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Objectives: Investigating the potential of myelin repair strategies in multiple sclerosis (MS) requires an under-
standing of myelin dynamics during lesion evolution. The objective of this study is to longitudinally measure
myelin water fraction (MWF), anMRI biomarker of myelin, in newMS lesions and to identify factors that influence
their subsequent myelin content.
Methods: Twenty-three MS patients were scanned with whole-brain Fast Acquisition with Spiral Trajectory and
T2prep (FAST-T2) MWF mapping at baseline and median follow-up of 6 months. Eleven healthy controls (HC)
confirmed the reproducibility of FAST-T2 in white matter regions of interests (ROIs) similar to a lesion size. A
random-effect-model was implemented to determine the association between baseline clinical and lesion variables
and the subsequent MWF.
Results:ROI-basedmeasurements inHCswere highly correlated between scans [mean r=0.893 (.764–.967)]. InMS
patients, 38 gadolinium enhancing (Gd+) and 25 newnon-enhancing (Gd−) T2 hyperintense lesions (5.7months,
±3.8) were identified. Significant improvement in MWF was seen in Gd+ lesions (0.035 ± 0.029, p b 0.001)
as compared to Gd− lesions (0.006 ± 0.017, p = 0.065). In the model, a higher baseline MWF (p b 0.001) and
the presence of Gd (p b 0.001) were associated with higher subsequent MWF.
Conclusions: FAST T2 provides a clinically feasible method to quantify MWF in newMS lesions. The observed influ-
ence of baselineMWF,which represents a combined effect of both resolving edema andmyelin changewithin acute
lesions, suggests that the extent of initial inflammation impacts final myelin recovery.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiple sclerosis (MS) is an immune-mediated disease targeting
the myelin sheath and oligodendrocytes. Remyelination in response to
injury within the central nervous system can be quite robust, however
failure of this reparative process is widely accepted to occur in multiple
sclerosis (Lassmann, 2014). Interestingly studies have demonstrated
that levels of remyelination can occur in some patients (Patrikios et al.,
2006; Patani et al., 2007) and factors leading todifferential ability to repair
are unknown. Primary reasons for overall remyelination failure in multi-
ple sclerosis are unknown and are likely multi-factorial, (Franklin, 2002)
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however given the presence of oligodendrocyte progenitor cells in brains
ofmultiple sclerosis patients (Chang et al., 2002) stimulation of these cells
to enhance endogenous remyelination is considered the next frontier
in therapeutic advancement for multiple sclerosis. Remyelination treat-
ments would not only restore neuronal connectivity but would also func-
tion as a neuroprotective therapeutic strategy (Piaton et al., 2010).
Understanding the variables that determine the extent of myelin loss
within individual lesions will provide insight into potential therapeutic
targets aimed at limiting residual damage and promoting repair.

Multi-compartment T2 relaxometry is an MR imaging technique in
which a series of T2-weighted images at different echo times are obtain-
ed and the contribution of water associated with myelin and other tis-
sue compartments can be differentiated using T2 decay curve analysis
(MacKay et al., 2006). The relative contribution of the myelin water
with respect to total water, is represented as myelin water fraction
(MWF). Although T2 relaxometry is promising owing to its specificity
for myelin, its clinical utility is currently impeded by a prohibitively
long acquisition time, limited brain coverage, and challenging T2 data
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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analysis (Raj et al., 2014). To improve the data acquisition speed, our
group has developed and optimized a signal-to-noise ratio efficient 3D
spiral gradient echo sequence, (Nguyen et al., 2012) called Fast Acquisi-
tion with Spiral Trajectory and T2prep (FAST-T2), which enables rapid
whole-brain MWF mapping within clinically feasible scan times at 3 T.

The goal of this studywas to apply FAST-T2 to longitudinally quanti-
fy MWF after newMS lesion formation. We further extended our study
to identify clinical and lesion characteristics that may influence resul-
tant lesion MWF and provide a methodology to study the impact of
future therapeutic targets on lesion myelin recovery.

