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Abstract: Background: Exposure to air pollution is associated with acute pediatric asthma exacerba-
tions, including reduced lung function, rescue medication usage, and increased symptoms; however,
most studies are limited in investigating longitudinal changes in these acute effects. This study
aims to investigate the effects of daily air pollution exposure on acute pediatric asthma exacerba-
tion risk using a repeated-measures design. Methods: We conducted a panel study of 40 children
aged 8–16 years with moderate-to-severe asthma. We deployed the Biomedical REAI-Time Health
Evaluation (BREATHE) Kit developed in the Los Angeles PRISMS Center to continuously monitor
personal exposure to particulate matter of aerodynamic diameter < 2.5 µm (PM2.5), relative humidity
and temperature, geolocation (GPS), and asthma outcomes including lung function, medication
use, and symptoms for 14 days. Hourly ambient (PM2.5, nitrogen dioxide (NO2), ozone (O3)) and
traffic-related (nitrogen oxides (NOx) and PM2.5) air pollution exposures were modeled based on
location. We used mixed-effects models to examine the association of same day and lagged (up to
2 days) exposures with daily changes in % predicted forced expiratory volume in 1 s (FEV1) and %
predicted peak expiratory flow (PEF), count of rescue inhaler puffs, and symptoms. Results: Partici-
pants were on average 12.0 years old (range: 8.4–16.8) with mean (SD) morning %predicted FEV1 of
67.9% (17.3%) and PEF of 69.1% (18.4%) and 1.4 (3.5) puffs per day of rescue inhaler use. Participants
reported chest tightness, wheeze, trouble breathing, and cough symptoms on 36.4%, 17.5%, 32.3%,
and 42.9%, respectively (n = 217 person-days). One SD increase in previous day O3 exposure was as-
sociated with reduced morning (beta [95% CI]: −4.11 [−6.86, −1.36]), evening (−2.65 [−5.19, −0.10])
and daily average %predicted FEV1 (−3.45 [−6.42, −0.47]). Daily (lag 0) exposure to traffic-related
PM2.5 exposure was associated with reduced morning %predicted PEF (−3.97 [−7.69, −0.26]) and
greater odds of “feeling scared of trouble breathing” symptom (odds ratio [95% CI]: 1.83 [1.03, 3.24]).
Exposure to ambient O3, NOx, and NO was significantly associated with increased rescue inhaler
use (rate ratio [95% CI]: O3 1.52 [1.02, 2.27], NOx 1.61 [1.23, 2.11], NO 1.80 [1.37, 2.35]). Conclusions:
We found significant associations of air pollution exposure with lung function, rescue inhaler use,
and “feeling scared of trouble breathing.” Our study demonstrates the potential of informatics and
wearable sensor technologies at collecting highly resolved, contextual, and personal exposure data
for understanding acute pediatric asthma triggers.

Int. J. Environ. Res. Public Health 2022, 19, 3578. https://doi.org/10.3390/ijerph19063578 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19063578
https://doi.org/10.3390/ijerph19063578
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-7974-4309
https://orcid.org/0000-0003-2103-1706
https://doi.org/10.3390/ijerph19063578
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19063578?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 3578 2 of 17

Keywords: personal air pollution; pediatric asthma; sensors; GPS; mobile health; PRISMS

1. Introduction

Asthma affects more than 25 million Americans, representing 8% of adults and 7% of
children [1]. Asthma prevalence has been increasing over the last few decades in all age,
sex, and racial groups, especially in children [2]. Children with asthma are significantly
burdened by asthma morbidity, with higher rates of emergency department visits, hospi-
talizations, and deaths [3,4]. A large proportion of the asthma burden is the consequence
of poor asthma control [5]. Children with poorly controlled asthma report a decreased
health-related quality of life [6]. Asthma guidelines emphasize the importance of achieving
asthma control to minimize or prevent exacerbations; however, several asthma triggers are
known to exacerbate asthma resulting in increased symptoms, reduced lung function, and
the need to use rescue inhaler medications [7,8]. Major determinants of the severity and per-
sistence of asthma described in the literature include genetics [9], atopy [10], pollution [11],
environmental tobacco smoke [12], respiratory infections [13], etc.

Environmental exposures, including air pollution and reduced temperature or humid-
ity, are among the many recognized asthma triggers [14]. Previous studies exposure to
ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM) may induce or aggravate
asthma [15], and air pollution exposure is associated with increased emergency department
visits for asthma [16], reduced %predicted forced expiratory volume in 1 s (FEV1) [17],
rescue medication use [18], and increased cough and wheeze symptoms [19].

Evidence on within-person acute effects (daily to sub-daily) of air pollution exposure
on asthma is more limited than evidence on chronic effects, largely because of the challenges
involved in collecting highly resolved exposure and outcome information over extended
periods of time at a personal level. However, advances in mobile health (mHealth) tech-
nologies including wearables, sensors, smartphone applications (apps), and informatics are
enabling these studies. Toward this goal, the Biomedical REAL-Time Health Evaluation
(BREATHE) Kit was developed in the Los Angeles Pediatric Research Using Integrated
Sensor Monitoring Systems (PRISMS) Center as a sensor-based informatics platform for
environmental health studies of pediatric asthma to enable such studies [20]. In this first
analysis, we deployed the BREATHE Kit in a panel study aimed to investigate the asso-
ciation of acute (daily) air pollution exposure with risks of reduced lung function, rescue
inhaler use, and increased symptoms in children with moderate-to-severe asthma [20].
Subsequent research will expand these analyses to investigate the association of sub-daily,
acute, and peak exposures on pediatric asthma risk.

