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A B S T R A C T

Claudin-4, a protein with the structure of classic claudins most often found in cell-cell junctions, is frequently
overexpressed in epithelial cancers where its localization has not been studied. In this study we aimed to find out
where this membrane protein is localized in an ovarian tumor model, OVCAR3 cells, that express high levels of
the protein. Immunohistochemical studies showed claudin-4 staining in a perinuclear region, at most plasma
membranes and in cytoplasmic puncta. Native claudin-4 did not overlap with phosphorylated claudin-4, which
was partially located in focal adhesions. Using claudin-4 BioID technology we confirmed that large amounts of
claudin-4 are localized to the Golgi compartment, including in dispersed Golgi in cells where claudin-4 is partially
knocked down and in dividing cells. Claudin-4 appears to be present in the vicinity of several types of cell-cell
junctions, but there is no evidence that it forms tight junctions in these tumor cells. Both claudin-4, the Golgi
marker GM130, and the plasma membrane receptor Notch2 were found in dispersed Golgi in dividing cells. This
definition of the cellular architecture of claudin-4 should provide a framework for better understanding of the
function of claudin-4 in tumor cells and its molecular interactions.
1. Introduction

High grade serous ovarian cancer (HGSOC) is the most lethal of the
tumors of the female reproductive system. In 2022, it is estimated that
nearly 20,000 individuals will be newly diagnosed with this cancer and
nearly 13,000 will die of the disease (ACS, 2022). Claudin-4 (pro-
tein)/CLDN4 (RNA) was identified more than two decades ago as a
frequently overexpressed gene in ovarian cancer (Hough et al., 2000). In
cultured cells, such as MDCK kidney cells and EPH4 mammary cells,
claudin-4 localizes to tight junctions and contributes to transcellular
resistance (Baumgartner et al., 2011; Fredriksson et al., 2015). Although
claudin-4 is found in a number of normal tissues including bladder, sali-
vary glands (Zhang et al., 2018b) gastrointestinal tract (Schumann et al.,
2012), and kidney (Gong and Hou, 2017), it is not entirely clear that it
normally functions as a tight junction protein (Piontek et al., 2020). It is
also found in damaged lung cells (Schlingmann et al., 2015) and in
epithelial cells of the involuting, but not the milk-secreting, mammary
gland (Baumgartner et al., 2017). Claudin-4 is often overexpressed in
epithelial cancers (Hewitt et al., 2006) including breast (Kolokytha et al.,
2014; Szasz et al., 2011), prostate (Landers et al., 2008; Li, 2021), gastric
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(Soini et al., 2006; Liu and Li, 2020), pancreatic (Li, 2021; Torres et al.,
2018), bladder (Kuwada et al., 2015), lung (Li, 2021), colorectal (Fuji-
wara-Tani et al., 2018; Holczbauer et al., 2013) and ovarian (Hewitt et al.,
2006; Hough et al., 2000; Li, 2021). Survival time in ovarian cancer pa-
tients is decreased when tumors have high levels of claudin-4 (Yoshida
et al., 2011;Martin de la Fuente et al., 2018). Knockdown of claudin-4 has
recently been found to sensitize ovarian cancer cells to paclitaxel and
PARP inhibitors (Breed et al., 2019; Yamamoto et al., 2022) and targeting
of claudin-3 and claudin-4 has been proposed as a chemotherapeutic
strategy in ovarian cancer (Uthayanan and El-Bahrawy, 2022). In order to
better understand the biology of claudin-4 in epithelial cancers it is
necessary to know its localization in tumor cells, particularly since it is not
thought to localize to tight junctions.

Claudins are a family of 23 tetraspanin proteins in humans, each with
four alpha helixes which cross the plasma membrane separated by two
extracellular loops and a short intracellular loop (Figure 1A). The extra-
cellular loops are hydrophobic and often interact in trans with loops of
similar molecules on adjacent cells to form tight junctions. Claudin-4 has
the general structure of classic claudins (Piontek et al., 2020); the N-ter-
minus is cytoplasmic and short, commencing with a methionine-alanine
ptember 2022
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Figure 1. A. Cartoon of claudin structure
showing a short N-terminus, four transmembrane
segments, two extracellular loops and a more
extensive carboxy-terminus ending at amino acid
209 in humans (C209). B. A low power view of
clusters of OVCAR3 cells grown on collagen. C.
Immuno-histochemistry for claudin-4 distribution
(white) in a clump of OVCAR3 cells grown on a
collagen matrix. Nuclei are circled in gold for
clarification of their position. In the magnified
image white stained clumps of puncta are local-
ized near the nucleus at the position of Golgi
vesicles (white arrows); arrowheads indicate
cytoplasmic puncta; yellow arrows indicate cell-
cell borders. That claudin-4 localizes near pro-
teins in the membranes of these structures will be
shown in the Bio-ID experiments to follow.
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sequence. This terminus allows the attachment of biotin ligase for the
BioID experiments to be described in this paper. The length of the cyto-
plasmic carboxy-terminus is variable containing about 27 amino acids
depending on species. This segment terminates in the sequenceYVas in all
classic claudins (Piontek et al., 2020), allowing themembranemolecule to
interact with the PDZ domains of submembrane cytoskeletal molecules
like ZO1.

