www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN A Bayesian generative neural

network framework for epidemic
inference problems

Indaco Biazzo™, Alfredo Braunstein, Luca Dall’Asta & Fabio Mazza

The reconstruction of missing information in epidemic spreading on contact networks can be
essential in the prevention and containment strategies. The identification and warning of infectious
but asymptomatic individuals (i.e., contact tracing), the well-known patient-zero problem, or the
inference of the infectivity values in structured populations are examples of significant epidemic
inference problems. As the number of possible epidemic cascades grows exponentially with the
number of individuals involved and only an almost negligible subset of them is compatible with

the observations (e.g., medical tests), epidemic inference in contact networks poses incredible
computational challenges. We present a new generative neural networks framework that learns to
generate the most probable infection cascades compatible with observations. The proposed method
achieves better (in some cases, significantly better) or comparable results with existing methods in all
problems considered both in synthetic and real contact networks. Given its generality, clear Bayesian
and variational nature, the presented framework paves the way to solve fundamental inference
epidemic problems with high precision in small and medium-sized real case scenarios such as the
spread of infections in workplaces and hospitals.

Discrete-state stochastic compartmental models have been traditionally used to model infectious diseases'~ and
provide a simple and unified mathematical framework for a wide variety of spreading processes occurring in
social and technological systems*. The time-forward simulations of most epidemic models, even those incorpo-
rating detailed demographic and mobility data, can be efficiently performed using Monte-Carlo based sampling
techniques or, at least at the meta-population level, exploiting approximation methods, such as stochastic dif-
ferential equations and moment closure schemes®. These computational methods have been largely applied to
large-scale epidemic forecasting®® and containment'®~%. Their effectiveness crucially depends on the capacity
to exploit the available information on the past behavior of the epidemic outbreak. At the meta-population level,
such information, represented by temporal series of aggregate quantities (e.g. daily number of newly infected
individuals inside a reference population) can be rather easily included within traditional Bayesian computational
frameworks based on Monte Carlo sampling techniques'>-'°.

The COVID-19 pandemic has motivated the interest for the large-scale adoption of epidemic surveillance
techniques and digital contact tracing through smartphone applications'®!”, which could make it possible to
access/use a large amount of (possibly inaccurate) individual-based observational data, traditionally available
only for case studies in rather small and controlled environments'®-?°. The availability of individual-based obser-
vational data unveils a crucial limitation of traditional Monte-Carlo based inferential techniques. While the
number of possible epidemic realizations generated by a specific epidemic model on a given contact network
scales exponentially with the systems size and the duration of the process, those compatible with individual-based
observations are just an exponentially small fraction of them?'. It follows that inferential methods based on the
direct sampling of epidemic realizations on individual-based contact networks rapidly become ineflicient as the
size of the outbreak increases?'. As an example, let us consider several simulated epidemic realizations (with the
same initial condition, consisting of a single infected individual, and the same epidemic parameters) in a real
graphs of temporal contacts between patients and staff members of a hospital® (see Fig. 1).

We define the daily configuration of the system as the daily epidemic state of the individuals (infected/not-
infected) during the epidemic process. The plots in Fig. 1 indicate a fast divergence of the configurations of the
simulated epidemics, even though they start from the same individual with the same epidemic parameters.
Choosing, for instance, the final configuration of one epidemic cascade as the individual-based observation of
the system, it is very unlikely to obtain the same configuration from a direct sampling of the epidemic model.
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Figure 1. Simulated epidemic cascades in a hospital contact network. One thousand epidemic cascades
simulated (with the same epidemic parameters) on a real contact graph measured in a hospital®* (detailed
information about epidemic models and contact networks are listed in the "Results" section). The epidemics
started from the same individual. Two samples (blue, and orange) of epidemic cascades are shown in the first
and second rows of the figure. The third row represents the distance between them, where in this case the blue
dots are the infected individuals present in the cascade 1 but not in cascade 2 and the orange ones are those
present in cascade 2 but not in cascade 1. In the third row, the total number of blue and orange dots gives the
Hamming distance between the two daily configurations. Left-bottom plot. Cumulative number of infected
individuals for 1000 epidemic cascades started from the same individual. Right-bottom plot. Hamming distance
(8(1,1)) between the cascade 1 and all the othersi € [2,3...1000].

