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Prostate cancer is worldwide the sixth leading cause of cancer related death in men thus early detection and successful treatment
are still of major interest. The commonly performed screening of the prostate-specific antigen (PSA) is controversially discussed,
as in many patients the prostate-specific antigen levels are chronically elevated in the absence of cancer. Due to the unsatisfying
efficiency of available prostate cancer screening markers and the current treatment outcome of the aggressive hormone refractory
prostate cancer, the evaluation of novel molecular markers and targets is considered an issue of high importance. MicroRNAs are
relatively stable in body fluids orchestrating simultaneously the expression of many genes. These molecules are currently discussed
to bear a greater diagnostic potential than protein-coding genes, being additionally promising therapeutic drugs and/or targets.
Herein we review the potential impact of the microRNA let-7 family on prostate cancer and show how deregulation of several of its
target genes could influence the cellular equilibrium in the prostate gland, promoting cancer development as they do in a variety
of other human malignant neoplasias.

1. Introduction

Prostate cancer (PC) is a heterogeneous disease ranging from
an asymptomatic to a fatal systemic malignancy [1]. Accord-
ing to the World Health Organization (WHO) 1,111,689 men
were estimated to be diagnosed with PC in the year 2012
(http://globocan.iarc.fr/). Accounting worldwide for 6.6%
(307,471) of all cancer death in men in 2012, PC is one of the
most common malignant neoplasias and the sixth leading
causeof cancer relateddeath inmen (http://globocan.iarc.fr/).

The development of PC is considered to be a multi-
step process initiated by genetic and epigenetic changes
[1]. Human PC is commonly accepted to be an androgen
dependent malignancy.

An analysis of PC related metastatic pattern in 1,589
patients by Bubendorf et al. revealed that 35% of the analyzed
tumors spread to other organs with preference to the bones
(90%), lungs (46%), liver (25%), pleura (21%), and adrenals
(13%) [2].

The androgen deprivation therapy is actually the most
effective palliative standard treatment for primary advanced

PCs with bone metastasis (effective in up to ∼90% of
patients). However, the great majority of patients relapse
subsequently due to the development of castration resistance
[3].

Since the introduction of the prostate-specific antigen
(PSA) test in the 1990s, the number of diagnosed cases has
been rapidly rising being initially associated with a reduced
mortality. However, the recent decline in PC relatedmortality
rates is now being discussed to be partially explained by
the improved treatment and earlier diagnosis due to a broad
standard PSA screening in economically developed countries
[4, 5]. As the standard PSA screening in the early diagnosis of
human PC remains a very controversial issue, novel, reliable
molecular PC markers are needed [6–8].

A promising marker candidate gene is the miRNA let-7,
which was reported to be down regulated among others in
human PC [9–11]. Further, the reconstitution of the let-7
expression resulted in suppression of PC cell proliferation
[10, 12]. In general a single miRNA is able to regulate a huge
number of genes. Concerning let-7 the respective acting ways
are actually not entirely deciphered.
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Nevertheless, it is to be expected that a deeper under-
standing of the molecular interactions of let-7 and associated
genes will significantly contribute to the development of
novel diagnostic and therapeutic treatmentmodalities for PC.

Due to the complex regulation mechanisms of let-7 and
its potential role in PC development and relapse the present
review highlights let-7 and its direct and downstream targets
in the context of PC.

2. Micro RNA Let-7 Family

MicroRNAs (miRNAs) are small, non-protein-coding RNAs
derived from long, endogenously expressed primary RNA
(pri-miRNA) molecules. These pri-miRNAs are processed
by the nuclear enzyme Drosha to precursor RNAs (pre-
miRNAs), exported by Exprotin-5 [13] and maturated by the
cytoplasmic enzyme Dicer [14]. Finally the guide strand of
the mature miRNA is incorporated into the RNA-induced
silencing complex (RISC), which blocks the translation of
the target mRNA by binding to its 5󸀠-, 3󸀠-prime, or exon
regions [15, 16].The passenger strand is usually degraded [17]
(Figure 1).