Our laboratory has demonstrated that claudin-4 contributes func-
tionally to ovarian tumor cell survival, migration, and overall tumor
burden (Hicks et al., 2016). However, the molecular mechanisms
involved remain largely unknown. In this paper, we present the results of
our studies of claudin-4 localization in an ovarian tumor cell line,
OVCAR3, that expresses high levels of claudin-4 compared to most
HGSOC cell lines (Breed et al., 2019). We examine control OVCAR3
(OVCAR3-shCTRL) cells and cells in which claudin-4 is partially knocked
down (OVCAR3-shCLDN4) as well as OVCAR8 cells, an ovarian cancer
cell line that has undetectable levels of claudin-4. We examine the
localization of unphosphorylated claudin-4 and claudin-4 phosphory-
lated on tyrosine residue 208. We then use BioID technology to examine
proteins expressed in the vicinity of claudin-4 in order to confirm local-
ization to most membranes of this ovarian cancer cell line as seen in
immunocytochemical images.

2. Results

Localization of claudin-4 in OVCAR3 cells. Claudin-4 has a short N-
sequence, four hydrophobic transmembrane segments, two extracellular
2

loops, and a C-terminus with about 22 amino acids ending at amino acid
209 in humans (Figure 1A). Breed and colleagues (Breed et al., 2019)
showed by Western blot that OVCAR3 and several other cell lines (PEO4,
OV429, and OVCAR5) express high levels of claudin-4 protein, whereas
the protein was not visible in Western blots from OVCAR8, OVCAR4, and
DOV13 cells. We chose OVCAR3 (claudin-4 positive, Log2 TPM Expres-
sion ¼ 7.25) and OVCAR8 (claudin-4 negative, Log2 TPM Expression ¼
0.94) cell lines for further study. To determine where claudin-4 is
localized in OVCAR3 cells, we performed immunocytochemistry using
confocal microscopy. We evaluated claudin-4 localization in clumps of
OVCAR3 cells grown on a collagen matrix (Figure 1B) using an antibody
to the final 22 amino acids of the C-terminus of human claudin-4. A
blocking peptide attenuated the signal in OVCAR3 cells verifying the
specificity of the antibody used (see Supplementary Material, Figure 1).
Figure 1C shows that the claudin-4 in OVCAR3 cells is clustered in puncta
near the nucleus (white arrows). Claudin-4 is also found in isolated
cytoplasmic puncta (arrowheads) and in the plasma membrane, possibly
associated in part with cell-cell junctions (yellow arrows).

Claudin-4 phosphorylated on tyrosine 208 does not overlap with
non-phosphorylated claudin-4. The C-terminus of claudin-4 has
known phosphorylation sites that serve to facilitate claudin-4-protein
interactions (Figure 2A). We used an antibody to the C-terminal pep-
tide of claudin-4 with phosphorylated tyrosine 208. Dual staining of
OVCAR3 cells with the antibody to claudin-4 and the antibody to p(208)-
claudin-4 is shown in Figure 2B. Claudin-4 (non-phosphorylated claudin-
4, green) and p(208)-claudin-4 (Y208 phosphorylated, red) did not
overlap as shown clearly in the images in Figure 2B. Non-phosphorylated



Figure 2. Phosphorylated claudin-4 does not overlap with non-phosphorylated claudin-4. A. The c-terminus of human claudin-4 has three tyrosine phosphorylation
sites at residues 193, 197, and 208 9 (red) (Van Itallie and Anderson, 2018). B. Distribution of nuclei (DAPI, blue), non-phosphorylated claudin-4 (green), and claudin
phosphorylated at Y-208 (red) in OVCAR3 shCTRL and OVCAR3 shCLDN4 cells. C. Three color view of the distribution of phospho-claudin-4 and focal adhesion kinase
(FAK) in OVCAR3 shCTRL cells. Green arrows identify puncta of co-localized p(Y397)-FAK and p-CLDN4. Scale bars: 10 μ.
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claudin-4 shows clear perinuclear and cytoplasmic puncta. In contrast,
the p(208)-CLDN4 stain is confined to puncta distributed closer to the
periphery of the cell as well as some nuclear stain indicating that phos-
phorylation alters the cellular distribution of claudin-4.

There is less claudin-4 stain in the shCLDN4 knockdown cells as ex-
pected (the same cell line as shCLDN4_2 in the Breed paper where
claudin-4 was shown to be decreased markedly by Western blot in these
cells (Supplementary Figure 4 (Breed et al., 2019)). Interestingly, the
stain for p(208)-claudin-4 does not appear to be diminished in shCLDN4
cells examined immunohistochemically. To help determine the locali-
zation of the p(208)-claudin-4 puncta, we costained OVCAR3 cells with
an antibody to pY397 focal-adhesion kinase (pFAK), finding that it
stained some cytoplasmic puncta that overlapped with p-claudin-4
(Figure 2C). Focal adhesions assist in cell mobility suggesting a role for
p(208)-claudin-4 in cell migration. If non-phosphorylated claudin-4
3

plays a role in cell mobility it must be by a different mechanism since
p(208)-claudin-4 and native claudin-4 do not overlap (Figure 2B).