A step forward in this field is represented by the introduction of efficient algorithms for Bayesian inference
based on Belief Propagation (BP)*>**. In the Bayesian inference framework, the objective is to approximately
compute the posterior probability of the system, assuming the epidemic model as a prior and the individual-based
observations as the evidence. BP-based algorithms make it possible to obtain estimates of the local marginals
of the posterior distribution and, as shown in?**>%, this approach outperforms competing methods on sparse
contact networks on a variety of inference problems. In particular, the integration of such algorithms in the
framework of digital contact tracing for COVID-19 was recently shown to provide a better assessment of the
individual risk and improve the mitigation impact of non-pharmaceutical interventions strategies®.

BP-based algorithms may experience non-convergence issues, for instance in dense and very structured con-
tact networks, a phenomenon that calls for the search of alternative inference methods which could overcome
such a limitation while maintaining comparable performances on sparse networks. Here we propose to use
generative neural networks, specifically autoregressive neural networks (ANN), to learn the posterior probability
of an epidemic process and efficiently sample from it. In practice, the autoregressive neural network can generate
realizations of the epidemic process according to the stochastic dynamical rules of the prior model but compatible
with the evidence. Deep autoregressive neural networks are used to generate samples according to a probability
distribution learned from data, for instance for images®®, audio?, text*®*! and protein sequences®* generation
tasks and, more generally, as a probability density estimator*-*>. Autoregressive neural networks have recently
been used to approximate the joint probability distributions of many (discrete) variables in statistical physics
models®, and applied in different physical contexts*’~*°. In this work, we show how to use a deep autoregressive
neural network architecture to efficiently sample from a posterior distribution composed of a prior, given by the
epidemic propagation model (even though the parameters of such model can be contextually inferred), and from
an evidence given by (time-scattered) observations of the state of a subset of individuals. Neural networks have
already been applied to epidemic forecasting*!~** but rarely to epidemic inference and reconstruction problems.
Two recent preliminary works apply neural networks to epidemic inference problems: in* the patient zero prob-
lem is tackled using graph neural networks, while a similar technique is applied to epidemic risk assessment in®’.
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The presented approach allows to address successfully a large class of epidemic inference problems, ranging from
the patient-zero problem and individual risk assessment to the inference of the parameters of the propagation
model under a unique neural network framework. We believe this to be a strong point in favour of this technique.
In all such problems, the proposed autoregressive neural network architecture provides results that are at least as
good as all other methods considered for comparison and outperforms them in most cases. The implementation
of the algorithm and the instructions to reproduce the results are available at*.

Methods

The posterior probability of the epidemic process. The dynamics of epidemic spreading in a contact
network is commonly described by means of individual-based stochastic models in which individuals can be
in a finite set of possible states, usually called epidemic compartments. For the sake of concreteness, consider
the discrete-time SIR model, in which xf € & = {S,I, R} stands for the individual i being at time step ¢ in the
Susceptible (S), Infected (I) or Recovered (R) state. The infection of a susceptible individual due to a contact with
an infected individual occurs with rate 4, while infected individuals recover in time with rate p (heterogene-
ous epidemic parameters can be considered as well if necessary). In the epidemic propagation model, both the
epidemic parameters and the temporal structure of the underlying contact network are assumed to be given and
known, so that the individual transition probability of the corresponding Markov chain reads as follows

p(xf“ = S|x};,x ,) —1[x =S/ (1—11[99? =1]), W

jeoi

p(x;H - R|xg,.,xg) =[x =R +1[xl =1]u, @)

andp( = b x ) =1-— p(xt?“ = S|x§i,xif> —p(xf+1 = R|x};,x ) Here1 [x! = X]jis the indicator func-

tion that is equal to 1 when x! = X and zero otherwise, x}; represents the set of individuals that are in contact

with node i at time ¢. Defining the individual epidemic-state trajectory as x; = {x?, ..., x[}, the probability of
an epidemic realization x = {x,, ..., Xy} between time 0 and time T is
0
p(§)=p(x1,..',xN)HHp(x Ixh; ' xf ) (3)
i=1t=1
where p(x(l), . ,xR,) is a prior distribution on the initial state, which is usually assumed to be factorized, i.e.