2. Materials and Methods
2.1. Study Design and Population

We recruited 40 children with moderate-to-severe asthma from the University of Cali-
fornia, Los Angeles Pediatric Asthma Center of Excellence clinics located in Los Angeles,
CA, and Santa Monica, CA, from February 2019 through December 2019. Eligibility criteria
included English-speaking children aged 8–16 years with doctor-diagnosed asthma. Par-
ticipants were prescreened for eligibility based on their medical records and recruited by
a dedicated study coordinator within the clinic during their routine appointments. Each
child was given a Biomedical REAL-Time Health Evaluation (BREATHE) Kit [20] (Figure 1),
which included an Android smartphone (Samsung S4) with a custom app to display sensor
data and deliver Ecological Momentary Assessment (EMA) surveys; a smartwatch (Mo-
torola Moto 360) with a custom app; an Airbeam I (HabitatMap) personal air pollution
exposure sensor (measuring PM2.5 particulate matter less than 2.5 µm in aerodynamic di-
ameter, relative humidity, and temperature); handheld spirometer (Asma-1 BT, Vitalograph
Inc., Lenexa, KS, USA); rescue and control medication inhaler sensors (Propeller Health,
Inc., Madison, WI, USA) matched to their medication regimen. Every data point collected
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with the BREATHE Kit is geotagged with latitude and longitude coordinates and location
metadata and timestamped, as described in more detail in Bui et al. [20].

Figure 1. The Biomedical REAL-Time Health Evaluation (BREATHE) Kit developed in the Los
Angeles PRISMS Center.

Children and their caretakers were trained on how to properly use and charge the
BREATHE Kit and its components in the clinic, including how to initiate and perform
proper spirometry maneuvers, respond to smartphone surveys, charge devices, and verify
data communications connectivity. The day following recruitment, a detailed baseline
questionnaire was conducted over the phone with the child and their caregiver to collect
asthma-related health and environmental data (e.g., typical activity patterns of the child,
household ventilation conditions, indoor sources of air pollution, etc.).

Subjects were monitored for 14 days during which data collection and transmission
status were continuously monitored in real time by the research coordinator in a dedicated
researcher dashboard. When the researcher dashboard indicated sensors were offline
or missing data for an extended period of time (generally 1+ days), participants were
contacted to help troubleshoot issues or encourage compliance with data collection. Once
the monitoring period was completed, participants mailed their kits back in prelabeled
packages and completed an interviewer-administered exit survey over the phone asking
about their experience with the BREATHE Kit and the study. The institutional review
board of the University of California Los Angeles approved the study protocol (Protocol
#15-001402). Informed consent and assent were obtained in the clinic from the primary legal
guardian accompanying the child and the child participant, respectively, upon recruitment.

2.2. Asthma Outcomes
2.2.1. Lung Function

Subjects measured their forced expiratory volume in 1 s (FEV1) and peak expiratory
flow (PEF) twice a day at home using the Vitalograph Asma-1 BT Bluetooth-enabled
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monitor. The handheld device provided immediate feedback (beeping tone and visual
symbol on display) to indicate when a “good” maneuver was obtained. These data on
maneuver quality were captured with the lung readings and transmitted to the BREATHE
Kit in real time. Participants were instructed to collect three “good” maneuvers in the
morning and in the evening every day, with up to six attempts per session, at the same time
every day. Morning and evening measurement times were decided upon in the clinic during
recruitment based on typical wake and sleep times, within predefined time windows.

The maximum (best effort) lung function was calculated from at least two reproducible
maneuvers (as the average of the two) and selected for analysis. If no reproducible value
was found, the maximum value was selected. We calculated % predicted lung function
based on age, sex, and height for FEV1 and PEF based on equations from Knudson et al. [21].

We also fit a linear regression of FEV1 measured using clinical-grade spirometers
(Morgan rolling seal LT spirometers, Morgan Scientific, Inc., Haverhill, MA, USA) at the
clinic during the recruitment appointment (or closest date retrieved from medical records
when not scheduled for the same day) on FEV1 measured after coaching with the Asma-
1 BT in the participant’s BREATHE Kit to assess the correlation between the two as an
indicator of data quality.

2.2.2. Inhaler Use

We provided Bluetooth®-enabled Propeller Health Inc. inhaler sensors integrated
with the BREATHE Kit to track puffs of controller and rescue inhaler dispensed. Sensors
were attached to the participant’s medications, tested for data connectivity, and demon-
strated in the clinic upon recruitment. We aimed to provide one sensor per regularly
used inhaler medication; however, compatible sensors were not always available for every
type of medication. If participants did not bring their medications to the clinic visit, their
parent/caretaker was provided with a sensor(s) and instructed to attach and test it at home
with phone coaching by the study coordinator. However, this self-setup scenario was more
technically challenging for participants and did not always result in properly connected
sensors. Medication data were summarized on a person-day level for rescue (puffs count,
modeled as outcome) and control inhaler use (binary for any use, adjusted for as potential
confounder in health models described below).