Claudin-4 accumulates in the Golgi of OVCAR3 cells. The peri-
nuclear puncta observed in Figure 1C suggest claudin-4 accumulation in
the Golgi complex. We examined claudin-4 co-localization with a known
Golgi-specific protein, GM130 (Figure 3A), and found that the two pro-
teins often co-localized (yellow in the merged image) in a perinuclear
compartment. As in Figure 1, claudin-4 is also observed in numerous
cytoplasmic puncta as well as at cell borders. When claudin-4 was
knocked down in shCLDN4 cells, the Golgi became fragmented, as is
often seen in cancer cells (Petrosyan, 2015). Very little claudin-4 could be
observed by immunohistochemistry, but what was there also appeared to
have a fragmented distribution (Figure 3B).

The area occupied by claudin-4 and GM130 was quantitated using
Slidebook software. The data in Table 1 show first that the cross-sectional



A OVCAR3 shCTRL 

CLDN4 GM130 MERGE 

B   OVCAR3 shCLDN4 

MERGE CLDN4 GM130 

C OVCAR3 shCTRL CLDN4 GM130 

BFA 60 

D OVCAR3 shCTRL
     CLDN4 GM130 

Figure 3. Claudin-4 and GM130 colocalization in adherent OVCAR3 cells. A. In OVCAR3 shCTRL cells perinuclear assemblages of stain for CLDN4 (green in merged
image) overlap with most of the clusters of stain for the Golgi marker, GM130 (red in the merged image). A few of these overlapping clusters are indicated by the
yellow arrows. Nuclei are stained blue (DAPI) in the merged image. B. In the OVCAR3 knockdown shCLDN4 cells, claudin-4 stain is sparse, and Golgi are dispersed as
indicated by the GM130 stain in the knockdown cells. See Table 1 for quantitation of the areas occupied by CLDN4 and GM130 in OVCAR3 shCNTL and shCLDN4 cells.
C. Effect of Brefeldin A (BFA) on the distribution of CLDN4 (green) and GM130 (red). OVCAR3 control cells were incubated with 10 μg/ml BFA for 60 min then fixed
and imaged. The boxed space was enlarged in the figure to the right. D. A dividing cell showing colocalization of the Golgi marker GM130 and claudin-4 in dispersed
vesicles near nuclei (white arrow). Scale bars: 10 μM.
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area occupied by cells in which claudin-4 is partially knocked down
(2328 μ2) is about double that of the control cells (1270 μ2). In the knock-
down cells claudin-4 occupied an average of 329 μ2 or about 26% of the
total cross-sectional area of the cell, whereas GM130 stain occupied
about 79 μ2 or only about 6% of the total cell area. However, 85% of the
area occupied by GM130 also contained claudin-4 indicating that a
majority of Golgi vesicles contain claudin-4. When claudin-4 was
knocked down with shRNA (cells labelled shCLDN4), claudin-4 occupied
358 μ2 or only about 16% of the area of these larger cells. The area
occupied by the Golgi (GM130 marker) nearly doubled to 140 μ2 in the
4

shCLDN4 cells, again about 6% of the total area. Although very light in its
stain, claudin-4 was still found in about 54% of the fragmented Golgi
area. Thus, in both cell types, about 20% of the total claudin-4 protein
was associated with the Golgi. These results tell us that claudin-4 has a
broad distribution in both shCTRL and shCLDN4 ovarian cancer cells and
that the distribution of claudin-4 is not simply a function of the high
expression level of this protein in OVCAR3 cells.

The effect of Brefeldin A on CLDN4 distribution. Brefeldin A (BFA)
is an antiviral lactone first isolated from the fungus Penicillium Bre-
feldianum. It inhibits protein transport from the endoplasmic reticulum to



Table 1. Effect of claudin-4 knockdown on cell size and Golgi area.

Area Units shCTRL shCLDN4 N P

Average total cell area u2 1,270 � 104 2,328 � 205 10 0.0001

CLDN4 area per cell u2/cell 329 � 65 358 � 84 5 0.3987

GM130 area (Golgi) u2/cell 79 � 22 140 � 41 5 0.1140

CLDN4/GM130
overlap

u2/cell 67 � 18 76 � 28 5 0.3956

Percent of total cell area

CLDN4 area % cell area 25.61 � 4.88 15.56 � 3.81 5 0.0716

GM130 (Golgi) % cell area 6.04 � 1.65 5.90 � 1.78 5 0.4785

Overlap as percent of total cell area

%GM130 with CLDN4 % cell area 84.81 � 1.66 54.28 � 6.20 5 0.0165

%CLDN4 with GM130 % cell area 20.36 � 1.94 21.23 � 6.01 5 0.1090

Mean � SEM Mean � SEM

ShCTRL refers to control cells. shCLDN4 refers to CLDN4 knockdown cells. N is
the number of sections analyzed.
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the Golgi leading to dissociation of the Golgi stack into dispersed vesicles
particularly associated with mitosis (Colanzi et al., 2013). We treated
OVCAR3 cells, with 10 μg/ml BFA for 60 min. The dispersion of the Golgi
stack observed after 60 min is shown in Figure 3C, where the Golgi
marker GM130 is imaged along with claudin-4. These images along with
those of shCLDN4 above indicate that fragmentation does not alter the
association of claudin-4 with the Golgi vesicles. In dividing cells the Golgi
vesicles are dispersed (Figure 3D) but still contain both claudin-4 and
GM130.

