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Cancer has been a major public health problem worldwide for many centuries. Cancer
is a complex disease associated with accumulative genetic mutations, epigenetic
aberrations, chromosomal instability, and expression alteration. Increasing lines of
evidence suggest that many non-coding transcripts, which are termed as non-
coding RNAs, have important regulatory roles in cancer. In particular, long non-coding
RNAs (lncRNAs) play crucial roles in tumorigenesis. Cancer-related lncRNAs serve as
oncogenic factors or tumor suppressors. Although many lncRNAs are identified as
potential regulators in tumorigenesis by using traditional experimental methods, they
are time consuming and expensive considering the tremendous amount of lncRNAs
needed. Thus, effective and fast approaches to recognize tumor-related lncRNAs
should be developed. The proposed approach should help us understand not only the
mechanisms of lncRNAs that participate in tumorigenesis but also their satisfactory
performance in distinguishing cancer-related lncRNAs. In this study, we utilized a
decision tree (DT), a type of rule learning algorithm, to investigate cancer-related
lncRNAs with functional annotation contents [gene ontology (GO) terms and KEGG
pathways] of their co-expressed genes. Cancer-related and other lncRNAs encoded by
the key enrichment features of GO and KEGG filtered by feature selection methods were
used to build an informative DT, which further induced several decision rules. The rules
provided not only a new tool for identifying cancer-related lncRNAs but also connected
the lncRNAs and cancers with the combinations of GO terms. Results provided new
directions for understanding cancer-related lncRNAs.

Keywords: decision rule, KEGG pathway, gene ontology, decision tree, long non-coding RNAs, cancer

INTRODUCTION

Cancer has been a major public health problem worldwide for many centuries (Siegel et al., 2016).
Cancer is defined as a group of diseases that are characterized by disordered cell proliferation and
invasion into normal tissues. Although the cure of cancer has not been discovered yet, research on
understanding this complex disease has progressed considerably. Genetic alterations were thought
to be the main cause of cancer initiation and progression in classical theory (Vogelstein et al., 1988).
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At present, cancer is viewed as a complex disease associated
with accumulative genetic mutation, epigenetic aberration,
chromosomal instability, and expression alteration. The
discovery of genetic code for protein-coding genes can accelerate
research on oncogenic genes or tumor suppressors that
participate in tumorigenesis. This phenomenon revolutionized
the understanding of how genetic alterations contribute to the
abnormal phenotypes of cancer. However, previous studies
aimed to identify oncogenes by focusing on protein-coding
sequences, which account for a very small part of all transcripts
(Birney et al., 2007). Increasing lines of evidence suggest that
many non-coding transcripts, which are termed as non-coding
RNAs (ncRNAs), have important regulatory roles in cancer
(Calin et al., 2007; Carninci and Hayashizaki, 2007; Pan and
Shen, 2019; Pan et al., 2019).

Messenger RNAs (mRNAs) are a small fraction of the RNA
population and an intermediate between DNA and protein in
the translation of genetic information into diverse biological
processes. Many ncRNAs cannot be translated into proteins
but can still directly function as regulatory elements (Khalil
et al., 2009). According to the length of transcripts, these
ncRNAs can be divided into two subgroups, namely, small
ncRNAs with length less than 200 bp, including microRNAs
and siRNAs, and long non-coding RNAs (lncRNAs) with length
higher than 200 bp. With the rapid development of detection
technologies, such as whole-transcripts sequencing, more than
50,000 lncRNAs have been identified, which account for the
majority of human transcriptome and have attracted increasing
research attention in recent years (Iyer et al., 2015; Mirza et al.,
2015; Pan and Xiong, 2015).

