impacts based on the type of point mutation (transition
or transversion) and position (first, second, or third position)
where the mutation is introduced. As a result, after a point
mutation, different synonymous codons will present different
likelihoods of remaining synonymous or, on the contrary,
mutating into a farther away non-synonymous codon based on
these factors. Thus, the genome composition can directly impact
mutational robustness.

Strategies to attenuate viruses mostly based on genome
recoding have been studied and reported elsewhere (Martínez
et al., 2016, 2019; Gonçalves-Carneiro and Bieniasz, 2021). Here,
we will summarize reported genome recoding strategies for viral
attenuation from an evolutionary standpoint.
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Rational Alteration of Dinucleotide
Frequencies to Achieve Viral Attenuation
As previously stated, vertebrate RNA viruses tend to exhibit
underrepresentation or overrepresentation of dinucleotide
frequencies (Rima and McFerran, 1997). In particular, UpA and
CpG frequencies are consistently underrepresented across RNA
viruses. It has been proposed that CpG restriction is beneficial
because it allows the evasion of the host innate immune responses
via several pattern recognition receptors including retinoic
acid-inducible gene-I-like receptors (RIG-I-like receptors),
mitochondrial antiviral signaling proteins (MAVS), protein
kinase R (PKR), and others (Atkinson et al., 2014; Tulloch et al.,
2014). More specifically, CpG underrepresentation has been
associated with poor recognition via the zinc finger antiviral
protein (ZAP). This protein, which can be ubiquitously expressed
or induced the type I interferon (IFN), specifically detects viral
RNAs that have a higher frequency of CpG dinucleotides
compared to host mRNAs (Meagher et al., 2019) and promotes
RNA degradation by endonucleases or RNA exosomes (Gao
et al., 2002; Bick et al., 2003; Müller et al., 2007; Takata et al.,
2017; Ficarelli et al., 2019; Luo et al., 2020).

Extensive evidence has indicated that enriching viral genomes
with CpGs results in a loss of fitness and could therefore provide
an alternative strategy to achieve viral attenuation (Figure 1;
Burns et al., 2009; Tulloch et al., 2014; Gaunt et al., 2016; Takata
et al., 2017). Burns et al. (2009) directly approached this by
introducing random sets of synonymous codons into the capsid
coding region of the poliovirus genome. In vitro studies with
these mutant viruses revealed that only those with increased
CpG and UpA frequencies had fitness loss, and this was due
to decreased viral infectivity (lower ratio of infectious particle
per genome copy number) and not by decreased translation
efficiency (Burns et al., 2009). Later, this inverse relationship
between dinucleotide frequencies and viral fitness was confirmed
in a study on echovirus 7 in which a control virus with decreased
CpG and UpA frequencies showed an increase in viral fitness
(Atkinson et al., 2014; Tulloch et al., 2014). Also, the authors
proposed that the attenuation was mainly driven by enhanced
response of the innate immune response. The first studies with
recoded viruses in animal models were done with the influenza
virus, showing that only the high-CpG virus (but not the high-
UpA virus) was attenuated in mice. Moreover, mice infected
with high-CpG viruses presented decreased clinical severity,
good induction of the innate and adaptive immune responses,
and reduced pathology in the lung. Thus, additional evidence
to consider these viral constructs as vaccine candidates was
provided (Gaunt et al., 2016).

Attenuation by Deoptimization of
Codons and Codon Pairs
The redundancy of the genetic code allows adjusting the
efficiency in the production of proteins at different levels, without
modifying the amino acid sequence (Gingold and Pilpel, 2011).
Most amino acids are encoded by more than one codon, and the
frequency at which these synonymous codons are used defines the
codon usage. The preference for different codons has significant

effects on mRNA stability (Presnyak et al., 2015), translation
efficiency and accuracy (Gingold and Pilpel, 2011), and protein
folding (Zhang et al., 2009).

It is assumed that codons that are used to a greater extent by
cellular mRNAs correspond to more abundant tRNAs in the host
cell (Ikemura, 1985; Plotkin and Kudla, 2011). Consequently,
recoding viruses with infrequent host codons should reduce the
translation rates and protein yield, leading to its attenuation
(Figure 1; Presnyak et al., 2015). This approach was first
implemented to recode the capsid protein of polioviruses, leading
to reduced amounts of infectious progeny with a sharp decrease
in their replicative fitness (Burns et al., 2006). However, the
immunogenicity of these engineered viruses was conserved as
they continue to elicit robust neutralizing antibody responses
(Burns et al., 2006; Mueller et al., 2006). Subsequent studies
were performed to rationally recode other picornaviruses (Diaz-
San Segundo et al., 2016), as well as different negative stranded
RNA viruses (Meng et al., 2014; Nogales et al., 2014; Cheng
et al., 2015, 2017; Stobart et al., 2016), giving rise to highly
attenuated viruses both in vivo and in vitro, with the exception
of rabies virus, in which attenuation could not be achieved
(Wirblich and Schnell, 2011).