Proteins biotinylated by biotin ligase labelled claudin-4 in
OVCAR3 and OVCAR8 cells.

The distribution of claudin-4 shown in Figure 1 suggests that the
protein is distributed in many of the membrane components of the cell.
To verify this localization, we next determined claudin-4 proximity
proteins using BioID technology as described in the methods. Two ex-
periments each were carried out in the OVCAR3 and the OVCAR8 cell
lines. OVCAR3 and OVCAR8 cells expressing claudin-4-biotin ligase were
cultured on collagen I and incubated with biotin. The proximity of
claudin-4-biotin ligase to neighboring proteins (within 10–15 nm) leads
to their biotinylation. Biotinylated proteins were purified and identified
via mass spectrometry. Because the results differed little between the two
cell lines, they were combined giving 52 proteins localized near to the N-
terminus of claudin-4 (Supplementary Table 1 and Supplementary
Tables 2A to 2G). Two carboxylases, ACACA and ACACB, and a scaffold
protein, AHNAK, were also identified. ACACA and ACACB are not
considered further in this paper since they are endogenously bio-
tinylated, giving variable results. AHNAK is also heavily biotinylated in
controls and didn't meet the criteria for inclusion in this list. It is however
the most highly expressed scaffolding protein in this cell line, suggesting
that it may have functional significance in ovarian cancer cells.

As expected from the immunofluorescence studies of claudin-4 in
OVCAR3 cells (Figure 1), the claudin-4-BioID biotinylated proteins (52
total proteins) were localized to: the nucleus (1 protein; supplementary
Table 2A), the Golgi and endoplasmic reticulum (6 proteins; supplemen-
tary Table 2A, Figure 4), cytoplasmic transport vesicles (5 proteins; sup-
plementary Table 2B), cell-cell junctions (8 proteins, supplementary
Table 2C), the cytoskeleton (8 proteins; supplementary Table 2D) or the
plasma membrane (23 proteins including receptors, adhesion molecules,
and membrane transporters; supplementary Tables 2E, 2F, 2G). All these
proteins are membrane or membrane-associated proteins. These experi-
ments show conclusively that claudin-4 is distributed in all membrane
compartments of the cell except perhaps themitochondria. In the claudin-
4 BioID experiment, biotinylation was similar in both the OVCAR3 cells
(with large quantities of CLDN4 protein) and the OVCAR8 cells (with
barely detectable claudin-4 protein). This finding indicates that localiza-
tion is not dependent on the presence of endogenous claudin-4.
5

Because of the orientation of claudin-4 in the membranes, bio-
tinylated membrane proteins must have at least part of their structure on
the cytoplasmic side of the membrane compartments where the N-ter-
minus of claudin-4 would be located. Because claudin-4 appears by
immunohistochemistry to be heavily represented in the ER and Golgi
compartment, we examine data related to these compartments in this
text. In addition, claudins are generally thought to be tight junction
proteins; we therefore examine the biotinylated proteins associated with
cell-cell junctions more closely, finding no clear evidence that claudin-4
acts as a tight junction protein in OVCAR3 cells. Finally, we look at the
distribution of a well-studied plasma membrane protein, Notch2, which
showed substantial colocalization with CLDN2 in OVCAR3 cells.

BioID proteins associated with the endoplasmic reticulum (ER)
and Golgi apparatus (Supplementary Table 2A, Figure 4A). Six proteins
associated with the ER-GOLGI complex were significantly biotinylated by
biotin ligase bound CLDN4. Two prominent Golgi proteins, GMAP210
(TRIP) (Infante et al., 1999) andGOLGB1 (Giantin) (Linstedt and Hauri,
1993), were biotinylated. These are elongated coiled-coil proteins whose
carboxy terminus is anchored to the Golgi membrane. Using immuno-
cytochemistry, both proteins overlapped with claudin-4 (Figures 4B and
C). Proteins associated with the trans-Golgi membranes were also bio-
tinylated including AP1B1 (Anitei et al., 2010), IGF2R (Brown et al.,
2008), and CPD (Thomas et al., 2015). Finally, YES1 (Zhou et al., 2020),
a cytoplasmic non-receptor kinase, shuttles between the Golgi and the
plasma membrane and was biotinylated. In conclusion claudin-4 is
associated with many proteins in the Golgi compartment.

Proteins associated with cell-cell junctions, supplementary
Table 2C. Three different types of junctions link epithelial cells to
neighboring epithelial cells – tight junctions, adherens junctions, and
desmosomes (Figure 5A). The mRNA expression levels for these proteins
are available in the TCGA and are shown in Figure 5B. The first five
proteins shown in Figure 5B, CLDN4, CLDN3, TJP1 (ZO-1), CDH1, and
AHNAK, were not significantly biotinylated in the BioID experiment but
are shown here to give a measure of their expression in HGSOC. Both
claudin-3 and claudin-4 have been found to be overexpressed in HGSOC
in a number of laboratories (Zhang et al., 2018a; Rangel et al., 2003; Choi
et al., 2007). TJP1, also known as ZO-1, is an important component of
classic tight junctions providing a cytoplasmic anchor for the YV se-
quences that terminate classic claudins, including claudin-4 and
claudin-3 (Nomme et al., 2015). The facts that it was not biotinylated and
its low expression in the TCGA led us to the hypothesis that classic tight
junctions may not be formed between HGSOC cells.