In the early 1980s, scientists discovered lncRNAs by screening
cDNA libraries and identified several milestone lncRNAs, such
as XIST and H19; however, the term lncRNA has not been
proposed at that time (Bartolomei et al., 1991; Brown et al.,
1992). Although this new class of RNA lacks the ability to
encode proteins, lncRNAs exhibit diversity and complexity in
biological structures and functions. The biological roles of
lncRNAs are mainly attributed to the following aspects: cis
or trans regulation of transcription, modulation of mRNA or
protein activity, and nuclear organization (Geisler and Coller,
2013; Cao et al., 2018). For example, lncRNAs (e.g., GAS5)
serve as a decoy and can bind to target gene promoters to
suppress functional activation (Wang and Chang, 2011). Some
lncRNAs, including AIR and CCND1, perform distinct and
effective interactions with protein complexes and guide them to
the specific target locus for gene regulation (Ma et al., 2013).
In particular, lncRNAs play crucial roles in tumorigenesis and
serve as oncogenic factors or tumor suppressors (Tsai et al.,
2011). The aberrant and specific expression of lncRNAs in
various tumors has revealed their potential new participation
in cancer development. For instance, lncRNA aHIF, which
is transcribed from the genomic location 14q23.2, is over-
expressed in renal and breast cancers and shows high correlation
with poor prognosis (Thrash-Bingham and Tartof, 1999; Cayre
et al., 2003). Another lncRNA called MEG3 is involved in
cervical and bladder cancers by promoting cell proliferation
via the induction of p53-mediated transactivation (Zhu et al.,

2015). Moreover, lncRNA MALAT1 is conserved among
vertebrates and plays an important role in cell proliferation;
the depletion of this RNA can cause an inhibitory effect
on breast cancer, thereby contributing to tumor progression
(Jadaliha et al., 2016).

Given the critical roles of lncRNAs in cancer, they could be
used as novel diagnostic biomarkers and therapeutic targets for
cancer treatments (Crea et al., 2014). A large number of lncRNAs
have been identified as potential regulators in tumorigenesis by
using traditional experimental methods; however, such methods
are time consuming and expensive due to tremendous amount of
lncRNAs needed. It is an alternative way of designing effective
computational methods (Zhao et al., 2015; Chen et al., 2017c;
Yuan et al., 2018). However, these methods demonstrate poor
interpretability. Although these methods can provide satisfactory
performance, their principles are difficult to capture, leading to
limited biological and medical insights. In the present study,
we adopted a rule learning algorithm, namely, decision tree
(DT) (Safavian and Landgrebe, 1991), to analyze cancer-related
lncRNAs, which were obtained from a previous study (Zhao et al.,
2015). These and other lncRNAs were encoded using functional
annotation contents [gene ontology (GO) terms and KEGG
pathways] of their co-expressed genes. The DT algorithm was
applied on such dataset, in which lncRNAs were represented by
essential features and filtered by some feature selection methods,
to construct a large DT and extract several decision rules. These
rules clearly indicated the combination of GO terms that could
identify cancer-related lncRNAs and presented a clear overview
of the functional annotation contents on cancer-related lncRNAs.
The rules could also be used as a classifier for identification of
cancer-related lncRNAs but have lower performance than other
black-box classifiers.

MATERIALS AND METHODS

Datasets
In a previous study (Zhao et al., 2015), 70 cancer-related lncRNAs
were manually validated and collected from the lncRNA Disease
database (Chen et al., 2013; Bao et al., 2019) and published
literature. Of these lncRNAs, 57 were expressed in the Illumina
Body Map (Farrell et al., 2014) and were selected as positive
samples. Meanwhile, 14,829 lncRNAs were retrieved from the
LNCipedia database (Volders et al., 2013, 2019); none of which
were reported or confirmed to be associated with tumorigenesis.
These lncRNAs were temporarily treated as negative samples due
to the lack of evidence that they are cancer related. The detailed
information of the selected positive and negative samples can be
found in our previous study (Chen et al., 2017c). The number
of the negative samples was higher than that of the positive
samples, i.e., the dataset is imbalanced, with sample ratio of
approximately 1:260.