Along with codon usage, codon pairs (or a combination of
triplets) have been reported as major players influencing the
modulation of translation (Brar, 2016). As mentioned before, in
every species, certain codon combinations are observed more
frequently than others that are preferably avoided, which is
known as codon pair bias (Gutman and Hatfield, 1989). These
features can be exploited to reach viral attenuation by recoding
viral open reading frames using suboptimal combinations of
codon pairs, without affecting codon bias or amino acid profiles
(Coleman et al., 2008). This reshuffling approach was successfully
implemented to attenuate, both in vitro and in vivo, a broad range
of positive (Coleman et al., 2008; Martrus et al., 2013; Shen et al.,
2015; Song et al., 2017; Li et al., 2018) and negative stranded RNA
viruses (Yang et al., 2013; Broadbent et al., 2016; Le Nouën et al.,
2019). Moreover, several vaccines were developed by means of
this strategy (Mueller et al., 2010, 2020; Cheng et al., 2017; Tsai
et al., 2019), including the recent CDX-005 intranasal COVID-
19 vaccine candidate that is currently undergoing phase I trial in
the United Kingdom (Lundstrom, 2020; Codagenix starts phase I
trial for Covid-19 vaccine in U.K, 2021).

The mechanisms underlying attenuation by deoptimization
of codon and codon pairs are still controversial. Although
codon choice may have a direct effect on translational efficiency
and mRNA stability, codon pair deoptimization strategies will
inevitably increase the frequency of usually underrepresented
CpGs (Tulloch et al., 2014). This is because, although in the
process of shuffling codons the bias among them is maintained,
new CpGs emerge as most underrepresented codon pairs contain
this dinucleotide at their boundary (Atkinson et al., 2014; Kunec
and Osterrieder, 2016). Therefore, many studies have suggested
that the attenuation is achieved due to antiviral activity displayed
by the recognition of CpG-abundant RNAs by ZAP. However,
evidence provided by a recent study suggests that suboptimal
codon pairs, rather than CpG increase, are responsible for the
attenuation of influenza A virus as a consequence of the reduction
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FIGURE 1 | Strategies to rationally attenuate viruses and develop live-attenuated vaccines. (A) Scheme of viral genomes; above is the wild-type (WT) genome, and
below is indicated the recoded viral genomes by the main approaches used to attenuate viruses. (B) Viral population growth and (C) survival curves expected from a
recoded virus and the WT.

in translational efficiency and mRNA stability (Groenke et al.,
2020). While opposing, it is likely that attenuation is achieved
by a combination of both effects, since usually they go hand
in hand, and it is difficult to separate their contributions in
experimental settings. Moreover, it is also possible that each has
varying impacts on different viral families, and thus, no universal
rules can be proposed.

Attenuation by Decrease in Viral
Mutational Robustness
Robustness can be defined as phenotypic conservation in light
of genetic variation. One of the most recent developments in
the theme of attenuation by codon rearrangements involves
decreasing the mutational robustness of RNA viruses (decreasing
the capacity to “buffer” mutation effects). By rationally
engineering viruses that are less able to “buffer” the burden of
mutations, strong attenuation can be readily achieved (Figure 1;
Lauring et al., 2012; Moratorio et al., 2017; Carrau et al.,
2019). The first study of this kind was done in poliovirus,
where synthetic viruses carrying reengineered capsid sequences
with hundreds of synonymous mutations versus wild type were
compared. The authors found that only the virus with decreased
robustness was attenuated in mice and had also decreased
in neurovirulence (Lauring et al., 2012). Years after, a study
focusing only on synonymous codons with non-sense mutational
targets (NSMTs) was proposed (Moratorio et al., 2017). By

definition, NSMTs are those codon sites that can produce
a non-sense mutation (stop codon) after a single-nucleotide
substitution. From the 64 codon triplets, 18 codons containing
19 different non-sense mutation targets can mutate to a stop
codon after a single-base substitution (Figure 2). Moreover,