Mature miRNAs are known to be part of the gene
expression regulating machinery at transcriptional [18, 19]
and as well posttranscriptional level [13]. It was reported that
a single miRNA can orchestrate the expression of several
genes and a single gene can be regulated by a set of different
miRNAs [20–22]. Several observations suggest that more
than 60%of all protein coding genes are regulated bymiRNAs
[23].

One of the first described members of the large class
of non-protein-coding RNAs is let-7 which was the second
miRNA discovered and designated as lethal-7 (let-7) accord-
ing to the phenotype of a let-7 deficient C. elegans mutant
[20]. Soon thereafter, further let-7 homologs were identified
in a variety of species ranging from vertebrates to mollusks
[24].

In contrast to “less complex” organisms such as worms,
vertebrates show a higher number of let-7 isoforms coded
by different genes [16]. In humans, 13 let-7 family precursor
miRNAs were described (let-7a-1, let-7a-2, let-7a-3, let-7b,
let-7c, let-7d, let-7e, let-7e, let-7f, let-7g, let-7i, miR-98, and
mir-202) which code for 10 different mature let-7 miRNA
isoforms [25].

Although the role of let-7 is still not fully understood, it is
evident that the let-7 family members have a distinct expres-
sion pattern in animal development [26]. In the embryonic
stage the let-7miRNAswere found to be barely detectable, but
having an increased expression in differentiated cells [20, 27].
Furthermore, aberrant let-7 expression was associated with
a variety of human diseases as, for example, cardiovascular
diseases [28], liver fibrosis [29], lung diseases [30], and cancer
[9–12, 26, 31–34]. Interestingly several let-7 family members
were found to be located at fragile sites of human chromo-
somes potentially contributing to aberrant let-7 transcript
levels [35].

Cancer initiation, progression, and aggressiveness are
hypothesized to be driven by cancer stem cells (CSCs)

[36, 37]. Inflammatory microenvironment [38] as well as
epithelial-to-mesenchymal transition (EMT), which is tightly
linked with CSC biology [39], seems to play a substantial
role in cancer etiology as well. Remarkably, a linkage between
these factors is the let-7 miRNA family. As described above
let-7 was shown to be downregulated in prostatic CSCs [36]
whereas reconstitution of the let-7 suppressed the growth of
PC cells [10, 12]. Additionally, a direct causal link between
cancer and inflammation is given by the association of let-
7, IL6, and NF𝜅B, which are major players involved in the
epigenetic switch from inflammation to cell transformation
[31].The connection between EMTand let-7 is represented by
the HMGA1 and HMGA2 genes, which are directly regulated
by let-7 and were found to be implicated in EMT [40, 41].

Further, miRNAs of the let-7 family were reported to
directly, negatively regulate IL6 [24], NRAS [42], c-Myc,
HMGA1 [43, 44], HMGA2 [45], and CCND2 [11]. Notably,
these let-7 targets are involved in a wide range of diverse
cellular processes interwoven with let-7 and each other in a
fine balanced way (Figure 10).

The c-Myc protein regulates the biogenesis of let-7 by
stimulating Lin28 [46], Lin28 in turn blocks the maturation
of let-7 [47]. Additionally, c-Myc stimulates the expression of
HMGA1 [48], AR [12], and IL6 [49]. NRAS is suggested to
have an impact on HMGA2 biogenesis [45]. HMGA2 on the
other hand influencesHMGA1, its gene product in turn regu-
lates the expression of c-Myc [50] and HMGB1 [51]. HMGB1
was found to bind the AR promoter [52], AR protein was
described itself to stimulate let-7 expression [53] (Figure 10).

Interestingly, the let-7 family [10, 11] and some of its above
mentioned targets were already found to be implicated in
PC. As let-7 is linked with all these protein-coding genes
a deeper insight into these connections is of great interest.
Thus, these interactions are reviewed more detailed in the
following parts.