2.2.3. Asthma Symptoms

Self-reported asthma symptoms were collected via ecological momentary assessment
(EMA) surveys deployed on a custom app with the BREATHE Kit using four types of
surveys (morning/end of day, after-school (on weekdays), random (within predesignated
2 h windows), and context-sensitive sensor-triggered) to minimize recall bias, maximize
validity, and capture participants’ symptoms in context. A detailed survey prioritization
and suppression logic was designed to manage the burden on participants while capturing
potentially rare or important events [20]. Briefly, scheduled (morning/after-school/end of
day) and inhaler- or lung-function-sensor-triggered surveys were prioritized. A limit of
≤1 per 10 min (inhaler) and ≤1/h (lung function) were imposed. Random and remaining
context-sensitive surveys (detailed below) were managed with a variety of limits, including
a daily cap (maximum 2/day), ≤1/h, 10 min rest period in between any consecutive
survey, and a 2 h density limit. The following questions based on the Asthma Control Test
(ACT) [22] were asked but rephrased to refer to either the past hour, the previous night, the
day, or during school time.

Morning surveys: Questions on asthma experienced in the previous night were de-
livered at respondents’ wake-up time as determined by participants and their caretaker
at recruitment (between 6.30 a.m. and 9.00 a.m.). These included the following: “Did you
wake up because of your asthma?” (response choices: Yes/No); “How many times did you
use your inhaler during the night?” (Never/One time/Two times/Three times/Four or
more times, which was recorded to Never/One or more times in this analysis).
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Random and sensor-triggered surveys: Additional asthma symptoms were collected
via EMAs surveys sent out at random times within predesignated 2 h windows throughout
the day or triggered in real time based on sensor data streams. Context-sensitive surveys
were triggered after rescue inhaler use, lung function testing, peak in PM2.5 concentrations,
and following a sustained (>5 min) increase in heart rate corresponding to moderate exercise
intensity (defined as heart rate (average in 2 min sliding window) > 0.5 (HRmax − HRrest)
+ HRrest, where HRrest is calculated based on child’s age and resting heart rate collected
at recruitment. These are described in more detail in Bui et al. [20]. Questions on asthma
symptoms in the last hour included the following: “In the past hour, did your chest feel
tight because of asthma?”; “In the past hour, did you feel wheezy (whistling in the chest)
because of asthma?”; “In the past hour, did you have trouble breathing because of your
asthma?”; “In the past hour, did you cough because of your asthma?”; “In the past hour,
how much of a problem was your asthma when you ran, exercised or played sports?”; “In
the past hour, did you feel scared that you might have trouble breathing because of your
asthma?”; and “In the past hour, have you avoided strenuous activities, or had to slow
down or stop exercising because of your asthma?” Response choices for all these questions
were “Not at all/A little/Quite a bit/Very much so” except for asthma being a problem
when exercising which included an additional option of “I did not run, exercise, or play
sports.” Dichotomous symptom variables were created at the daily level as “Not at all” in
all completed surveys versus any other report (A little, Quite a bit, Very much so).

After School: Questions were the same as the random survey described above, except
they started with “At school today” instead of “In the past hour.”

End of the day: This last EMA survey of the day was scheduled for 7:00 p.m. and
collected day-level information. Questions included the random survey symptom questions
(referring to the past hour) as well as the following: “How much of the time did your
asthma keep you from getting as much done at school or at home today?” Response choices
were summarized similarly to the random survey questions at the daily level.

2.3. Environmental Exposure Assessment

Personal monitoring. Personal exposure to particulate matter with aerodynamic di-
ameter < 2.5 µm (PM2.5), relative humidity (RH), and temperature were continuously
measured using the AirBeam 1.0 (HabitatMap) following the BREATHE Kit energy opti-
mization cycle (15 secs data collection every 1 min) [20]. A running median filter (within
a centered window of 10 observations) was applied to personal RH to remove outliers.
As the degree of missingness in personal RH was high, we developed a model to impute
it on the person-day level for use in health models. The imputation used the following
predictors in a mixed-effects model: daily ambient RH (calculated from ambient dew point
and temperature [23], described below), daily ambient temperature, and the visit-level dif-
ference between mean ambient and personal RH. The model included a random intercept
for a subject to account for person-level clustering in the data. It also included a random
slope for ambient RH to allow the relationship between daily ambient and personal RH to
vary by person depending on their typical activity patterns or household characteristics.
The Pearson correlation between daily predicted and measured personal RH was 0.97.