LSR (lipolysis stimulated lipoprotein receptor) is a component of the
tricellular junctions as well as being a lipid transporter in the plasma
membrane (Masuda et al., 2011). It was prominently biotinylated. OCLN
is often associated with tight junctions, but it can also be associated with
adherens junction proteins (Muller et al., 2005). The junctional protein
E-cadherin (CDH1) is heavily associated with cell borders in OVCAR3
cells (Figure 5C) where it likely participates in calcium-dependent
cell-cell interactions (Sundfeldt et al., 1997). While CDH1 was not bio-
tinylated in the BioID experiment, its interacting proteins, CTNND1
(Ishiyama et al., 2010), DLG1 (Marziali et al., 2019), and CXADR (Nil-
chian et al., 2019) were. The heavy staining of DLG1 in OVCAR3 cells
(Figure 5C) is consistent with the hypothesis that adherens junctions may
be important in cell-cell interactions of ovarian cancer cells.

Members of the protein families that make up desmosomes (Figure 5A
(Green et al., 2019);), the transmembrane cadherin family (desmoglein,
DSG2, and desmocollin, DSC2), the armadillo family protein (plakoglo-
bin, JUP) (Aktary et al., 2017), as well as DLG1, interacted with
claudin-4 in the BioID experiment. JUP is thought to be a biomarker for
ovarian cancer (Weiland et al., 2020) as well as being active in the Wnt
signaling pathway (Aktary et al., 2017). These findings indicate that
claudin-4 is present in or near most of the junctional complexes in
OVCAR3 ovarian cancer cells but the lack of interaction with TJP1 (ZO1)
and the low expression 0f the mRNA for TJP1 suggest that claudin-4 is
not acting as a tight junction protein in these cancer cells.



Figure 4. ER, Golgi and endosomal proteins identified in the BioID experiment. A. Diagram showing position of Golgi-related proteins. Adapted from (Modica et al.,
2017). B. Merged immunocytochemical images of claudin-4 (green), GMAP210—TRIP11 (red) and nuclei (blue) in OVCAR3 shCTRL cells, OVCAR3 shCLDN4 cells and
OVCAR 8 cells. Overlapping CLDN4 and GMAP10 appear yellow. C. Images of claudin-4 (green), GOLGB1—Giantin (red) and nuclei (blue) in OVCAR3 shCTRL cells
showing overlap (yellow) between the two molecules. Scale bars: 10 μM.
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Proteins associated with the plasma membrane. Plasma mem-
brane proteins traverse the plasma membrane and interact with elements
of external environment of the tumor cells. Supplementary Figure 2
shows the mRNA expression levels of the 23 membrane proteins from the
HGSOC TCGA that were identified with claudin-4-BioID. All the
6

biotinylated proteins from OVCAR3 variants are fairly highly expressed
in this large ovarian tumor dataset. They fall into three categories: 1)
membrane receptors that interact with hormones like IGF2 or EGF or
with membrane resident ligands on adjacent cells, 2) adhesion molecules
that interact with extracellular matrix proteins, and 3) transporters that



Figure 5. Junctional proteins near CLDN4 in OVCAR3 cells. A. Diagram showing proteins associated with the various classes of cell-cell junctions. Circled proteins
were labelled in the Bio ID experiment. B. mRNA expression for junctional proteins in the TCGA. Note: Claudin-4, claudin-3, tight junction protein 1 (TJP1), E-
cadherin (CDH1), and AHNAK did not fulfill the criteria for interaction with claudin-4 in the BioID experiment but are junction-associated proteins expressed at high
levels in HGSOC. Some, like the claudins and AHNAK, are expressed at very high levels. C. Immuno-fluorescence images of E-cadherin, GM130 with CTNND1, and
DLG1 with CLDN4 in OVCAR3 cells. Scale bars: 10 μM.
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transfer ions and nutrients into the cell. The biotinylation of all these
proteins provides strong evidence that claudin-4 is associated with
plasma membranes in OVCAR3 cells. Of these molecules we discuss
Notch2 here because it overlaps extensively with claudin-4 by immu-
nohistochemistry. Brief summaries of the actions of the other identified
plasma membrane proteins are given in Supplementary Tables 2E-G.

Notch receptor 2. Co-culture of ovarian cancer cells and endothelial
cells induced increased Notch receptors on the surface of the ovarian cells
as well as an increase in the Notch ligand Jagged1 on the endothelial cells
(Hoarau-V�echot et al., 2019). The authors suggested that Notch2 medi-
ates interactions between ovarian cancer cells and the endothelium. The
mRNA for NOTCH2 is the most highly expressed in the TCGA of the
biotinylated receptors in HGSOC cells (supplementary Figure 2). In
OVCAR3 cells Notch receptor 2 protein was found at the cell border; this
is particularly evident in the CLDN4 knockdown cells (Figure 6A). A
significant increase in the area occupied by Notch2 was observed in the
CLDN4 knockdown cells and about half the area occupied by NOTCH2
overlapped with the CLDN4 area in both shCTRL and shCLDN4 cells
(Figure 6B). Since NOTCH2 mRNA is not significantly increased in
shCLDN4 cells (unpublished data), this finding suggests that claudin-4
protein localized to the membrane alters the membrane distribution of
Notch2 by an unknown mechanism. Interestingly, claudin-4 and Notch2
are colocalized in vesicles surrounding the nuclei of dividing OVCAR3
cells (Figure 6C). High NOTCH2 expression was correlated with worse
overall survival in all ovarian cancers (Zhou et al., 2016). Many putative
Notch targeting agents are in study with 70 clinical trials registered in
7

2020 (Moore et al., 2020) suggesting the importance of studies of the
interaction of claudin-4 and Notch2.