PG, x%) =TT p(eD).
Suppose that some information about the individual states at different times is available (e.g because individu-
als exhibit symptoms or undergo medical tests). We will assume that this information comes in the form of a set

of independent observed variables O, following known probabilistic laws p, (O, |xity' ). For example, if an individual

i» has been observed in state X, at time ¢,, we will have pr(Orle:) =1 {xfy’ = Xr]. False negative and positive

rates in tests can be easily represented generalizing the expression of p,.
Under the assumption of independence between observations, the conditional probability of ¢ given x is

2O %) =T,eo pr(Orlxity’), and the posterior probability of an epidemic cascade x given the observation ¢/
becomes

PO ) =

1
@) 1x)p(x) (4)

—Hp(x°>Hp(x a7 T] pr(Orlt) (5)

rel

1
=7 [T Wilxixa) (6)

where W; (x;, X;;) = p(x?) Ht 1p(x |X31 %X ) [1=i p,(Orlxt’) Here, x,; represents the set of individuals
that have been in contact with i at least one time during the interval [0, T]. The quantity Z = Y~ T]; Wi (x;» x;)
is the normalization constant of the posterior probability or model evidence. Several quantities of interest can
be computed from the posterior distribution. For instance, the problem of identifying the initial source of an
outbreak in a population (the so-called patient-zero problem) requires to estimate the marginal probability
p(x? =I10)=>", ]l(x? = Dp(x|0 ) for every individual i. On the other hand, if the present time is T, the
marginal probability p(x} = I|© ) provides a measure of the current epidemic risk for every individual i. The
exact computation of probability marginals requires a sum over all admissible realizations of the process, which
becomes unfeasible for more than a few dozens of individuals because their number typically grows exponentially
with the number of individuals. In the next subsection, we describe a method to approximately compute the
marginals of the posterior distribution in Eq. (6) using Autoregressive Neural Networks (ANNs).
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Figure 2. Ancestral sampling of epidemic cascades. Left. Ancestral sampling of epidemic cascades using
artificial neural networks. For each individual i there is a neural network ANN; that computes the probability
q(x;1x;_1 ... x;) of its time trajectory x; given the time trajectory of previous individuals. The time trajectory
x; is extracted from the conditional probability q (g,— [%_q1...x 1) and passed to the following neural networks.
Right. Each neural network is composed of several fully connected layers (see supplementary material for
details).

Learning the posterior probability using autoregressive neural networks. Given a realization x
of the epidemic process and a permutation 7 = {71, 73, . . ., x5 } of the individuals of the system, which imposes
a specific ordering to the variables {x;}, the probability of the realization x can be written as the product of con-
ditional probabilities (chain rule) in the form

N
p® = [[pxilx-y) )

where x; = {x . ,xT} andx_; = {xjlmj < mi}is the set of epidemic-state trajectories of individuals with label
lower than i according to the given permutatlon 7. The distribution p(x) can be approximated by a trial distribu-

tion g ? (x) with the same conditional structure
P ® =]]q @ilx- (8)
i

which can be interpreted as a (possibly deep) autoregressive neural network depending on a set of parameters
6 = {6;}. From the analytical expression of the probabilistic model p(x), and thus that of the posterior distri-
bution p(x|© ) defined in Eq. (6), the operation of parameters learning can be performed using a variational
approach proposed in Ref.?, in which the (reversed) Kullback-Liebler (KL) divergence

D (1) = Lo’ o J) )

is minimized with respect to the parameters 6 of the trial distribution ¢’ (x). The minimization of the KL diver-
gence can be performed using standard gradient descent algorithms (see Supplementary material for details).

The computational bottleneck of these calculation in the Eq. (9) and their derivatives is that the sum runs over
all possible epidemic realizations, a set that grows exponentially with the size of the system. This issue is avoided
by exploiting the generative power of autoregressive neural networks by training them using generated sample
data through ancestral sampling. This means that the averages over the autoregressive probability distribution
can be approximated as a sum over a large number of independent samples extracted from the autoregressive
probability distribution g%, in which the conditional structure of the autoregressive neural network allows to use
the ancestral sampling procedure, see Fig. 2.