Feature Extraction With GO and KEGG
Pathway
Similar to previous studies (Chen et al., 2017c; Yuan et al.,
2018), we employed enrichment theory (Carmona-Saez et al.,
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2007) to encode lncRNAs. Each lncRNA in the dataset was
represented by a feature vector with 19,090 elements, in which
18,803 and 287 represent the enrichment scores of GO and KEGG
pathway, respectively. The computing processes of the two kinds
of enrichment scores were described below.

Given one lncRNA x in the dataset, let G(x) be a set of co-
expressed genes with x, where the identity of the co-expressed
genes can be found in previous studies (Chen et al., 2017c; Yuan
et al., 2018). The GO enrichment score of one GO term gj and
lncRNA x can be calculated as follows:

SGO
(
x, gj

)
= −log10(

n∑
l=m

(
M
l

)(
N −M
n− l

)

(
N
n

)

) (1)

where N represents the total number of human genes, M denotes
the number of genes annotated to gj in the GO database, n refers
to the number of genes in G(x), and m indicates the number of
genes in G(x) that are also annotated to gj. Thus, the high GO
enrichment score SGO indicates a strong association between an
lncRNA and a GO term.

Given one lncRNA x and a KEGG pathway kj, the KEGG
enrichment score is calculated as follows:

SKEGG
(
x, kj

)
= −log10(

n∑
l=m

(
M
l

)(
N −M
n− l

)

(
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n

)

) (2)

where N and n have the same definitions as those in Eq. 1,
M represents the number of genes in kj based on the KEGG
database, and m denotes the number of genes in both G(x) and kj.
Here, the high KEGG enrichment score SKEGG indicates a strong
relationship between a lncRNA and a KEGG pathway.

Feature Selection of Minimum
Redundancy Maximum Relevance
(mRMR)
Many enrichment scores were used to represent each lncRNA
and indicate the relationship between a lncRNA and GO
term or KEGG pathway. Obviously, it is impossible that all
GO terms and KEGG pathways give same contribution of
describing cancer-related lncRNAs. An effective feature selection
procedure is necessary.

Here, we employed a powerful and widely used feature
selection method, namely, mRMR (Ding and Peng, 2005; Peng
et al., 2005; Chen et al., 2017b, 2018; Radovic et al., 2017; Zhao
et al., 2018). This approach consists of two parts: minimum
redundancy among features and maximum relevance between
features and class labels. Thus, the essential features extracted
by mRMR method can construct a compact feature subspace,
that is, less features can hold more essential information and
provide higher classification performance. These parameters are
all measured using mutual information (MI). For two variables x
and y, their MI is calculated by,

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (3)

where p(x) stands for the marginal probabilistic density of x
and p(x,y) represents the joint probabilistic density of x and
y. Generally, a high MI value indicates the high relevance of
two variables. The importance of one feature is evaluated by its
relevance to the class label and its redundancy to other features.
To exhibit the importance of all features, this method outputs
an mRMR feature list, in which all features are sorted according
to their importance. Features with minimum redundancy and
maximum relevance will have high ranks. To obtain such list, a
loop procedure is executed. Initially, this list is empty. In each
round, a feature with maximum relevance to the class label and
minimum redundancy to features in the current list is selected
and appended to the list. When all features have been in the
list, the loop stops.

We adopted the mRMR program developed by Peng et al.
(2005) which can be retrieved from http://penglab.janelia.org/
proj/mRMR/. Default parameters were used for convenience.

Incremental Feature Selection
We obtained a feature list by using mRMR method. The optimal
feature subspace for a given classification algorithm is still
difficult to determine. To this end, incremental feature selection
(IFS) (Liu and Setiono, 1998), another method based on a
supervised classifier, was adopted. A series of feature subsets is
first constructed from an existing feature list (e.g., mRMR feature
list). The first feature subset contains the top feature, the second
feature subset contains the top two features, and so on. For each
feature subset, a classifier (i.e., DT in this study) is constructed
on the samples represented by features from the feature subset
whose performance is further evaluated using 10-fold cross-
validation (Kohavi, 1995). After assessing all the feature subsets,
the feature subset with the highest performance measured by
Matthew correlation coefficients (MCCs) (Matthews, 1975) is
selected as the optimum feature subset. The classifier with this
feature subset is termed as the optimum classifier.