3. HMGA1

The high mobility group proteins (HMG) are chromatin
associated nonhistone proteins constituting three superfam-
ilies (HMGA, HMGB, and HMGN) which are classified
by their characteristic functional DNA-binding motifs [54].
Expression of these proteins was described to be involved in
a variety of biological processes as, for example, transcription,
embryogenesis, differentiation, neoplastic transformation,
apoptosis, and inflammation [52, 55, 56].

In human neoplasias the HMGA genes are among the
most commonly rearranged genes [57]. Deregulation of the
HMGA1 expression was described in human PC [58, 59],
lung cancer [60], and breast cancer cells [61]. Its oncogenic
property is speculated to be partlymediated through the cyto-
plasmic relocalization of the HIPK2 which is a proapoptotic
activator of the tumor suppressor p53 [51] (Figures 2 and 10).
HMGA1 was reported to enhance the proliferation rate and
invasion of PC cells [62, 63] potentially through the impli-
cation in epithelial-to-mesenchymal transition (EMT) [61].
In line with this, HMGA1 knock down in the human triple-
negative breast cancer cell lines MDA-MB-231 and Hs578T
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Figure 1: Schematic overview of the miRNA maturation and the way of function in eukaryotic cells. The endogenously expressed primary
miRNA (pri-miRNA) is processed in the nucleus of a cell by the enzyme Drosha. The emerging precursor miRNA (pre-miRNA) product is
exported into the cytoplasm by Exportin-5 and maturated by Dicer. Finally the guide strand is incorporated into the RNA-induced silencing
complex (RISC), which blocks the translation of the target mRNA.

repressed themesenchymal gene SNAI1 and stimulatedCDH1
expression [40] (Figures 2 and 10), both of which are involved
in EMT [64, 65]. Furthermore, HMGA1 was reported to
drive tumor progression by reprogramming cells to a stem-
cell-like state [40]. In accordance, Shah et al. reported in
human embryonic stem cells (hESCs) a significant downreg-
ulation of the stemness-associated genes OCT4, Sox2, Lin28,
and c-Myc 96 h after HMGA1 repression [50]. Interestingly
HMGA1 is not only stimulating c-Myc expression [50] it was
also reported to be itself induced by c-Myc [48] (Figures
2 and 10). It is remarkable that HMGA1 is implicated in
the upregulation of several miRNAs in murine embryonic
fibroblasts. Among thesemiRNAs is themiR-196a-2,which in
turn is predicted to target its sister geneHMGA2 [66] (Figures
2 and 10). Furthermore, Hillion and colleagues reported a
positive correlation between HMGA1 and STAT3 in a subset
of primary human acute lymphoblastic leukemia samples
[67]. In line with this, HMGA1 was described to bind the
STAT3 promoter and to upregulate its expression in malig-
nant human hematopoietic cells [67] (Figures 2 and 10). The
transcription factor STAT3 mediates uncontrolled growth,
angiogenesis, and survival of cells and has a great potential
as target in cancer therapies [68]. Remarkably, Iliopoulos
et al. identified STAT3 binding sites in the promoters of
the miRNAs miR-181b and miR-21 [69] (Figures 2 and 10).
These tiny regulators in turn where found to block PTEN
(Figures 2 and 10), stimulating the activity of NF𝜅B [69]. The
tumor suppressor PTEN functions as an antagonist of PI3K
by dephosphorylating its product PIP3 [70] (Figure 10).

The HMGA1 and HMGA2 genes were reported to be
highly expressed during embryogenesis, reexpressed in sev-
eral cancer types but to be absent or not detectible in most
of the adult healthy tissues [57, 71]. The expression of both
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Figure 2: Overview of the described interactions between let-7 and
its direct target HMGA1 with other genes.

HMGA1, HMGA2, and of its regulator let-7 was shown to
be negatively correlating in gastroenteropancreatic neuroen-
docrine tumors [44] and retinoblastomas [72]. In accordance
they were found to be directly, negatively regulated by let-7
[45, 73, 74] (Figures 2 and 10).