A common way to represent the conditional probabilities in Eq. (8) is by means of feed-forward deep neu-
ral networks with sharing schemes architectures®*® to reduce the number of parameters. Due to the possible
high variability in the dependence of p(x;|x_;) on x_;*’, instead of adopting a sharing parameters scheme we
reduce the number of parameters by limiting the dependency of the conditional probability to a subset of x _;.
The subset considered is formed by all x; € x_; such that x; is at most a second-order neighbor of i in the graph
induced by the contact network, i.e., the one in which there is an edge between two individuals if they had at
least one contact during the epidemic process. The permutation order of the variables generally influences the
approximation. For acyclic graphs, it is possible to define an order by which the aforementioned second-order
neighbors’ approximation is exact: the variables are ordered according to a spanning tree computed starting
from a random node chosen as a root (see supplementary material for proof). We can imagine that the same
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procedure yields good approximations for sparse interacting networks, but for general interaction graphs, we
are unaware of arguments for choosing an order with respect to another. In this case, random permutations of
the nodes are employed. The Kullback-Leibler divergence in Eq. (9), could attain large (or even infinite) nega-
tive values, causing convergence issues in the parameter learning process. As illustrated in the supplementary
material, this is avoided by introducing a regularization parameter, a fictitious temperature, and an annealing
procedure to improve the convergence.

Inferring the parameters of the propagation model. In a real case scenario, the epidemic parameters
governing the propagation model are usually unknown and they should be inferred from the available data.
Calling A the set of these parameters (e.g. for uniform SIR models A = (4, i1)), the goal is to estimate them by
computing the values A* that maximize the likelihood function given the set of observations 0, i.e.

PO M) =" p(O [x)px|A) (10)

= Z(A). (12)

The quantity Z is the same normalization constant introduced in Eq. (6), where the dependence on the param-
eters was dropped. Formally,

A* = arg max Z(A) = arg max log Z(A). (13)

Recalling that P(x|( ) = Z7'T]; Wi(x;, A) and thanks to Gibbs’ inequality we have that

log Z(A) =Y p(x|0 )log [ [ Wix;, A) = ) p(x|C ) logp(x]C ) (14)
> " ®log [ Witz &) = ¢’ ®logq’ x) (15)

where we first replaced the probability function P(x|( ) with the variational probability distribution q9 (x)and
defined the energetic and entropic terms

(H)g==> ¢ @log] [ Wi(xA) (17)

Sg=—_ 4" ®logq" . (18)

X

Since S, does not depend from A, minimizing (H), with respect to parameters A corresponds to maximizing
log Z(A). The quantity (H)4 and its derivatives w.r.t. A can be computed efficiently, in an approximate way, by
replacing the sum over all configurations with the average on the samples extracted by ancestral sampling from
the autoregressive probability distribution g’. Therefore, we use the following heuristic procedure, inspired
by the Expectation-Maximization (EM) algorithm, to infer the parameters, while minimizing the KL diver-
gence between ¢’ and the posterior probability p(x|¢ ). During the learning process, two sequential steps are
performed:

1. Update the parameters {6;} of the autoregressive neural network to minimize the KL divergence in Eq. (9).
2. Update the parameters A to maximize the quantity (H),.

These steps are repeated until the end of the learning process.

Results

As a preliminary illustration of the ability of the proposed Autoregressive Neural Network (ANN) to sample
epidemic realizations from a given posterior distribution, we reconsider the example in Fig. 1, focusing on the
blue epidemic cascade. We train the ANN to learn the posterior probability composed by the prior, i.e. the epi-
demic model that generates the blue cascade, and the evidence, i.e. its final configuration at day 12. The result
is shown in Fig. 3. The epidemic cascades generated by the ANN have Hamming distances from the reference
one that reduce to zero at day 12 (central-bottom plot) and a fraction of them have prior probabilities larger
than the probability of the (blue) epidemic cascade taken as reference, right-bottom plot in Fig. 3. This example
suggests that the ANN approach can generate epidemic cascades compatible with the observations and sampled
according the prior epidemic model.
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Figure 3. Epidemics cascades generated by the ANN. Epidemic cascades generated by the ANN trained on a
posterior probability composed by a prior, the epidemic model that generate the blue cascade, and the evidence,
its final configuration at day 12. The contact network is a real contact graph measured in a hospital®. An
example of the epidemic cascade generated is shown in second row (14NN, orange). The third row represent

the hamming distance between them (see caption Fig. 1). Left-bottom plot. Cumulative number of infected
individuals for epidemic cascade simulated (blue curve) and generated by the ANN (iann € [1,2...1000].
Central-bottom plot. Hamming distance (§(1, iann) between blue epidemic cascade and those generated by

the ANNiann € [2,3...1000]. Right-bottom plot. Distribution of the values of the prior probability of the
generated epidemic cascades (P4nn). The blue vertical line is the value of the prior probability of the blue
cascade (log(P)).