DT
Decision Tree (Safavian and Landgrebe, 1991) is a popular
and classic machine learning algorithm and a non-parametric
supervised learning method for classification and regression. This
algorithm is important because it can produce rules that are
simple to understand and interpret, thereby yielding more clues
for the investigated problems than other black-box classifiers. In
addition, the performance of DT is satisfactory in many cases.

Decision Tree is represented by a flowchart-like structure.
One simple example is illustrated in Figure 1. Each internal
(i.e., non-leaf) node of the tree corresponds to some input
variables/features, which are basically a decision maker. Each
terminal (i.e., leaf) node of the tree represents a class label, which
is the decision outcome. A common strategy for constructing a
DT is top–down induction [6], which is a greedy algorithm. The
key procedure in creating a DT is determining an optimal way for
splitting internal nodes. Different schemes with different metrics,
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FIGURE 1 | Example of DT.

such as Gini index, information gain, and information gain ratio,
have been proposed to build different types of DTs.

In this study, we built a DT with Scikit-learn (Pedregosa et al.,
2011), a machine learning tool in Python. Scikit-learn uses an
optimized version of the CART algorithm and constructs DTs
with a scheme utilizing the Gini index. From the DT, decision
rules can be generated by using a path from the root and terminal
nodes, which can be represented as follows:

if conditions 1, 2, and 3, then outcome,
where each condition is the test result of a feature in the
internal node, and the outcome is the class label indicated
by the corresponding leaf node. With the obtained rules, the
combination of features that are important for describing cancer-
related lncRNAs can be easily accessed. Such features can be an
essential biomarker for determining cancer-related lncRNAs.

SMOTE
As indicated in section “Datasets,” the analyzed dataset consists of
different numbers of positive and negative samples (i.e., cancer-
related lncRNAs and lncRNAs not related to cancer). Building an
efficient classifier on such an imbalanced dataset is difficult. Thus,
we adopted the synthetic minority over-sampling technique
(SMOTE) (Chawla et al., 2002) to produce balanced data before
constructing the classifier. SMOTE is an oversampling method
that has wide applications (Li et al., 2014; Marques et al., 2016;
Wang et al., 2018; Zhang et al., 2019). SMOTE aims to produce
new samples for the minor sample class (i.e., positive samples
in this study) iteratively until the size of the minor sample
class is equal to that of the major sample class (i.e., negative
samples in this study).

In this work, we used the tool “SMOTE” in Weka (Witten
and Frank, 2005) to produce new positive samples. The main
parameter, which determines the number of nearest neighbors,
was set to five. Finally, the numbers of positive and negative
samples were equivalent. Because the newly produced samples
may influence the feature selection results, these samples were
produced after the mRMR method was used to evaluate the

FIGURE 2 | Analysis of cancer-related lncRNAs. All lncRNAs were encoded
using the GO and KEGG enrichment scores, which are analyzed via the
mRMR feature selection method and result in the mRMR feature list. The IFS
method is applied on this list with the help of DT and SMOTE. Finally, the DT
classifier with the best performance is obtained and further used for
constructing the decision rules.

importance of features. And the SMOTE was only adopted in the
procedure of evaluating the performance of DT.

Performance Evaluation
We mainly evaluated the prediction performance of the
constructed classifiers by using MCC (Matthews, 1975; Chen
et al., 2017a; Cui and Chen, 2019; Zhao R. et al., 2019; Zhao X.
et al., 2019) through 10-fold cross-validation (Kohavi, 1995; Che
et al., 2020; Jia et al., 2020; Liang et al., 2020; Zhou et al., 2020)
because the investigated dataset was imbalanced and MCC is a
balanced measurement even if the class sizes differ. The MCC can
be calculated by the following equation:

MCC =
TP × TN − FP × FN

√
(TN + FN)× (TN + FP)× (TP + FN)× (TP + FP)