4. HMGA2

Comparable to the described HMGA1 knock down, the
repression of HMGA2 in the human PC cell line PC-3
induced an upregulation of CDH1 indicating an important
role in EMT [41]. SNAI1 and SNAI2 are repressors of CDH1
and were shown to be directly activated by HMGA2 [45]
(Figures 3 and 10).
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Figure 3: Association of the HMGA2/let-7 axis with the regulation
of genes involved in EMT and miRNAs.

Similar to HMGA1, an upregulation of HMGA2 was
reported in human lung and breast cancers [75, 76] as well
as in a subset of canine PCs [77]. Furthermore, HMGA2
was recently described to modify gene expression not only
as protein but as well as a competing endogenous RNA
(ceRNA) by acting as a decoy for mature let-7 miRNAs
[78]. Interestingly, a stimulating HMGA2 influence on the
expression of its sister protein HMGA1 was found in rat
epithelial thyroid cells [79], thus constituting a feedback loop
by the stimulation of its suppressor, the miRNA-196a-2 [66]
(Figures 3 and 10). Remarkably HMGA2 was described to
bear seven let-7-binding sites in its 3󸀠-untranslated region (3󸀠-
UTR) [33]. Aberrations of the chromosomal region 12q14-15
that affect HMGA2 were frequently found in human cancers
[80–82]. Moreover, the disrupted pairing between let-7 and
HMGA2 by mRNA truncations of the 3󸀠UTRwas reported to
induce HMGA2 overexpression leading to tumor formation
[33].

5. HMGB1

The highmobility group box 1 (HMGB1) is one of the HMGB
superfamily members which was also shown to be implicated
in inflammation exercising cytokine like functions [83]. In
line with its multiple roles it can be located in the nucleus as
well as in the cytoplasm and can even be released passively by
necrotic cells or actively secreted in response to inflammatory
signals by certain cell types [83, 84].

This proinflammatory cytokine exerts its function by
interacting with the toll-like receptors (TLR) 2, and TLR4
and RAGE [85–87] (Figures 4 and 10). Interestingly, the
receptor coding gene TLR4 was found to be a direct let-
7i target (Figure 4), presenting a mechanism to modify the
HMGB1 signaling [88].The activation of theHMGB1 receptor
RAGE results among others in deactivation of MAPK1 and
PI3K [89]. PI3K in turn was shown to stimulate NF𝜅B [90].
Furthermore, the TLRs and RAGE were demonstrated to
activate NF𝜅B thus, inducing the secretion of angiogenic
factors, growth factors, and cytokines [85, 91].

Remarkably, NF𝜅B is able to stimulate RAGE expression
by binding to its promoter constituting a positive feedback
loop [92] (Figures 4 and 10). Blockade of the RAGE/HMGB1
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Figure 4: Schematic overview over the HMGB1 and let-7 regulatory
pathways affecting each other’s activity.

signaling decreased growth and metastasis of implanted and
as well of spontaneously developing tumors in susceptible
mice [93].

HMGB1 was described to be involved in all proposed
hallmarks of cancer and is thus a potential target for
therapeutic and diagnostic approaches [94]. Kuniyasu et al.
observed the secretion ofHMGB1 in primary cultured human
prostatic stromal cells after androgen deprivation [95]. In
vitro suppression of HMGB1 was demonstrated to block the
invasion of PC-3 cells which was reversed by culturing the
cells in conditionedmedium of the above-mentioned stromal
cells deprived of androgen [95, 96]. Additionally,HMGB1was
found to stimulate DNA binding of several steroid receptors
including the let-7 downstream target AR (Figure 10) [97].
These facts indicate that HMGB1may be a molecular marker
for advanced prostate cancer [95, 96].

Although HMGB1 was not shown to be a direct let-7
target, its expression is modulated by the direct let-7 target
HMGA1 [51]. Interestingly HMGB1 was also shown to be
involved in the p53 network by facilitating the binding of the
tumor suppressor p53 to its cognate DNA [98]. Asmentioned
before p53 can be inactivated by the HMGB1 sister protein
HMGA1 by translocation of the p53 activator HIPK2 [51]
(Figures 4 and 10). The tumor suppressor p53 in turn was
found to downregulate the activity of the HMGB1 promoter
[99] and to trigger the radiation induced decrease of let-7a
and let-7b expression (Figures 4 and 10) in the human colon
cancer cell line HCT116 [100].