Modeled ambient air pollution and meteorology. An Environmental Data Web Service
was built by Sonoma Technology Inc. (STI, Petaluma, CA, USA), to provide real-time
and archived weather (ambient temperature and dew point) and ambient air pollution
data streams based on user location (determined by GPS), date, and hour to support the
BREATHE Kit. Meteorological data were extracted from the NOAA Real-Time Mesoscale
Analysis (RTMA) hourly, 2.5 km × 2.5 km data assimilation product (https://www.nco.
ncep.noaa.gov/pmb/products/rtma/#RTMA2p5, accessed 5 June 2020). Hourly ambient
air pollution exposures were modeled using inverse-distance squared spatial interpolation
from surrounding regulatory monitors for PM2.5, ozone (O3), nitrogen dioxide (NO2),
nitrogen oxide (NO), and nitrogen oxides (NOx). These reflect hourly concentrations of
air pollutants from general background or regional sources. Los Angeles, CA, has one

https://www.nco.ncep.noaa.gov/pmb/products/rtma/#RTMA2p5
https://www.nco.ncep.noaa.gov/pmb/products/rtma/#RTMA2p5
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of the densest regulatory ambient air monitoring networks in the US, which provided
comprehensive coverage in our study area.

Modeled traffic-related air pollution. Air pollutant concentrations from vehicular
traffic on nearby roads, referred to as traffic-related PM2.5, NOx, and NO2, were modeled
using the RLINE line source dispersion model and provided in the STI web service. RLINE
uses local weather data and a comprehensive database of roadways, annual traffic volume,
and vehicle emission factors for southern California to estimate pollutant concentrations
contributed by on-road mobile source emissions at the participant receptor points [24].

Daily exposure averaging windows. To investigate the association of these exposures
with morning, evening, and day-average outcomes, two averaging intervals were used
to calculate 24 h exposure averages that precede the outcomes as follows: For morning
outcomes such as morning lung function, 24 h averages were calculated starting from
6.00 a.m. the previous day to 6.00 a.m. of the current day. For evening (e.g., evening
lung function) and daily outcomes (e.g., daily average lung function), 24 h averages
were calculated starting from 6.00 p.m. the previous day to 6.00 p.m. of the current
day. The cut points of 6.00 a.m. and 6.00 p.m. were selected because most participants
completed their morning and evening lung function tests after 6.00 a.m. and 6.00 p.m.,
respectively (Supplementary Figure S1). Moreover, 24 h averages were calculated using
30% completeness criteria, which is more relaxed than typical air pollution investigations
utilizing modeled ambient data given the greater chance of missing data using personal
sensors and real-time data transmission.

2.4. Covariate Information

Based on previous air pollution and asthma literature [9–13], we considered the follow-
ing covariates a priori as potential confounders: sex, race, Hispanic ethnicity, caretaker’s
education level, household income, personal and ambient relative humidity and temper-
ature, subject’s person-day level time–activity patterns, asthma medication use, outdoor
physical activities, exposure to smoking (exposure to secondhand smoking in the home
and in utero exposure to maternal smoking), home characteristics (kitchen ventilation,
fuel use, presence of pets) and day of the week. Of this list, only Hispanic ethnicity and
personal relative humidity were selected to be included in the final model since they were
significant predictors, and their inclusion resulted in greater than roughly 10% change
in the main pollutant effect estimate. This decision was guided by a priori selection of
potential covariates and balanced the need to minimize degrees of freedom in the models
and ensure comparable adjustments across health models. Given the importance of asthma
control on the risk of these outcomes, we further adjusted for same-day use of controller
medication in sensitivity analyses as a potential confounder.

2.5. Statistical Analysis

Spearman correlations were calculated to assess correlations between different pol-
lutants given their non-normal distribution. We tested the association between daily air
pollution exposures and lung function (% predicted FEV1 and PEF), the daily count of
rescue inhaler medication use, and asthma symptoms using mixed-effects models with
a random intercept for each subject to account for the repeated-measures design. We
investigated these associations for the preceding 24 h (lag 0) as well as lags 1 and 2 days.
Daily lags followed the 6.00 a.m. to 6.00 a.m. or 6.00 p.m. to 6.00 p.m. definitions explained
above, depending on whether the outcome was assessed in the morning or during the
day/in the evening, respectively. For example, lag 1 was defined as the preceding 25–48 h
and lag 2 as the preceding 49–72 h for daily or evening outcomes.

We reported results as a change in %predicted value for lung function, the rate ratio
for rescue inhaler use, and odds ratios of experiencing symptoms. All effects estimates
were scaled to a standard deviation (SD) increase in each pollutant (based on lag 0 dis-
tributions) to allow standardized inter-pollutant comparisons of health effects. We also
fit two-pollutant models to test whether pollutant effects were potentially confounded by
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co-exposure to another pollutant, in cases in which the two pollutants were not highly
correlated (Spearman correlation < 0.5). Statistical significance was determined based on a
p-value < 0.05. All analyses were conducted in SAS 9.3 (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Descriptive Summaries

Children were 12 years old on average (range 8–16 years, n = 40), 45% female, and
42.5% of Hispanic ethnicity. Descriptive statistics are presented in Table 1 and Supple-
mentary Table S1. All participants were enrolled for 14 days in the study, except for 3
who withdrew and only completed 2, 3, and 5 days of follow-up, respectively. Overall,
1172 spirometry maneuvers were attempted and 887 (76%) were classified as “good”. Of
218 person-days with lung function data, 78 (36%) achieved a minimum of 6 attempts
(3 maneuvers in each of morning and evening test sessions as instructed). Among days with
<6 attempts, a median of three “good” attempts was obtained. On average, %predicted
FEV1 and PEF were lower in the morning and increased in the evening (Table 2). The fitted
regression line between the FEV1 measurements obtained with the Asma-1 BT handheld
spirometer on recruitment day and clinic measurements using clinical-grade spirometers
had an R2 = 0.68 (Supplementary Figure S1). On average, subjects used 1.4 puffs/day of
rescue medication, with a range of 0–24 puffs/day (Table 2 and Supplementary Figure S2).
In general, subjects answered more morning and end-of-day symptom survey questions
compared to random surveys (Table 2).