FIGURE 2 | Codons containing non-sense mutation targets. From the 64
codons in the genetic code, 18 codons containing 19 different non-sense
mutation targets can mutate to a stop codon after a single-base substitution
(boldfaced). In most of the cases, only one of the three possible substitutions
produces a stop codon (yellow circles), whereas in some scenarios, two of the
three substitutions produce a stop codon (blue circles). Stop codons are
represented by red octagons.
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single-nucleotide substitutions are the most frequent type of
spontaneous mutations in RNA viruses (Sanjuán et al., 2010), and
the chance of two or three mutations landing in a single codon
is extremely low. Based on these, the authors engineered viral
genomes to have more serine and leucine codons with NSMTs,
in regions of the Coxsackie virus B3 and influenza A virus,
compared with wild-type viruses. The resulting increase in stop
codon mutations during replication led to a loss of infectivity
in vitro and attenuation in vivo. Moreover, attenuation was even
stronger when they coupled it with a low-fidelity polymerase,
since more stop codons were being generated during replication.
Importantly, in this study, the authors were able to significantly
remove the effect of confounding factors such as altering codon
pair bias or dinucleotide frequencies and focus solely on the
impact of rationally modifying mutational robustness. Next,
a study by the same group applied this attenuation method
on Chikungunya virus and expanded it by also incorporating
codons for arginine and glycine with non-sense mutation targets.
The proposed LAV was significantly attenuated in mosquito
and mammalian hosts, had significantly reduced dissemination
in mice, elicited good antibody responses that protected from
challenge and had decreased transmissibility from mosquitoes to
mice, thus being proven an efficient design (Carrau et al., 2019).

CONCLUSION

Live-attenuated vaccines against viral diseases have been
among the most successful medical developments in human
history. However, these vaccines, which were generated by
classical approaches, have occasionally shown cases of reversion,
becoming unsafe and endangering human health. The most
paradigmatic case is the oral polio vaccine that showed low
genetic stability (Kew, 2012). This is in part because we have
not yet fully elucidated the molecular basis of attenuation. In
addition, we might underestimate the evolutionary potential of
RNA viruses. In this way, the rational design of LAVs, considering
the nucleotide composition of viral genomes and their evolution,
becomes an important field for future development of LAVs.

Each of the genetic variations on the theme of codon rewiring
mentioned in this review has been proposed as new methods
for vaccine development or to improve safety of already-existing
LAVs. Indeed, they represent good vaccine candidates because
they have a strong attenuated phenotype yet exactly similar to
wild-type viruses at the protein level, with native antigenicity and
complete immunogenicity (Rima and McFerran, 1997; Coleman
et al., 2008; Mueller et al., 2010; Cheng et al., 2017; Moratorio
et al., 2017; Kaplan et al., 2018). Also, the method can be broadly
applied, aided by computational tools that could recode any viral
genome (Mueller et al., 2010; Jorge et al., 2015).

The main advantage over other LAV designs is that reversion
to pathogenic phenotypes is very unlikely, since no single
substitution is responsible for the majority of the attenuated
phenotype. Rather, it is presumed that attenuation is the sum of
dozens to hundreds of mutations, each imparting minor fitness
costs – a strategy aptly described by its creators as “death by
a thousand cuts” (Coleman et al., 2008). Nevertheless, if only a

subset of codon substitutions has dominant effects, then the risk
of reversion to a pathogenic form of virus would be higher than
expected. Some in vitro studies have observed slight gain of fitness
after extended passaging through reversion or compensatory
mutations, but still within the range of the expected evolution for
wild-type virus, hence not discouraging the use of these viruses
as LAVs (Bull et al., 2012; Nougairede et al., 2013). Interestingly,
in a study where the attenuation of a codon-deoptimized human
RSV was lost, molecular dynamics simulations identified key
positions that could restore the attenuation. When engineered
back into the codon-deoptimized genome, a more attenuated
virus was rescued with strong immunogenicity and increased
stability, advocating for applied rational attenuation (Le Nouën
et al., 2017). Even more, in the case of LAVs solely focused on
reducing mutational robustness, reversion might seem even more
unlikely, given that the introduced mutations do not interfere
with replication or translation. If such was the case, selective
pressures would be increased in order to restore fitness. Also,
compensatory mutations would be less likely, because these
viruses will be less able to explore sequence space, restricting the
access to beneficial phenotypes.

By further elucidating each mechanism underlying these
attenuated phenotypes, a rational evolutionary approach to
codon rewiring could take advantage of combining increasing
CpG and UpA frequencies to activate host innate immunity
(Kumagai et al., 2008), forcing rare codons or codon pair bias
to slow down translation (Chevance et al., 2014), and restricting
a virus’ mutational robustness and/or detrimental mutational
neighborhoods (Lauring et al., 2012; Moratorio et al., 2017;
Carrau et al., 2019).
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