6. CCND2

Many tumor cells accumulate mutations resulting in uncon-
trolled proliferation due to direct or indirect deregulations
of the cyclin-dependent kinases (CDKs). Cyclins are known
regulating subunits of CDKs being expressed at specific time
points during the cell cycle. Consequently cyclin deregula-
tions induce uncontrolled cell proliferation [101].
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Figure 5: Let-7 and CCND2 mediated gene regulation.

The cyclin D2 (CCND2) is one of the cell cycle regulating
factors. This gene, which is highly conserved among mam-
mals, has been associated with human prostate cancer [11],
gastric cancer [102], colon cancer [103], and leukemia [104].

Interestingly, CCND2 was shown to be a direct let-7 and
miR-154 target like HMGA2 [11, 41, 45, 105] (Figures 5 and
10). Additionally the let-7 regulated oncogene c-Myc and the
stem cell marker Klf4 were reported to stimulate the CCND2
transcription [106, 107] (Figures 5 and 10).

Dong et al. described that ectopically overexpressed let-
7a induced cell cycle arrest at the G1/S phase by suppressing
among others the cyclin CCND2 and additionally inhibited
the proliferation of the human prostatic cell lines PC-3 and
LnCap [11]. The same group reported that in nude xenograft
mice, inoculated with let-7a transfected PC-3 cells, the tumor
was 80% lighter after 4 weeks of growth compared to controls
[11].

7. c-Myc

c-Myc is an oncogene frequently activated in human cancers,
but is low expressed or absent in quiescent cells [108–110].
In contrast, its overexpression has been connected with PC
formation and progression [111, 112]. This gene encodes a
transcription factor that has a great impact on the global gene
expression pattern and, thus, influences cell-cycle progres-
sion, glucose and glutamine metabolism, lipid synthesis, and
many other processes, which contribute to tumor progression
[109].

Mitogen activated protein kinases (MAPK), glycogen
synthase kinase 3 (GSK3), and other CDKs play a key role
in the biological function and half-life of c-Myc proteins by
posttranslational phosphorylation of the Thr58 end Ser62
sites [113] (Figures 6 and 10). Apart from various posttransla-
tional protein modifications and transcriptional regulations
of the c-Myc gene products, this gene was reported to be
directly negatively regulated by members of the let-7 family
[114, 115] (Figures 6 and 10). Additionally, elevated MAPK1
activity, which was associated with advanced, androgen inde-
pendent human PCs, [116] was demonstrated to influence
the c-Myc protein, resulting in prolonged function in a
human muscle-derived rhabdomyosarcoma cell line [117]. In
line with the functions of c-Myc, MAPK1 controls diverse
cellular processes as growth, differentiation, migration, and
apoptosis, its deregulation has often been described to be
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HMGA1

Figure 6: Interactions of the oncogene c-Myc with let-7 and
MAPK1, Lin28, and HMGA1.

associated with cancer [118]. Furthermore, c-Myc was shown
to transcriptionally activateLin28 [119], which in turn inhibits
the biogenesis of its regulator let-7 constituting a double
negative feedback loop [47] (Figures 6 and 10). Interestingly
the expression of the direct let-7 target HMGA1 is as well
induced by c-Myc [48], which constitutes a positive feedback
loop, stimulating c-Myc expression [50] (Figures 6 and 10).

8. IL6

Chronic inflammation of the prostate gained major attention
as it is considered to account to the factors contributing to PC
[120]. In previous reports a direct causal link between cancer
and inflammation has been described with IL6, let-7, Lin28,
and NF𝜅B being the major players involved in the epigenetic
switch from inflammation to cell transformation [31].