Table 1. Descriptive statistics of participant characteristics (n = 40).

Characteristics Statistics

Age (years, mean (range)) 12.0 (8.4–16.8)

Sex (n (%))
Female 18 (45.0)
Male 22 (55.0)

Race (n (%))
White 15 (37.5)
Black/African American 2 (5.0)
Black/Not African American 1 (2.5)
Asian 4 (10.0)
Other 15 (37.5)
Missing 3 (7.5)

Hispanic Ethnicity (n (%))
No 19 (47.5)
Yes 17 (42.5)
Missing 4 (10.0)

Caretaker’s highest completed educational grade (n (%))
High school or GED 3 (7.5)
Some college or trade school 9 (22.5)
College 9 (22.5)
Graduate school 15 (37.5)
Missing 4 (10.0)

Total household income per year (n (%))
Prefer not to say 12 (30)
USD 30,000–40,000 2 (5.0)
Over USD 50,000 23 (57.5)
Missing 3 (7.5)

Type of Health Insurance (n (%))
HMO 18 (45.0)
PPO or POS 20 (50.0)
Missing 2 (5.0)
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Table 2. Distributions of outcomes on the person-day level, including lung function, inhaler medica-
tion use, and asthma symptoms.

Lung Function Mean ± SD

Percent-predicted FEV1 (%)
Morning (n = 175) 67.9 ± 17.3
Evening (n = 147) 70.9 ± 17.7
Daily Average (n = 96) 68.7 ± 15.7

Percent-predicted PEF (%)
Morning (n = 175) 69.1 ± 18.4
Evening (n = 147) 73.8 ± 18.3
Daily Average (n = 96) 69.3 ± 15.8

Inhaler Medication Mean ± SD

Number of rescue inhaler puffs per day (n = 324) 1.4 ± 3.5

Number of control inhaler puffs per day (n = 312) 1.5 ± 1.9

Asthma Symptoms n (%)

Did you wake up last night because of your asthma?
No 123 (93.2)
Yes 9 (6.8)

How many times did you use your inhaler during the night?
Never 111 (84.1)
One or more times 21 (15.9)

How much of the time did your asthma keep you from getting as
much done at school or at home today?

Not at all 94 (86.2)
A little/Quite a bit/Very much so 15 (13.8)

Did your chest feel tight because of asthma today?
Not at all 138 (63.6)
A little/Quite a bit/Very much so 79 (26.4)

Did you feel wheezy because of your asthma today?
Not at all 179 (82.5)
A little/Quite a bit/Very much so 38 (17.5)

Did you have trouble breathing because of your asthma today?
Not at all 147 (67.7)
A little/Quite a bit/Very much so 70 (32.3)

Did you cough because of your asthma today?
Not at all 124 (57.1)
A little/Quite a bit/Very much so 93 (42.9)

How much of a problem was your asthma when you ran, exercised,
or played sports today?

Not at all 79 (71.8)
A little/Quite a bit/Very much so 31 (28.2)

In the past hour, did you feel scared that you might have trouble
breathing because of your asthma?

Not at all 152 (81.7)
A little/Quite a bit/Very much so 34 (18.3)

In the past hour, have you avoided strenuous activities, or had to
slow down or stop exercising because of your asthma?

Not at all 155 (83.3)
A little/Quite a bit/Very much so 31 (16.7)

Measured personal exposures had greater missingness than modeled ambient and
traffic-related environmental exposures (Supplementary Table S2). Concentrations of
personal 24 h PM2.5 were highly variable between and within subjects, with a maximum
reaching 64.7 µg/m3 (Supplementary Figure S3). Personal PM2.5 exposure was also more
variable than ambient PM2.5. Personal and ambient PM2.5 were moderately correlated
(Spearman r = 0.39), while personal and traffic-related PM2.5 were weakly correlated
(r = 0.14). Ambient pollutants had moderate-to-high correlations with each other, similar
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to traffic-related pollutants. However, ambient O3 was weakly correlated with remaining
pollutants (Supplementary Table S3).

3.2. Air Pollution and Health Models

Final sample sizes for different outcome models varied based on exposure and outcome
data completeness from n = 39 to 167 person-days (in the ambient O3 (lag 0) and rescue
inhaler use model). Supplementary Table S4 presents results of %predicted FEV1 models
(interpreted as a percentage point change). One SD increase in same-day (lag 0) O3 (9.2 ppb)
was associated with a 4.11% lower [95% CI: −6.86, −1.36] morning %predicted FEV1.
O3 was also significantly inversely associated with evening (−2.65 [−5.19, −0.10]) and
daily average %predicted FEV1 (−3.45 [−6.42, −0.47]). Similarly, lag 1 (previous day) O3
exposure was associated with lower evening (−4.90 [−7.94, −1.85]) and daily %predicted
FEV1 (−4.92 [−8.44, −1.40]); however, only the association with morning %predicted
FEV1 marginally remained at lag 2 (−2.94 [−5.93, 0.05]). For traffic-related pollutants
(PM2.5, NOx, NO2), lag 1 exposure was significantly and inversely associated with morning
%predicted FEV1. Overall, most same-day (lag 0) air pollutant exposures were inversely
associated with morning %predicted FEV1, although some were not significant (Figure 2).