In the following, we exploit the ability of the ANN to sample epidemic cascades from a posterior distribu-
tion to tackle three challenging epidemic inference problems: (i) the patient-zero problem, in which the unique
source of a partially observed epidemic outbreak has to be identified, (ii) the risk assessment problem, in which
the epidemic risk of each individual has to be estimated from partial information during the evolution of the
epidemic process, and (iii) the inference of the epidemic parameters. Results are compared with those obtained
using already existing methods in the field of epidemic inference. We also evaluate how the efficiency of the
ANN algorithm depends on the size of the epidemic outbreak, measuring the number of generated epidemic
samples necessary to obtain nearly optimal results. The comparison between different inference techniques, the
Autoregressive Neural Network (ANN), a Belief Propagation based approach (SIB) (17, 33), together with the
Soft Margin estimator (SM), is carried out on both random graphs and real-world contact networks. The Soft
Margin (SM) estimator?' is based on Monte Carlo methods in which samples are weighted according to the
overlap between the observations and the generated epidemic cascade (see supplementary material for details).
The Belief Propagation approach?, implemented in the SIB software*”*’ provides exact inference on acyclic con-
tact networks and performs very effectively on sparse network structures. In the present work, we focus instead
on real-world contact networks, which turns out to have relatively dense interaction patterns. The first contact
network, taken from the dataset InVS13, is related to a work environment (work), while the second one was
collected in a hospital (hospital)*. In both cases, the dataset used is the temporal list of contacts, respectively
between 95 and 330 individuals, for a period of two weeks. Since the real duration Bf j of each contact is known,

the probability of infections between individuals 7, j at time ¢ is computed as /lf,j =1- e—ySfJ’ where y is the
rate of infection. For comparison, we also consider synthetic contact networks: a random regular graph (rrg)
with N = 100 individuals and degree equal to 10, and a random geometric graph (proximity), in which N = 100
individuals are randomly placed on a square of linear size »/N.. In the latter, the probability that individuals i and
jare in contact is =%/, where dj is the distance between i and j and [ is a parameter (set to = 10) that controls
the density of contacts. For both synthetic and empirical contact networks, epidemic processes (SIR epidemic
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Figure 4. Results of the patient zero problem. The left bar plots, for each case, represent the fraction of times, in
100 different epidemic cascades, the patient zero is correctly identified at the first position of the ranking given
by the algorithms. The right plots show the fraction of times the patient-zero is found (in 100 different epidemic
cascades) in a fraction of infected or recovered individuals ranked according to the probability to be patient zero
given by the three algorithms ANN, SIB, and SM (the values of the area under the curve [AUC] are shown in
the insets). For the rrg we consider the following epidemic parameters A = 0.04 and i = 0.02 and for proximity
2 = 0.03, u = 0.02. The epidemic parameters for (work) and (hospital) are respectively y = 1073, u = 0.02
andy =2-107%, u = 0.02.

cascades, see "Material and Methods" for details) with a duration of 15 days are generated. In the interaction
graphs under study, large fluctuations in the final number of infected individuals are observed. The parameters
of the epidemic model were chosen in such a way to have, on average, half of the individuals infected at the end
of the epidemic propagation, in order to reduce the cases where very few or a large fraction of individuals are
infected. Indeed, in these cases, the inference problems analyzed become either too trivial or very hard to solve
because of lack of information. In the supplementary material, an analysis of the robustness of the results with
respect to the epidemic model parameters is shown.