(4)
where TP stands for true positive, FP represents false positive, FN
denotes false negative and TN indicates true negative. The range
of MCC is between -1 and +1. The classifier will be good when
MCC approaches+1.
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In addition, we employed five other measurements for
reference, namely, sensitivity (SN), specificity (SP), prediction
accuracy (ACC), Recall, Precision, and F1-measure. They can be
computed by the following set of equations:

SN = TP
TP+FN

SP = TN
TN+FP

ACC = TP+TN
TP+FN+FP+TN

Precision = TP
TP+FP

F1−measure = 2×Precision×Recall
Precision+Recall

(5)

where Recall is same as SN.

RESULTS

In this study, we used several machine learning algorithms to
investigate cancer-related lncRNAs. This work aimed to build
a classifier for identifying cancer-related lncRNAs and provide
a clear outline of the functional contents of cancer-related
lncRNAs. The procedures are illustrated in Figure 2. This section
presents the results in each step.

Results of mRMR
Each investigated lncRNA was represented by many
GO and KEGG-based features. We first used mRMR to
evaluate these features. The output mRMR feature list
was selected for subsequent analysis and is provided in
Supplementary Material 1.

Results of IFS Incorporating DT
The importance of features is indicated by their ranks in the
mRMR feature list. The combination of some top features
can be the optimum feature subspace in a given classification
algorithm. To this end, IFS method was employed. However, this
method was time consuming if all possible feature subsets were
considered. Thus, we used step 10 to construct feature subsets.
In this method, the top ten features in the list constituted the
first feature subset, the top 20 features comprised the second
subset, and so on. All lncRNAs were encoded by features

in each constructed feature subset, on which a DT classifier
was built. Tenfold cross-validation was adopted to evaluate
the performance of such classifier. The predicted results are
provided in Supplementary Material 2. An IFS curve was plotted
(Figure 3) to easily observe the change in MCC with different
numbers of top features. When the top 14,690 features were used,
the DT classifier yielded the maximum MCC value of 0.415.
Thus, we termed the DT classifier with these 14,690 features as
the optimum classifier. Other three measurements, namely, SN,
SP, ACC, Precision, and F1-measure are listed in Table 1 and
had values of 0.702, 0.992, 0.991, 0.161, and 0.240, respectively.
The SP was higher than the SN because cancer-related lncRNAs
(positive samples) were significantly less than other lncRNAs
(negative samples).

The optimum DT classifier adopted too many features,
thereby decreasing its efficiency. By carefully checking the IFS
curve in Figure 3 and MCCs in Supplementary Material
2, we found that the DT classifier still obtained satisfactory
performance with an MCC of 0.393 (e.g., guarantee the trade-
off between the number of features and performance) when
the top 970 features were used. The SN, SP, ACC, Precision,
and F1-measure were 0.737, 0.990, 0.989, 0.216, and 0.320,
respectively. The detailed performance is listed in Table 1. The
performance of the SN even exceeded that of the optimum DT
classifier. The performance of these classifiers was almost at the
same level. Accordingly, the DT classifier was appropriate for
real applications.

We selected the DT classifier with the top 970 features as the
proposed classifier. The DT was executed on all lncRNAs again to
build decision rules, which are listed in Supplementary Material
3. A total of 219 rules were obtained. By analyzing these rules,
we obtained a clear picture of the combination of features that
are essential for determining cancer-related lncRNAs. We also
revealed differences between cancer-related lncRNAs and other
general lncRNAs. An extensive discussion will be given in section
“DISCUSSION.”

Comparison of Previous Classifiers
Chen et al. (2017c) adopted a complicated scheme to tackle the
imbalanced dataset by dividing the negative samples into 130

FIGURE 3 | IFS curve to show the change in MCC with different numbers of top features in the mRMR feature list. The highest MCC of 0.415 is obtained when the
top 14,690 features are used. However, the MCC is still high (0.393) when the top 970 features are adopted.
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TABLE 1 | Performance of some key DT classifiers.