Supplementary Table S5 presents results for %predicted PEF. Previous-day (lag 1)
traffic-related PM2.5 exposure was associated with 3.97% lower [95% CI: −7.69, −0.26]
morning %predicted PEF per SD (0.7 µg/m3). Associations were marginal at lag 1 (−3.35
[−6.89, 0.19]) and lag 2 (−6.27 [−12.75, 0.21]). Traffic-related NOx and NO2 were signifi-
cantly associated with lower morning PEF at lag 1 (traffic-related NOx: −4.91 [−9.28, −0.54],
traffic-related NO2: −4.57 [−8.51, −0.63]). Personal PM2.5 exposure was not significantly
associated with lung function (Figure 2). Adjusting for control inhaler use did not mean-
ingfully change any of the observed results (Supplementary Tables S6 and S7).

Supplementary Table S8 reports associations between rescue inhaler use and air pollu-
tants. Most significant associations were found for same-day (lag 0) exposures. Ambient
air pollutants (PM2.5, O3, NOx, NO, NO2) on lag 0 days were all positively associated with
daily rescue inhaler use; however, this association was not significant for ambient PM2.5
and NO2. An increase of 1 SD (9.2 ppb) in O3 was associated with 1.52 times greater rate
of rescue inhaler use [95% CI: 1.02, 2.27]. In contrast, same-day exposure to traffic-related
PM2.5, NOx, NO2 was significantly negatively associated with rescue inhaler use. However,
these associations became non-significant in two-pollutant models adjusted for O3 (Sup-
plementary Figure S4). Although positive, personal PM2.5 on lag 0 was not significantly
associated with rescue inhaler use.

Supplementary Table S9 presents findings for asthma symptoms. One-SD increase in
traffic-related PM2.5 (lag 0) was significantly associated with 83% (95% CI: 3%, 224%) higher
odds of feeling scared of having trouble breathing because of asthma. Most associations
were variable and not significant for cough, wheeze, chest tightness, trouble breathing,
avoiding strenuous activities because of asthma, and asthma interfering with daily activities,
although sample sizes for symptoms were more limited than the other outcomes (ranged
from 52 person-days for personal PM2.5 models to maximum 154 person-days for other
pollutants). Finally, Supplementary Table S10 presents results for all outcomes in models
adjusted for parental asthma status, caretaker education level, Hispanic ethnicity, and
personal relative humidity to compare to the final models presented in this analysis.
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Figure 2. Association of daily air pollution exposure (lag 0) with %predicted FEV1 and PEF. Effect
estimates and 95% confidence intervals are scaled to a standard deviation change in exposure. Effect
estimates were scaled to a standard deviation change in pollutant concentrations as follows: personal
PM2.5: 9.1 µg/m3; traffic-related PM2.5: 0.7 µg/m3; traffic-related NOx: 14.7 ppb; traffic-related NO2:
7.1 ppb; ambient PM2.5: 3.7 µg/m3; ambient O3: 9.2 ppb; ambient NOx: 6.1 ppb; ambient NO: 2.4 ppb;
ambient NO2: 4.6 ppb.

4. Discussion

Our findings revealed significant associations between same-day and previous-day
exposure to air pollution and risk of reduced lung function, rescue inhaler use, and symp-
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toms in a panel study of 40 children with moderate to severe asthma in Los Angeles, CA. In
general, we found the strongest associations for O3 and traffic-related PM2.5 with lung func-
tion, and with ambient pollutants and rescue inhaler use. Although limited in sample size,
the risk of feeling scared of having trouble breathing because of asthma was also associated
with traffic-related PM2.5 exposure. In contrast, total personal PM2.5 exposure—although
marginal in some cases—was not associated with any of our outcomes. To the best of our
knowledge, our study is the first to deploy a wearable, sensor-based informatics platform
to monitor and model such an extensive suite of environmental exposures and potential
acute asthma triggers at the personal level, in context, and with such high spatiotemporal
resolution. As such, important data considerations, methodological challenges, and lessons
learned will also be shared and discussed below.