The patient zero problem. Given the exact knowledge of the final state of the epidemics at time T, the
patient-zero problem consists in identifying the (possibly unique) source of the epidemics. In a Bayesian frame-
work, this problem can be tackled by computing for each individual the marginal probability of being infected at
time t = 0 given a set of observations (). This quantity can be estimated from the posterior distribution [Eq. (6)]
in the "Material and Methods") with all three algorithms (ANN, SIB, and SM) considered in this work. For
each contact network (rrg, proximity, work, hospital), we considered 100 different realizations of the epidemic
model with only one patient zero. The three algorithms were used to rank infected and recovered individuals in
decreasing order according to the estimated probability of being infected at time zero for each epidemic realiza-
tion. Figure 4 displays, for each algorithm, the fraction of times, in 100 different realizations, the patient-zero
is correctly identified. The left plots show the fraction of times it is correctly identified at the first position of
the infected or recovered individuals ranked according to the algorithms. The right plots show the fraction of
times the patient zero is found versus the fraction of infected or recovered individuals ranked by the algorithms
considered. The ANN algorithm outperforms all the other methods as indicated by the larger area under the
curve (AUC) obtained in all cases considered. The improvement is also evident when analyzing the fraction of
patient zero correctly identified by each algorithm (left bar plots in Fig. 4). For example, in the hospital case,
ANN correctly identifies the patient zero in the 74% of the instances, SIB in the 54% and SM in the 35% of them.
In all cases, the ANN algorithm’s performances are comparable to or better than those of the other approaches.
The results on the patient zero problem reveal the ability of the ANN algorithm to efficiently generate epidemic
cascades according to the posterior probability defined in Eq. (6).

Scaling properties with the size of the epidemic outbreak. From the results presented in the pre-
vious subsection, Autoregressive Neural Networks seems to be very effective in tackling classical epidemic
inference problems, particularly on dense contact networks, where the performances of BP-based methods are
expected to decrease. It is, however, critical to check how the convergence property of the learning processes
scales with the size of the epidemic outbreak. For this analysis, we consider the patient zero problem on a tree
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Figure 5. Scaling properties with the size of epidemic cascades. Number of samples generated by the ANN and
SM algorithms to reach convergence. We consider the estimation of the marginal probabilities to be infected at
time zero with interactions graphs given by a tree of degree and depth both equal to 6 and spanning 15 days of
duration. The epidemic cascade are generated with ;+ = 0 and different values of A (1 € [0.1, 0.6]). For the ANN
algorithm, we consider the number of samples generated during the learning process, that is 10> samples for
each annealing steps (see supplementary material for details). For each instance, we run the annealing process
with 2" number of steps with n € {5,6, .. ., 18}. Each point is a single instance, if the algorithm converges

2n+2n—1 2n_2n—1
2 + 2

between 2"~ ! and 2" steps, the number of samples reported in the plot is the number of steps

multiplied by 10% samples extracted at each step. For the SM algorithm, each point in the plot is the average
number of simulated epidemics necessary to reach convergence to a good estimate of the marginals (worst 10%
results were discarded). No point is reported when more than ten infected individuals are observed, because
more than 10% of the instances did not converge within 2 - 108 simulated epidemics.

contact network with a unique epidemic source and where the state of the system at the final time T is fully
observed. With this choice, we ensure that the probability marginals computed by the SIB algorithm are exact;
hence they can be taken as a reference to compare the performances of the other algorithms. The ANN algorithm
with a second-order neighbors approximation is exact when the interaction graph is acyclic (see supplementary
material for details), assuming that the architecture of the neural networks used is sufficiently expressive to
capture the complexity of posterior probability. On the other hand, since the SM algorithm is based on a Monte
Carlo technique, it can give estimates of marginal probabilities with arbitrary accuracy when a sufficiently large
sample of epidemic cascades is generated.

In the case of complete observation of the final state, the larger the epidemic size (i.e., the total number
of infected individuals at time T), the larger is the number of epidemic cascades that are compatible with
the observation. For instance, in an epidemic realization of duration T time steps in which ny individuals are
tested infected and N — ny tested susceptible at time T, the number of epidemic configurations compatible
with the observations scales as T". Both ANN and SM rely on sampling procedures, so their performances
could suffer from convergence issues when the epidemic size (1) increases. We compute the total number of
samples generated by the ANN during the learning process and the number of samples of epidemic cascades
generated by SM in the Monte Carlo procedure. In both cases, we assume that convergence is reached when
> |Patgo(x) =110 ) — Py (x) =110 )| < 0.1withalgo € {ANN, SM}, where Pyjgo (x) = I|C) )is the estimated
marginal probability that individual 7 is infected at the initial time according to each method. The results on the
scaling properties of the ANN and SM as a function of the epidemic size on a tree contact network with degree
and depth both equal to 6 (tree) are shown in Fig. 5. Here we set the duration of the epidemic cascadesto T = 15
days. The ANN algorithm has a quasi-linear dependence with the epidemic size; conversely, the SM algorithm
exhibits a very sharp increase in the number of simulations necessary for good estimates of the marginals, and
already for epidemic sizes of order ten individuals, good estimates are difficult to obtain.