Originally identified as an inducer of the terminal dif-
ferentiation of B-cells into antibody-producing cells [121]
interleukin-6 (IL6) appears to be amajor regulator of prostate
cancer progression [122]. Notably, IL6 is not only released by
inflammatory cells but also found to be released by hormone
insensitive cell lines DU145 and PC-3 but not by the hormone
sensitive LNCaP cells [123]. Furthermore, this pleiotropic
cytokine stimulates growth and survival of human PC and
promotes its progression [123, 124]. In accordance, increased
IL6 levels were found in epithelial cells of PC compared to
benign tissues [125]. Moreover, Giri et al. reported a ∼18
times higher IL6 expression in malignant prostate tissues
compared to “normal” prostate specimens [126]. Michalaki
and colleagues described significantly higher IL6 serum levels
in patients with metastatic prostatic disease [127].

The biological activities of IL6 are mediated by binding
to the 𝛼-subunit receptor IL6R and the following associa-
tion with the ubiquitously expressed signal-transducing 𝛽-
subunit gp130 [128]. Upon engagement of gp130 various
Janus tyrosine kinase (JAK) family members (JAK1, JAK2,
JAK3, and Tyk2) [129] are activated by ligand induced
receptor oligomerization phosphorylating themselves and
the intracellular domains of the receptors [130]. Once gp130
is phosphorylated the second protein family, the signal
transducer and activator of transcription (STAT), binds to
the intracellular domain of the receptor. This leads to the
activation of STATs and the subsequent dissociation, allowing
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STAT dimerization and translocation into the nucleus where
they act as transcription factors [131]. Additionally IL6 was
shown to stimulate the PI3K and MAPK pathways by signal-
ing trough activated gp130 [132, 133].

Interestingly, LnCaP cells stimulated with IL6 presented
an enhanced AR activity in the absence of a ligand [134,
135]. The IL6 mediated activation of the human AR was
indicated to be mediated by STAT3 and MAPK signaling
[134, 136], which potentially contribute to recurrence of
hormone refractory PCs.Whereas theAR transactivation can
be suppressed by the PI3K/AKT pathway. Thus, these three
pathways are suggested to coordinately regulateAR activation
[136].

Acquiring resistance to apoptosis appears an important
feature for the development of hormone resistant and aggres-
sive human prostate cancer. Furthermore, IL6 was shown to
act as a survival factor, blocking apoptosis induced by Bcl-xl,
p53, TGF1𝛽 [137], and cytotoxic agents such as doxorubicin
[138] and enzalutamide [139]. Whereas siRNA or STAT3-
inhibitor-AG490 mediated suppression of the downstream
acting STAT diminished the IL6 induced antiapoptotic func-
tion [138, 139].

NF𝜅B is a regulator of the transcription of IL6 [140] and
Lin28B [31, 141] (Figures 7 and 10). Lin28B was demonstrated
to block the maturation of let-7 [46]. Additionally, members
of the miRNA let-7 family directly target IL6, which in turn
constitutes a positive feedback loop onNF𝜅B [31, 49] (Figures
7 and 10).

Remarkably, while only a few cells express membrane
bound IL6R all cells display gp130 on their surface [132].This
is an interesting feature as IL6 can also bind to a soluble IL6R
(sIL6R) variant, which interacts in an IL6R agonistic manner
with gp130, thus, enabling the stimulation of cells lacking
endogenous IL6R [142].

9. RAS

The founding members of the RAS gene superfamily N-RAS,
H-RAS, and K-RAS are coding for small GTP-binding pro-
teins [143]. Originally identified as retroviral oncogenes in rat
sarcomas, RAS were the first human oncogenes discovered,
shown to be mutated in around 30% of all human tumors
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Figure 8: Schematic overview over some of the numerous pathways
modified by RAS and let-7.

[144, 145]. The very common mutations in the residues
G12, G13, and Q61 lock RAS in a constitutively activated
state by impairing the intrinsic GTP hydrolysis [145, 146].
RAS proteins are active when they have bound GTP. By
hydrolyzing GTP to GDP they become inactive.The intrinsic
GTPase activity of the RAS proteins is very low relying on
the help of specialized GTP hydrolysis accelerating factors
called GTPase activating proteins (GAP) which increase the
hydrolysis by more than 100,000 fold [145].