For lung function, our findings generally agree with the literature, although the effects
of ambient versus traffic-related pollutants were more pronounced for FEV1, while the
inverse was true for PEF. Several studies reported short-term exposure to O3 was associated
with lung function decrements [25–28], which is consistent with our O3 and FEV1 results.
Ozone is a strong oxidant that is formed in the troposphere via chemical reactions in the
presence of precursor pollutants, such as volatile organic compounds, nitrogen oxides, and
solar radiation [29]. Ozone concentrations are generally higher outdoors compared with
indoors; therefore, human exposures to ozone mainly occur in the outdoor environment [30].
The World Health Organization (WHO) [31] states that there is more consistent evidence
on the short-term rather than the long-term effects of O3, which include increases in daily
mortality and morbidity, especially for respiratory causes [32]. As up to 90% of inhaled
ozone is absorbed in the respiratory tract along the bronchial tree [33], O3 responses are
likely initiated and localized in the respiratory tract lining fluid due to the low solubility
and high reactivity of O3 [34]. Once inhaled, O3 reacts with proteins and lipids of the lung
lining fluid resulting in cytokines generation leading to an increase in lung permeability
and edema development [35]. Consequently, O3 exposure is believed to result in acute
oxidative stress and lung inflammation, contributing to respiratory morbidities such as
reduced lung function [36]. The range of magnitude in the association we found between
short-term O3 and evening FEV1 is comparable to previous studies, with a lower limit
of −5.2% expected reduction in %predicted FEV1 (−2.65 [−5.19, −0.10]). For example,
a previous literature review reported that short-term O3 exposure was associated with a
wide range of reduction in %predicted FEV1 in children (−0.01% to −9% reduction per
10 ppb change in O3), for periods ranging from 1 day to 2 weeks [37]. Similarly, expected
changes as large as −9.3% reduction in morning %predicted FEV1 and −9.3% reduction in
morning %predicted PEF were seen with lag 1 traffic-related NOx exposure (lower 95% CI
limit, Supplementary Tables S4 and S5). Similarly, rate ratios of rescue inhaler use were as
high as 2.3 for same-day ambient O3 exposure and 2.4 for same-day ambient NO exposure
(upper 95% CI, Supplementary Table S8). The full confidence interval should, therefore, be
taken into consideration in the interpretation of our results, which could range from subtle
to more noticeable effects on morbidity and quality of life for children with asthma on a
day-to-day basis.

A 2001 study in The Netherlands reported significant decreases in PEF in children
following exposures to PM10 (lags 1 and 3 days), NO2 (lags 0 and 1), and NO (lag 3) [38].
In our study, we found same-day and up to 2 days lag exposure to traffic-related pollutants
(PM2.5 on lag 0, 1, 2 days; NOx and NO2 on lag 1 day) was associated with reduced
morning PEF. Traffic is one of the most important sources of NOx in southern California,
and a large contributor to overall PM2.5 concentrations [38]. Although other pollutants
could be present in the near-roadway mixture and could contribute to these effects, in
general, our findings seem consistent with the literature. Moreover, Li et al. [39] reviewed
more than 30 panel studies on the effects of air pollution on children’s lung function
and respiratory symptoms. They reported that PM and NO2 showed more significant
associations with PEF, but findings for many outcomes depended on the number of lag
days similarly to our results.
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In addition, previous studies investigated the biological mechanisms contributing to
decreased lung function as a result of PM2.5 exposure. They reported that PM2.5 could reach
the alveoli, and up to 50% may remain in the lung tissue [40]. Additionally, because of their
deep deposition in the alveoli, their removal or clearance rate (via mucociliary transport) can
be slow [41]. This further supports lagged effects and could provide actionable information
to physicians to consider warning pediatric asthma patients and parents to be more vigilant
about symptom monitoring both on particular poor air quality days, as well as for the
following 1–2 days, to adequately prepare for potential symptom flares.

Similarly, several previous studies reported daily associations of ambient PM, O3, and
NO2 exposure with rescue inhaler use [42,43], consistent with our findings for O3, NOx,
and NO. However, ambient PM2.5 was positively but non-significantly associated with
rescue inhaler use in our study. Existing evidence suggests that short-term exposure to O3
and NO2 can cause airway inflammation, reduced pulmonary function, and exacerbation
in individuals with asthma [44]. While consistent with the literature, it is possible our
study was underpowered to detect significant associations with ambient PM2.5. Exposure
measurement error inherent in the ambient and traffic-related estimates could also lead
to weaker statistical power to detect effects in our study. Ambient PM2.5 does not fully
capture personal exposure to PM2.5 of outdoor origin. Ambient and personal PM2.5 were
weakly correlated in our data (r = 0.39), which also suggests personal PM2.5 exposures in
our population are heavily impacted by indoor and personal activity-related sources and
do not correlate with outdoor variations in ambient PM. For traffic-related PM2.5, NO and
NOx, we found increased exposure to those pollutants was associated with a decreased
rate of rescue inhaler use. However, after we adjusted ozone in the same model, these
associations became non-significant, but the point estimate was still negative. The possible
explanation could be residual confounding due to other co-occurring exposures, behaviors,
or time–activity patterns.