Classifier SN SP ACC MCC Precision F1-measure

Optimum DT classifier 0.702 0.992 0.991 0.415 0.161 0.240

DT classifier with the top 970 features 0.737 0.990 0.989 0.393 0.216 0.320

subsets. Each negative sample subset combined with the positive
sample set constitutes a balanced dataset. A dagging classifier
(Ting and Witten, 1997) with support vector machine and
optimum GO and KEGG enrichment features was built in each
dataset. MCCs yielded by 10-fold cross-validation are shown in
Figure 4, which also provides the MCCs of the optimum DT and
DT classifiers with the top 970 features. The obtained MCCs were
at the bottom of the box, indicating the lower performance of the
two classifiers than that of previous classifiers but still better than
some of the previous classifiers. Furthermore, previous classifiers
were absolute black-box classifiers and provided limited clues
for determining differences between cancer-related lncRNAs and
other lncRNAs. However, our classifiers could output decision
rules, as listed in Supplementary Material 3, and provide
additional insights.

DISCUSSION

As a novel type of ncRNAs, lncRNAs play important regulatory
roles in gene expression (Kapranov et al., 2007). Emerging
evidence has confirmed the close relationship between lncRNAs
and cancers (Guttman et al., 2009; Huarte et al., 2010). This
finding has inspired investigators to explore the biological
mechanism of tumorigenesis driven by certain lncRNAs. The
first key task in investigating the tumor-related functions of
lncRNAs is to identify lncRNA signatures that contribute to
the initiation or progression of tumorigenesis. Considering that
tumor-associated genes can be categorized as oncogenes and
tumor suppressor genes (Croce, 2008), we aimed to build not
only a classifier for distinguishing lncRNAs related or unrelated to
tumors but also reveal additional information about the essential
characteristics of cancer-related lncRNAs.

Several machine learning algorithms, including mRMR, IFS,
DT, and SMOTE, were applied in the construction of a DT
classifier, which can identify cancer-related lncRNAs with an
MCC value of 0.393 based on 970 function features. Few
manually validated lncRNAs were implicated in tumorigenesis
but were still insufficient to consist of a set of positive samples for
model training. Hence, the number bias between the positive and
negative samples would result in a slightly inferior performance
of the prediction model. However, our study provided an
effective and novel analysis pipeline to capture the essence of
tumor-related lncRNAs through their correlated mRNAs and
functional annotations. In addition, the decision rules yielded
supplied an extended explanation on how certain lncRNAs
affect tumorigenesis. These interpretable rules could highlight
crucial functions as a set of GO terms or KEGG pathways,
which may have been neglected in previous studies but require
deep investigation for candidate tumorigenesis roles. Recent

FIGURE 4 | Boxplot demonstrating the MCCs yielded by the previous
classifiers and our classifiers. MCCs yielded by our classifiers are marked with
a green star and a green cycle to indicate the MCC of the optimum DT
classifier and the MCC of the DT classifier with the top 970 features,
respectively.

publications in several experimental journals present some
consistent rules. Among the 219 decision rules, 42 rules were
used to identify cancer-related lncRNAs and the 177 remaining
rules could exclude cancer-related lncRNAs. Thus, 219 rules were
divided into two groups. We selected some decision rules from
each group as examples to give a detailed discussion below.

Rules for Cancer-Related lncRNA
Identification
The first rule of cancer recognition was Rules_66 involving 48 GO
terms. Apart from the general GO terms, such as GO: 0009301
(snRNA transcription) and GO: 0051861 (glycolipid binding), we
also identified a group of effective GO terms that contribute to
the identification of cancer-related lncRNA.