Epidemic risk assessment. The risk assessment problem consists in finding the individuals who have the
highest probability of being infected at a specific time given a partial observation (. In particular, we consider
here a realization of the SIR model with & = 0 (i.e. only the states S and I are available) where half of the infected
individuals are observed with certainty at the final time T. The results of the risk-assessment analysis obtained
by means of the ANN algorithm are compared with those provided by the SIB algorithm and two other methods
recently proposed in?’. The Simple-Mean-Field (SMF) algorithm is based on a mean-field description of the epi-
demic process in which information about the observed individuals is heuristically included. The Contact Trac-
ing (CT) algorithm computes the individual risks according to the number of contacts with observed infected
individuals in the last T = 5 time steps (days).

A measure of the ability to correctly identify the unobserved infected individuals at the final time T is repre-
sented by the area under the Receiving Operating Characteristic (ROC) curve. This quantity, averaged over 100
instances of the epidemic realizations, is reported, for the methods considered above, in Table 1, for different
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rrg 1 src rrg 2 src Proximity 1 src Work 1 src
ANN 0.710 £ 0.010 0.670 % 0.009 0.734 +0.010 0.889 % 0.005
SIB 0.710 % 0.010 0.671 % 0.009 0.732 4+ 0.010 0.886 % 0.005
SMF 0.704 % 0.010 0.671 % 0.009 0.724 % 0.009 0.796 % 0.007
CT 0.685 % 0.009 0.659 % 0.008 0.711 % 0.008 0.790 % 0.006

Table 1. Epidemic risk assessment results. Area under the Receiving Operating Characteristic (ROC) curves
for the risk assessment problem on random regular graphs (rrg) with 1 and 2 sources, on the proximity random
graphs and work real-world contact network. The results are averaged over 100 different epidemic cascades
generated with the same epidemic parameters. For each case, the ROC curve for the classification of the
unobserved infected individuals at the ﬁnal time is computed. In the rrg case, the epidemic parameters are

/Lﬁ; = 0.035 for the single source and / /Lyrg = 0.03 for the double source case. For the proximity random graphs,

/prox = 0.03. In the case of the work network, the model has rate of infection yyork = 1073

le—4
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Figure 6. Inference of epidemic infectiousness parameters. Left plot. Average relative error in the

inference of the infectiousness parameters over ten epidemic cascade per interaction graph. On tree,

rrg and proximity networks, the discrete-time SIR model has infection probability respectively equal to

Jtree = 0.35, Arrg = 0.04, Zproximity = 0.03. The work case has rate of infection yyork = 1073, The initial
conditions for the parameter learning process were set to Zinit = 0.5 for tree, Ainit = 0.1 for RRG and proximity
networks and to yinit = 1072 for the work network. Central plot. Box plot for the case of two classes of
individuals with different rate of infection y1, y; inferred by the ANN. We consider two inference model where
the population is divided according the propagation model (true model) and randomly (null model), see the
text for details. The true model is able to correctly infer the parameters with only ten different epidemic cascade.
Right plot. Box blot of the log-likelihood difference between the true and null model.

contact networks (rrg, proximity and work). All algorithms perform similarly on random graphs, whereas ANN
and SIB outperform the other two methods in the case of the work contact network.