As for symptoms, sample sizes available for analysis were generally much lower
relative to other sensor-measured outcomes, likely due to the additional burden involved
in actively responding to multiple EMA surveys during the day. We only found significant
associations between exposure to traffic-related PM2.5 and feeling scared of having trouble
breathing. Despite a roughly similar sample size, we did not find significant associations
of traffic-related PM2.5 with daily trouble breathing symptoms. One possible explanation
could be the increased perception of risk or anticipation of an asthma attack when children
are exposed to traffic for long periods of time, perhaps based on prior experiences, and
thus might increase stress and anxiety levels. Several studies reported the associations
between increased air pollution levels and asthma symptoms, and limited research has
been conducted on the symptom of trouble/difficulty breathing. One study in Spokane,
WA, investigated exposure to PM in several sizes and several asthma symptoms in children,
including trouble breathing [45]. They found positive but non-significant results, similar to
our study. We also found positive but non-significant associations between ambient PM2.5
and some traffic-related air pollutants with cough, wheeze, asthma being a problem when
running, exercising, or playing sports. Cough is a commonly studied asthma symptom
in many previous studies [46–48], but with inconsistent findings. One study in New York
found stronger daily associations of PM of indoor origin with wheeze, while O3 and PM of
outdoor origin were more strongly associated with cough [19]. However, given the limited
sample size for symptoms and personal PM2.5 in our study, we were not able to further
model or disentangle the effects of PM2.5 by origin or source. The higher concentrations
and variability of personal PM2.5, compared with ambient, further illustrate the diverse
and complex sources, behaviors, and factors that contribute to true personal exposure
which are often missed by using ambient estimates. Since PM composition and toxicity can
vary considerably based on its contributing sources, this is an important future direction
of research.

As for exposure patterns, ambient pollutants were more highly correlated with per-
sonal PM2.5 exposure than traffic-related pollutants. This could be due to participants’
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time–activity patterns and home operation characteristics (e.g., window opening), leading
to infiltration of outdoor air pollution indoors. It is also possible that study participants
did not spend too much time in transit or commuting during the monitoring period, or
when they did, they were more isolated or protected from traffic emissions by operating air
conditioners and closing car windows. We did not have data to ascertain these behaviors
but believe this is possible for a pediatric population with moderate-to-severe asthma living
in Los Angeles, CA.

Our study includes a number of limitations. First, the personal PM2.5 exposure was
measured using commercial grade sensors that were challenging or not feasible to regularly
calibrate while the study was operational. Low-cost optical PM sensors such as the one used
in this study tend to overestimate PM2.5 concentrations largely due to relative humidity
interferences. In addition, they do not capture particles <~300 nm in aerodynamic diameter,
and their response can vary based on the actual chemical composition and size distribution
of the aerosol mixture [49]. Whether or not the overestimation can have any effect on
the health model findings could be assessed in future analyses; however, it is unlikely to
be differential in relation to the outcome. Second, although we relied on real-time data
streaming checks built into the researcher dashboard to regularly manage and encourage
compliance with data collection, on top of the built-in engagement features of the BREATHE
Kit, it is still possible that participants were not always fully compliant in using or charging
their devices or not always allowed to take them to school. These challenges—while
common in personal monitoring studies—require more research in terms of encouraging
and rewarding compliance and designing mHealth platforms with users in mind to balance
burden with quality, completeness, and representativeness of data. We also recommend
careful evaluation of temporal and spatial patterns of data missingness in future mHealth
studies to determine whether these might correlate with behaviors or outcomes being
assessed and might introduce bias. For example, device use or battery power might
correlate with certain times of day, for example, or certain microenvironments (e.g., home)
might be more represented in the data.

In addition, the generalizability of our findings is potentially limited. Our participants
were recruited from a pediatric asthma specialty clinic and had moderate-to-severe asthma.
As such, triggers and factors associated with exacerbations in this population might not
necessarily translate to children with mild asthma or well-controlled asthma. In addition,
the socioeconomic characteristics of our study sample are likely not representative of the
general population or more disadvantaged or environmentally burdened populations,
as 37.5% of participants’ caretakers had graduate-level degrees, 57.5% of participants’
caretakers reported over USD 50,000 household income annually, and all participants
had health insurance coverage. Finally, selection bias may have influenced our results if
parents living in areas with higher air pollution exposure were also more concerned about
its impact on their child’s asthma and therefore more likely to participate in our study.
However, it is difficult to ascertain the direction of this potential selection bias.

Strengths of our study include a repeated-measures design that allowed us to inves-
tigate associations at the daily, within-person level over an extended period of 14 days,
in a highly susceptible pediatric asthma population. This is also the first study up to our
knowledge to deploy a sophisticated sensor-based informatics platform that allowed us to
continuously collect very highly spatiotemporally resolved, contextualized, and personal
exposure, behavior, and outcome information. The BREATHE Kit was designed to mini-
mize recall bias in the outcome and behavior data, ascertain context, and reduce exposure
measurement error. GPS tracking and integration of modeled environmental exposure data
also enabled us to expand the suite of exposures that could be investigated and provided
a robust sample size for detecting associations, compared with personal measurements
that had the highest degree of missingness. As sensors continue to advance, we expect
battery life and burden issues to continue to improve, allowing longer deployments and
more complete data streams.
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In conclusion, we found evidence of daily air pollution effects on lung function, rescue
inhaler use, and feeling scared of having trouble breathing because of asthma using a longi-
tudinal panel design. Our study provides further support for considering the importance
of air pollution in the management and treatment of asthma. Our study demonstrates
how informatics platforms such as our Los Angeles PRISMS Center BREATHE Kit can
enable researchers to collect and integrate highly resolved measured and modeled data for
investigating acute triggers of pediatric asthma or risk factors for other chronic diseases.
Future directions of research include incorporating activity space-based exposures to cap-
ture conditions within actual spaces participants visited throughout the day and investigate
their relationships with different metrics of personal exposures, as well as investigating
within-day, within-person associations between exposures, behaviors, and health outcomes
in context.
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