GO: 0043849 describes the Ras palmitoyltransferase activity,
was used to construct this rule. According to recent publications,
Ras palmitoyltransferase can participate in lipid metabolism
and epithelial–mesenchymal transition in breast cancer cells
via lncRNA-associated regulatory pathways (Barnard, 2014).
Therefore, the prediction of such GO term as a candidate
enrichment cluster for cancer-related lncRNAs is reasonable.
Apart from GO: 0043849, the next GO term GO: 0006275, is a
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general parameter for various rules and describes the regulation
of DNA replication. GO: 0006275, describing a biological process
is negatively enriched with cancer-related lncRNAs. Given
that lncRNAs contribute to the regulation of cell proliferation
and their differentiation are generally downregulated (Zhou
et al., 2015; Bian et al., 2016), identifying this parameter as
a potential cancer-associated GO term with low enrichment
level is reasonable. Another GO term GO: 0090162, which
describes the establishment of epithelial cell polarity, was also
used as a general parameter for classification. This GO term
contributes to the identification of cancer-related lncRNAs. Cell
polarity, especially the epithelial cell polarity, is an important
feature for distinguishing normal cells from tumor and stem
cells. The loss of cell polarity is generally regarded as a
significant biomarker for tumorigenesis and us regulated by
various cancer-related lncRNAs (McCaffrey and Macara, 2011;
Royer and Lu, 2011; Martin-Belmonte and Perez-Moreno, 2012).
Therefore, the enrichment of cancer-related lncRNAs in such
biological processes is reasonable. This finding validates the GO
term in the rule.

Apart from Rules_66 and Rules_90 involving 70 GO
terms, they also contribute to the identification of cancer-
related lncRNAs. In addition to features that were already
discussed, three parameters among the 70 GO terms were
effective and essential for classification. GO: 2000052, which
describes the activation (positive regulation) of the Wnt signaling
pathway, could contribute to the identification of cancer-
related lncRNAs. Considering the Wnt signaling pathway is
essential in tumorigenesis. Therefore, the enrichment of cancer-
related lncRNAs in this GO term is reasonable. Other terms,
such as GO: 0010760 (describing the negative regulation of
macrophage chemotaxis) (Snyderman and Pike, 1977; Roussos
et al., 2011) and GO: 0033210 (describing the leptin-mediated
signaling pathway) (Saxena et al., 2007; Wang et al., 2015) were
also functionally correlated with cancer-associated biological
processes and pathways.

Rules for Cancer-Related lncRNA
Exclusion
Among the 219 decision rules, 177 rules were designated for the
exclusion of cancer-related lncRNAs. The majority of the rules
contained too many parameters (GO terms or KEGG pathways)
and were difficult to discuss. Without cancer specificity, such
lncRNAs should be enriched in various general items, including
essential biological processes for cells. Therefore, all such rules
contribute to non-cancer-associated biological processes. To
simplify, we selected two effective rules with few quantitative
parameters to discuss. The detailed analyses can be seen below.

For Rule_2, the first parameter is also the general parameter
GO: 0006275, which was already analyzed above. By contrast,
this rule required high enrichment scores. The use of this
GO term as a general marker for excluding cancer-related
lncRNAs is reasonable. GO: 2000642 described the negative
regulation of endosome transportation, which is a general
biological process without the capacity of cancer recognition.
Similar to the general GO terms, such as GO: 0006275 and

GO: 0090162, Rules_3 also contributed to the exclusion of
cancer-related lncRNAs. This rule used typical GO terms, such
as GO:0050124 (N-acylneuraminate-9-phosphatase activity) and
GO:0044795 (trans-Golgi network for the recycling of endosome
transport). Both biological processes are non-cancer-specific
processes without distinctive capacity for the identification of
cancer-related lncRNAs. Therefore, the enrichment of lncRNAs’
co-expressed genes from non-cancer samples in such biological
processes is reasonable.

CONCLUSION

A wide and deep computational analysis was performed on
cancer-related lncRNAs by presenting several decision rules.
These rules indicated the combination of GO terms that could be
a novel biomarker for determining cancer-related lncRNAs. We
also tried our best to confirm the reliability of GO terms involved
in the rules by review of literature. The new findings reported
could bridge the novel connections between lncRNAs and cancers
and provide novel insights about the diverse mechanisms of
lncRNAs that participate in tumorigenesis.
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