3. Discussion

Claudins are best known as molecules that promote tight junction
closure in normal epithelia, interacting with the scaffold protein ZO-1
(TJP1) in complex ways to promote the transepithelial barrier.
Claudin-4 is only sporadically found in normal epithelia but is highly
expressed in many epithelial cancers including breast (Kolokytha et al.,
2014; Szasz et al., 2011), prostate (Landers et al., 2008; Li, 2021),
pancreatic (Li, 2021; Torres et al., 2018), bladder (Kuwada et al., 2015),
lung (Li, 2021), gastric (Liu and Li, 2020), colorectal (Holczbauer et al.,
2013) and ovarian (Hewitt et al., 2006; Hough et al., 2000; Li, 2021). In
many of these cancers, although claudin-4 appears to be localized in the
membranes, the cellular compartments with which it is associated have
not been determined.

Claudin-4 localization. About 20% of the total area occupied by
claudin-4 in OVCAR3 cells localized with the Golgi-associated protein,
GM130 even in cells where claudin-4 was partially knocked down
(Table 1). Claudin-4 was also associated with cell borders as well as in
distinct cytoplasmic puncta (Figure 1). To localize claudin-4 more pre-
cisely, we performed a BioID experiment, transducing both OVCAR3 and
OVCAR8 cells with the gene for claudin-4 with the biotin ligase gene
attached to the N-terminus. We then determined the identity of bio-
tinylated proteins in cultures of these cell lines. OVCAR8 cells express



Figure 6. Overlap between Notch2 and claudin-4 in. A. Immunohistochemical staining of Notch2 and claudin-4 in OVCAR3 shCNTL and shCLDN4 cells. B. Quan-
titation of cell area occupied by Notch2 and claudin-4 proteins. Area occupied by Notch2 is significantly increased in shCLDN4 cells (p ¼ 0.0328). C. Overlap of
NOTCH2 and claudin-4 in vesicles surrounding dividing nuclei in 4 sections from OVCAR3 calls.
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CLDN4 mRNA at a level less than 1% of the level in OVCAR3 cells,
allowing us to determine the effect of endogenous claudin-4. The BioID
experiment produced 52 biotinylated proteins of which one (LEMD) is
generally localized to the nuclear membrane; six of these are located in
the Golgi and endoplasmic reticulum, five in endosomal vesicles, eight at
cell-cell junctions, eight with the cytoskeleton, and 23 are plasma
membrane proteins. It appears as if, once synthesized, claudin-4 starts
down the pathway from the nucleus to the endoplasmic reticulum and
Golgi, to endoplasmic vesicles which carry it to the plasma mem-
brane—portions of which are associated with cell-cell junctions and
other portions at other cell borders.

The protein neighbors identified in the BioID analysis of claudin-4
provide insight into the structural architecture of the membranes in
8

OVCAR3 cells. Not only were membrane proteins in all cellular com-
partments (except the mitochondria) biotinylated, many scaffolding
proteins adjacent to the membranes were also biotinylated. Scaffolding
proteins are often thought to provide a focus for the clustering of
functional proteins. Whether the organization of functional proteins
depends on expression of claudin-4 is an important question for future
investigation. However, previously published findings relating to
claudin-4 expression and activity suggest that it plays an important role
in the function of tumor cells. Thus, the fraction of apoptotic ovarian
tumor cells is altered by the knockdown of claudin-4 (Breed et al., 2019;
Hicks et al., 2016). In addition, claudin-4 appears to affect mitotic
progression in OVCAR3 cells, perhaps by interaction with tubulin
(Breed et al., 2019).
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Claudin-4 and AHNAK. It is relevant to discuss AHNAK (Neuroblast
differentiation-associated protein, SUSD2), a scaffolding protein highly
expressed in OVCAR3 cells; it is often associated with the mesenchymal
phenotype in cancers (Sheets et al., 2016). Biotinylation of AHNAK was
increased 2.04-fold (log2 0.78) in the presence of claudin-4-biotin ligase,
too low to meet our cut-off because AHNAK has a high basal level of
biotinylation. However, AHNAK may be an important protein in
epithelial cancers since it is associated both with EMT (Sheets et al.,
2016) and with microvesicle production (Silva et al., 2016). It is referred
to as a “giant” protein because of its large size, about 5500 amino acids
(Davis et al., 2014). Further, the functional classification of AHNAK as a
scaffold protein is supported by the presence of a PDZ domain within its
protein structure, which could interact with the YV sequence at the C
terminus of claudin-4 (Itoh et al., 1999; Zardab et al., 2022). Could it be
that the membrane distribution of claudin-4 in OVCAR3 cells is depen-
dent on the scaffolding function of AHNAK?