RAS-GTPs are acting as signal transducers across mem-
branes by binding various effector proteins to stimulate
signaling pathways [143, 147]. Among these factors are the Raf
serine/threonine MAPKK kinases (ARAF, BRAF, and RAF1)
which in turn activate MEK-MAPK cascades [148] (Figures
8 and 10). Accordingly, the mammalian MAPK pathways are
estimated to be deregulated in one-third of all human cancers
[149]. MAPKs activate cytosolic and nuclear factors like JUN
and ELK1, which are regulating FOS expression. JUN and
FOS are forming the activator protein 1 (AP1) and, thus,
influencing the expression of proteins such as CCNDs which
are involved in cell-cycle progression [150] (Figures 8 and 10).

Furthermore, RAS-GTPs induce the translocation and
subsequent activation of phosphatidylinositol 3-kinase
(PI3Ks) by binding to its catalytic subunit [151] (Figures 7
and 10). PI3K signaling is one of the most often deregulated
systems in human cancer [152]. Taylor et al. described that the
PI3K expression is altered in 42% of the primary and in 100%
of the metastatic cases in the analyzed set of human prostatic
cancers [153]. PI3Ks belong to one of the main effector
molecules of RAS [151]. This enzyme type phosphorylates
primarily to the 3󸀠-OH group of the membrane bound
phosphatidylinositol-4,5-biphosphate (PIP) to generate the
messenger phosphatidylinositol-3,4,5-biphosphate (PIP3)
[154]. PIP3 activates itself several pleckstrin homology
domain-containing proteins as Akt by directly binding and
recruiting it to the plasma membrane [154] (Figures 8 and
10).The activated Akt promotes many processes contributing
to a malignant tumor phenotype [155]. Ectopic expression of
a constitutively active Akt in the thyroid cell line SW579 was
reported to significantly increase VEGF levels [156] (Figures
8 and 10). Neovascularization and angiogenesis are essential
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features for the progression of a growing tumor VEGF is one
of the most important inducers of angiogenesis [157]. Niu et
al. demonstrated a positive correlation between VEGF and a
constitutively active STAT3 [157]. In accordance, it was found
that STAT3 binds to the VEGF promoter [157] (Figures 8 and
10). Additionally STAT3 was reported to bind the promoter
of the let-7 biogenesis regulating gene Lin28, resulting in the
concomitant upregulation of the let-7 targets RAS, c-Myc,
and HMGA2 [158].

In human tissues the activation of RAS and Rac-MAPK
pathways was described to be induced by the extracellular
signal transducer FolH1 [159] (Figures 8 and 10). FolH1 is
expressed in most of the human prostate cancers and is thus
a potential target for diagnostic and therapeutic strategies
[160]. The elicited phosphorylation of MAPK1 and MAPK14
induces in turn the activation of the transcription factor
NF𝜅B (Figures 8 and 10) which controls the expression
of various genes including the let-7 biogenesis-controlling
Lin28 [47] and the cytokine IL6 [31, 161] (Figures 8 and
10). Additionally, NF𝜅B was also shown to enhance the
endogenous transcription of the primary miRNAs let-7a-
3 and let-7b through NF𝜅B responsive binding sites in the
promoter regions [141] (Figures 8 and 10).

Remarkably, Johnson et al. reported numerous let-7 bind-
ing sites in the 3󸀠-UTR of the RAS genes [42]. In conclusion
the expression of the oncogenesNRAS,KRAS, andHRASwas
described to be negatively regulated by several members of
the let-7 family [42, 162] (Figures 8 and 10).

10. Androgen Receptor (AR)

The gene of the steroid receptor family member AR [163]
is located on the human chromosome X and codes for a
ligand-dependent transcription factor [164, 165]. Upon ligand
binding it translocates into the nucleus and regulates its target
genes by binding to the androgen response elements (AREs)
[166, 167]. Expressed in nearly all primary human PCs, AR
plays a pivotal role in carcinogenesis of the prostate. At the
initial diagnosis the majority of PCs depends on andro-
gens and progress after hormone therapy to an androgen-
independent disease [3, 168].