Epidemic parameters inference. The parameters A governing the epidemic process can be simultane-
ously inferred during the learning process of the ANN algorithm using a heuristic method inspired by Expecta-
tion Maximization (see "Materials and Methods"). Other iterative algorithms, such as SIB, can incorporate such a
parameter likelihood climbing step during their convergence®. A comparison between the performances of the
two algorithms in learning the infectiousness parameter governing the spreading process on different contact
networks (tree, rrg, proximity and work) is displayed in Fig. 6 (left plot), in which we adopt the same setting of the
patient-zero problem where the states of all individuals are known at the final time T. The ANN algorithm largely
outperforms SIB in rrg and proximity graphs, obtaining comparable results for the tree and work instances. We
also test the performance of parameters inference in a more challenging scenario where the population is split
into two classes, with two different rates of infections y;, y, (which could correspond, for instance, to a simplified
scenario of vaccinated/not-vaccinated individuals). The states of all individuals at final time T = 14 are observed
for ten epidemic cascades on the hospital contact network. Then we infer the parameters with two different epi-
demic models: in the first one, the population is correctly divided (we call this the true model); in the second, we
split the population randomly (null model). The goal is to verify whether the true model has a larger likelihood
than the null model, that is it can better explain the observations. In the central plot of Fig. 6, we observe how
well the true model can infer the correct values of the infections rate of the two sub-populations. As expected, the
two values of y inferred with the null model are similar to each other but different from the correct ones. From
the rightmost plot of Fig. 6, we observe that the log-likelihood of the true model is much larger of the one of the
null model, indicating the former better explains the observations. This example shows how the ANN approach
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can therefore be used to select the epidemic model that best explains the observations based on the estimate of
their log-likelihood.

Discussion

This work shows how significant individual-based epidemiological inference problems defined on contact net-
works can be successfully addressed using autoregressive neural networks. In problems such as patient zero
detection and epidemic risk assessment, the proposed method exploits the generative power of autoregressive
neural networks to learn to generate epidemic realizations that are sampled according to the epidemic model and,
simultaneously, are compatible with the observations. When the model parameters are unknown, it can also infer
them during the learning process. The approach is flexible enough to be easily applied to other epidemic inference
problems and with different propagation models. The proposed architectures for the autoregressive networks
significantly reduce the number of necessary parameters with respect to vanilla implementation. Moreover,
convergence properties are improved by means of a regularization method that exploits the introduction of a
fictitious temperature and an associated annealing process.

According to the results obtained on three different problems (patient zero, risk assessment, and parameters
inference) on both synthetic and real contact networks, the proposed method equals the currently best methods
in the literature on epidemic inference, outperforming them in several cases. In particular, the ANN approach is
computationally less demanding than standard Monte Carlo methods, as shown in Fig. 5, where the number of
samples generated to reach convergence scale almost linearly with the epidemic size. More efficient algorithms
based on message-passing methods, like SIB, might experience convergence issues on dense contact networks
like those measured in a hospital and a work office, and in these cases ANN provides significantly better results,
as Fig. 4 shows. The framework proposed combines the high expressiveness of the neural networks to represent
complex discrete variable probability distributions and the robustness of the gradient descent methods to train
them. Moreover, the technique is a variational approach based on sampling of the distribution, which allows
to compute an approximation of the log-likelihood, enabling model selection as shown in Fig. 6. On the other
hand, like most neural networks approaches, the proposed framework suffers from some degree of arbitrariness
in the choice of the neural network architecture and, consequently, the number of parameters. Moreover, in our
approach, we have to pick an ordering of the variables, which could influence the quality of the approximations.
In the supplementary material, an optimal order is shown to exist for acyclic contact networks, but it is unclear
how to generalize this result on different systems. These limitations are the subject of very active research in dif-
ferent domains where neural networks find application; within our method, the fact that an approximation of the
log-likelihood is computed could help to find and test schemes and architectures suitable for each particular case.

Although showing suitable scaling properties with the system’s size, our framework reasonably needs
improved architectural schemes and learning processes to be applied in epidemic inference problems regarding
more than few thousand individuals. Work is in progress in this direction, possibly guided by symmetries and
regularity of the prior epidemic models.

For all these reasons, the method seems very promising for epidemic inference problems defined in small
communities such as hospitals, workplaces, schools, and cruises, where contact data could be available. In such
contexts, it could detect the source of an outbreak, measure the risk of individuals being infected to improve
contact tracing, or estimate the channels of contagion and the infectivity of classes of people, thanks to the pos-
sibility of inferring the propagation parameters.

Data availability
All data and code needed to evaluate the conclusions are released on GitHub:annfore-results. https://doi.org/
10.5281/zenodo.6794183.
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