Claudin-4 and solute carriers. Claudin-4 was found in proximity to
several solute carriers, including LAT1 (SLC3A2 and SLC7A5), Na/K
ATPase (ATP1A1), and ASCT2 (SLC1A5). The interaction and possible
regulatory effect of claudin-4 on these solute carriers is intriguing in the
context of metabolism and the tumor microenvironment. For instance,
LAT1's role in tryptophan uptake has direct implications in the immune
response (Hayashi and Anzai, 2022) and regulation of the aryl hydro-
carbon receptor transcription factor (D'Amato et al., 2015), which uses a
tryptophan metabolite (kynurenine) to reprogram the transcriptome.
Another example is that ASCT2 transports the amino acid glutamine, a
critical metabolite for the generation of essential molecules (e.g.,
glucose) and amino acids. The depletion of glutamine uptake and
biosynthesis attenuates the growth of ovarian cancer cells (Furusawa
et al., 2018). Thus, there is a significant need to further understand the
regulatory function of the claudin-4/ASCT2 interaction.

Claudin-4 and survival. High expression of claudin-4 is associated
with reduced survival in ovarian cancer patients (Human Protein Atlas).
Breed and associates (Breed et al., 2019) found that high expression in
OVCAR3 variants reduced the apoptotic response to paclitaxel and that
the molecule interacted with tubulin. The response could be restored by
treatment of the cells with a claudin-4 targeting peptide. A major ques-
tion is how claudin-4 produces these effects. We have recently shown
that loss of claudin-4 expression in ovarian cancer cells decreases DNA
repair capacity and increases the sensitivity to PARP inhibitors (Yama-
moto et al., 2019, 2022). Consistently, human tumors with low claudin-4
expression correlate with both higher mutational burden and genomic
instability. The connection between these findings and the localization of
claudin-4 is currently not clear.

Other claudins in cancer cells. Claudin-4 is not the only claudin in
ovarian cancer cells (Li, 2021; Rangel et al., 2003). CLDN3 is expressed at
a higher average level in ovarian tumors in the TCGA than either CLDN4
or CLDN1, while CLDN6 and CLDN7 are also expressed at significant
levels. Claudin-3 was localized throughout the cell in many ovarian
cancers although the precise membranes in which it was distributed were
not determined (Corsini et al., 2018). An important question is whether
claudins-3, 6, 7 are localized in membrane or membrane adjacent com-
partments in cancer cells. What are the biological actions of all these
claudins in epithelial cancer cells?

Phosphorylated claudin-4. Phosphorylated claudin-4 is relatively
understudied. In OVCAR3 cells, claudin-4 phosphorylated on Y208 was
localized to cytoplasmic puncta that also contained non-phosphorylated
focal adhesion kinase raising the question of whether phosphorylated
claudin-4 is involved in the formation of focal adhesion complexes.
Tanaka and colleagues found that claudin-4 was phosphorylated on Y208
by EPHA2, a process that attenuated its interaction with ZO-1 in the tight
junctions of MDCK cells (Tanaka et al., 2005). While there is no evidence
that phosphorylated claudin-4 interacts with tight junction proteins such
as ZO-1 (also known as TJP1) in ovarian cancer cells, it is clear that it is
tightly regulated and confined to cytoplasmic puncta in these cells.
Phosphorylated claudin-4 appeared to be present at about the same level
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in cells where CLDN4 is knocked down (shCLDN4 cells) as in control cells
(shCTRL; Figure 2B) where total non-phosphorylated claudin-4 is
significantly diminished. Whether this finding is the result of a saturation
of the phosphorylation mechanism in the control cells, or some other
mechanism, remains to be determined.

Summary and limitations of this study. The overall aim of this
study was to determine the localization of claudin-4 in ovarian cancer
cells. In the course of these experiments we found that claudin-4 is
localized to most membranes of the cell, that native and phosphorylated
claudin-4 did not colocalize, that about 20% of claudin-4 was localized to
the Golgi in both normal and claudin-4 knockdown cells, and that
claudin-4 continued its Golgi localization in cells where the Golgi is
dispersed including dividing cells where it colocalized with both the
Golgi marker GM130 and with the plasma membrane receptor Notch2.

One limitation of this study is that neither other types of ovarian
cancer cells nor actual ovarian tumors were studied. There do not seem to
be studies of the localization of claudins in other types of epithelial
cancers; it seems possible that claudins other than claudin-4 may be
localized in membrane areas that are not tight junctions. This finding
would have important implications for therapeutic agents. For example,
claudin-4 has been shown to reduce the response of ovarian cancer cells
to paclitaxel (Breed et al., 2019); the mechanism of this action is
unknown.

4. Star

4.1. Methods

Cell lines and cell culture. Human derived OVCAR3 and OVCAR8
cells were obtained from the laboratory of Monique Spillman at the
University of Colorado and cultured in RPMI-1640 medium (Gibco,
Thermo Fisher Scientific) plus 10% heat inactivated fetal bovine serum
and penicillin/streptomycin at 37 �C and 5% CO2. Cell lines were
authenticated by short tandem repeat profiling at the University of Ari-
zona Genetics Core.

shRNA knockdown. OVCAR3 cells were plated 3.2 � 104 in a 96-
well plate and incubated at 37 �C for 24 h. When cells reached 70%
confluence, 10 mL of claudin-4 short hairpin RNA (shCLDN4; TRC#:
TRCN0000116627, TRCN0000116628, or TRCN0000116631) or control
(shCTRL; SHC001, pLK0.1-puro Empty Vector) lentiviral suspension
(Sigma-Aldrich MISSION shRNA, University of Colorado Functional Ge-
nomics Facility) was added to the cells, which were incubated overnight
at 37 �C. Fresh medium was added to remove lentivirus and cells were
allowed to recover for 24 h before being treated with 0.5 mg/mL puro-
mycin for selection and expansion of transduced cells. Western blot
analysis confirmed the decrease in claudin-4 expression.