Continuous androgen expression is required to drive
prostate gland formation during embryogenesis and later
to maintain the normal function and glandular anatomy in
adults [169]. In general the androgen mediated effects in
prostate gland development are driven by the interaction
with ARs [169]. The bypass mechanisms of AR upregulation
include among others the HMGB1 enrichment on the AR
promoter, which enhances the transcription [52] (Figures
9 and 10), an intracrine androgen production [170, 171]
additionally ligand independent AR activation by cytokines
or growth factors were reported as well [172]. Furthermore,
altered specificity or sensitivity as for example by alternative
splicing is discussed [173].

However, the activated AR stimulates the expression of
its targets as, for example, the above mentioned VEGF [174]
and PSA [175]. PSA is a pivotal downstream target of AR,
which is used as biomarker for human PC progression [175].
Interestingly, the frequently observed rising of serum PSA in

HMGB1

AR

PSA

let-7

Lin28VEGF

c-Myc

Figure 9: Potential AR interaction in prostate cancer development.

castrate-resistant PC patients could in parts be explained by
ARactivity, which is reexpressed/reactivated in advancedPCs
[176]. Remarkably, PSA constitutes a positive feedback loop
stimulating AR expression as was demonstrated in vitro [175]
(Figures 9 and 10).

Furthermore, Tummala et al. highlighted the impact of
the Lin28/let-7/Myc axis on PC and demonstrated that Lin28
activates the AR (Figures 9 and 10) and promotes growth of
PC [177].

RemarkablyARwas reported to be regulated in a negative
way by the miRNA let-7cwhich suppresses its transcriptional
activator c-Myc [12] (Figures 9 and 10). Additionally Lyu et
al. described an AR induced upregulation of let-7a, let-7b,
let-7c, and let-7d (Figures 9 and 10) in the breast cancer cell
lines MDA-MB-231 and MDA-MB-453. At least in the case
of let-7a this upregulation is indicated to be triggered by AR
binding to AREs located at the let-7a promoter [53] (Figures
9 and 10). Furthermore, it was shown that in these cell lines
the expression of the direct let-7a targets c-Myc and KRAS
was decreased upon treatment with 5𝛼-dihydrotestosterone
and increased after an additional suppression of the miRNA
let-7a [53].

The spatiotemporal expression of genes and functions
depend highly on the cellular and developmental context.
Thus, the impact of a single gene can be completely different
between diverse tissues and at different time points in
development.Nevertheless elucidation of the above described
interactions in PC bears great potential due to the ubiquitous
existence of the cellular regulatory elements and the potential
interactions in each somatic cell of an organism. This idea
is supported by the already found implication of each of
the described genes in various human cancers. Furthermore
several of the reviewed genes are already used as targets for
diagnostic, prognostic, and therapeutic approaches.Thus, the
master regulator family let-7 is as well a promising target in
cancer of the prostate gland.

For a better overview all described interactions between
the master regulator family let-7 and its major targets are
summarized in Figure 10.

11. Conclusion

Although the knowledge of the genetic and epigenetic alter-
ations in prostate cancer has significantly increased in the last
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Figure 10: This figure represents the described interactions between let-7 and the reviewed let-7 associated targets (in white letters) with
other genes which are as well commonly deregulated in human cancers (in gray letters). The indicated interactions are on transcriptional,
posttranscriptional or posttranslational level.

decades, its diagnosis and therapy still remains a major chal-
lenge. The actually described genetic alterations in prostate
cancer give more questions than answers. As we could
highlight, the genes reviewed in the present paper are not
acting in solitude but are closely interwoven with each other
(Figure 10). Remarkably, the miRNA let-7 family members
are major players in the regulation of gene expression and
appear to contribute greatly to the maintenance of the Ying
and Yang in “normal” prostatic cells. However, their impact
can be modified greatly by other factors. For that reason
the complex intra- and intercellular genetic interactions of
let-7 family members and associated genes must be further
investigated and will likely have an impact on diagnostic,
prognostic, and treatment modalities in future.
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