Data from The Cancer Genome Atlas (TCGA, 2011). The TCGA
contains expression values for 20532 mRNAs from 209 ovarian cancer
patients. RNA-seq data was downloaded from cbioportal and compiled.
The patient values were averaged, and the standard deviation and stan-
dard errors of the mean determined.

Bio ID. Constructs - pTRE2 hyg myc biotin ligase CLDN4 plasmid was a
gift fromMelvinAndersonatNIH.Themycbiotin ligaseCLDN4wasexcised
using Bam HI and Sal I and ligated into a pBABE vector. A control plasmid
with a stop codon before CLDN4 was also constructed using site directed
mutagenesis. Cells were transduced separately with these plasmids.

Purification of Biotinylated Proteins. Method adapted from (Van Itallie
et al., 2013). 50uM biotin (Sigma B4639) was added to nine 150mm
dishes of 80% confluent cells and incubated 16 h. Cells were washed
three times with PBS, scraped into PBS, pelleted, lysed in 5 ml RIPA (1%
Triton X-100, 0.5% deoxycholate, 0.2% SDS, 50mM Tris pH 7.5, 150mM
NaCl and protease inhibitors), sonicated, incubated on ice for 10 min,
sonicated again, and centrifuged for 20 min at 12,000 x g. The super-
natant was transferred to microfuge tubes with 500μl prewashed Dyna-
beads MyOne Streptavidin C1 and incubated at 40 �C for 4 h in an
end-over-end mixer. The beads were then washed twice with 2% SDS,



M.C. Neville et al. Heliyon 8 (2022) e10862
once with 0.1% deoxycholate, 1% Triton X-100, 500mM NaCl, 1mM
EDTA, 50mM Hepes pH 7.3, once with 250mM LiCl, 1mM EDTA, 0.5
deoxycholate, 0.5% Triton X-100, 10mm Tris pH 8.0, and twice with
50mM Tris pH 7.5, 50mm NaCl. Proteins were eluted from the beads and
mass spectrometry carried out by Monika Dzieciatkowska, PhD, in the
University of Colorado School of Medicine Biological Mass Spectrometry
Proteomics Core Facility.

The experiment was repeated four times, twice with OVCAR3 cells
and twice with OVCAR8 cells. The resulting numerical values for levels of
biotinylated proteins were analyzed by the difference between cells
receiving the gene for claudin with biotin ligase and claudin alone. Only
proteins where the difference between the biotinylated and control was
greater than 10 and the log2 ratio was greater than 1 were selected. The
final list and summary data are given in Supplementary Table 1. In most
cases, all four experiments met the criteria for selection. In a few cases,
only three experiments met the criteria, but these proteins were retained
in the list. The final list contained 52 proteins. Sixteen of these proteins
had been identified previously in a BioID experiment in MDCK cells
examining claudin-4 (asterisks in Supplemental Table 1) (Fredriksson
et al., 2015).

Immunohistochemistry. Cells grown on Type I collagen (Sigma)
coated glass slides were fixed with 10% phosphate buffered formalin
(Sigma) at room temperature for 15 min. Slides were washed twice with
phosphate buffered saline (PBS), permeabilized with 0.5% Triton X-100
(Sigma) for 5 min at room temperature, washed twice with PBS, blocked
with 2% bovine serum albumin (Sigma) for 1 h at room temperature, and
then treated with primary antibodies (Supplemental Table 3) overnight
at 4 �C. Slides were washed with PBS five times before application of
secondary antibodies (dilution 1:100) to the same species as the primary
antibodies and conjugated to a fluorescent probe (Jackson Immuno
Research) as well as 5 μg/ml 4’,6-diamidina-2-phenylindole (DAPI,
Sigma) for 45 min at room temperature followed by five washes with
PBS. OPDA (20 mg/ml, o-phenylenediamine dihydrochloride (Sigma) in
1M Tris, (pH 8.5 and 10% glycerol) was applied to slides for preservation
of fluorescence and slides were coverslip mounted. Imaging was per-
formed in the Advanced Light Microscopy Core part of the Neuro Tech-
nology Center at University of Colorado Anschutz Medical Campus
supported in part by Rocky Mountain Neurological Disorders Core Grant
Number P30 NS048154 and by Diabetes Research Center Grant Number
P30 DK116073.

Quantitation of immunohistochemistry. Quantitation of the area
occupied by a particular-colored stain was carried out using Slidebook
software (Intelligent Imaging Innovations Inc., Denver, CO).

Statistical analysis. Quantitative data are presented as mean þ/-
SEM. An unpaired Student t-test was used for statistical comparison be-
tween control and treatment groups. A P-value of <0.05 was considered
significant.
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