2. Materials and methods

2.1. Patient population

This study is based on observational, prospectively collected data from
a cohort of 23 patients with the diagnosis of either clinically isolated syn-
drome (CIS) or relapsing–remitting MS (RRMS) (Polman et al., 2005).
Patients were selected from our ongoing database of over 500 clinical
MRIs acquired with our FAST-T2 sequence. Patients were included in
the study if a gadolinium-enhancing (Gd+) or non-enhancing (Gd−)
new T2 lesion was identified on their baseline MRI and they had a
follow-up scan within 2–12 months (mo). In addition, patients had at
least oneMRIwithin the previous year, which had the same conventional
imaging protocol (3 T), to approximate lesion age. The following clinical
data was collected: gender, age, disease duration (DD) from initial symp-
tom, Expanded Disability Status Score (EDSS), disease subtype, steroid
use at time of new lesion development, and change in medication at
time of lesion development. Eleven healthy controls (HC) were recruited
for test and retest MRI scans to confirm the reproducibility of our MWF
quantification method within lesion-sized white matter (WM) regions
of interests (ROIs). HC were scanned twice within the same imaging ses-
sion. Institutional review board approval was obtained.

2.2. MRI data acquisition

Imagingwas performed on a 3 Tesla GE scanner (HDxt 16.0) using a
product 8-channel phased-array head coil. For anatomical scans,
T1-weighted sagittal 3D BRAVO (1.2 mm isotropic) with (T1W + C)
and without (T1W) gadolinium (Gd) contrast, T2-weighted (T2W)
axial 2D (0.5 × 0.5 × 3 mm3), and T2-FLAIR (1.2 × 0.6 × 0.6 mm3)
were used. Our whole-brain T2prep 3D spiral gradient echo imaging
sequence, FAST-T2 (1.2 × 1.2 × 5 mm3), has been previously described
at 1.5 T (Nguyen et al., 2012). A modified BIR-4 adiabatic T2prep pulse
(Soellinger et al., 2011)was developed to improve T2weighting accura-
cy against the increased field inhomogeneity found at 3 T and enable
whole brain coverage in only 10 min.

2.3. Fast-T2 post-processing

Our group has integrated a novel approach to deriving myelin maps
from FAST-T2 data,which greatly improves robustness to noise, reduces
spatial variations, and defines white matter fiber bundles in the brain
(Raj et al., 2014; Kumar et al., 2012). Our approach to analyze the
multiexponential T2 decay data method is called “Spatially constrained
multi-Gaussian” algorithmand has been described elsewhere (Raj et al.,
2014). This analysis method provides whole brain WM voxel-based
MWF quantification.

2.4. Patient MWF registration and lesion identification

Subject3s T1W images where automatically processed using
FreeSurfer3s longitudinal stream enabling us to register all sequences
and all time points together for each patient (Reuter et al., 2012). The
longitudinal stream creates an unbiased within-subject template space
and uses information from this common space to create co-registered
surface maps and parcellations for each time point. T2 FLAIR, T2W, and
T1W + C images were linearly aligned onto the T1 FreeSurfer volume.
Specific lesion ROIs were then manually defined based on the T2-FLAIR
and T1W + C images on the baseline time point. The minimum volume
of the lesion ROIs was 53 voxels and was easily visible on the MWF
map. MWF maps were registered onto the T1 Freesurfer volume using a
boundary based registration (BBR) method. Initially, the first echo of the
T2-FAST sequencewas registered to the T1WimageusingBBR. That resul-
tant registration matrix was then applied to the processed MWF map.
Each MWF map3s registration was quality checked prior to inclusion
into the analysis (Greve and Fischl, 2009). The average lesion MWF for
each time point was generated from the baseline lesion mask. All Gd+
lesions were new and had not been identified on prior MRI. All new
Gd+ lesions had to demonstrate resolution of enhancement on follow-
up scan. Fourteen of the 25 Gd− lesions, were new and enhancing on
the previous MRI, therefore lesion ages could be accurately determined.
The time between scans ranged from 1.5 to 8 months with a mean (SD)
of 3 (3). The remaining 11 Gd− lesions were not seen on prior MRIs.
Ages of these 11 Gd− lesions, where the date of enhancement was un-
known, were roughly estimated by subtracting the date of the prior MRI
from the date of the initial study MRI. All new Gd− lesions ages were
estimated to be less than or equal to 12 months old. The time between
scans ranged from 5 to 12 months with a mean (SD) of 9 (2).

2.5. Patient statistical analysis

A two-tailed paired t-test was utilized to explore longitudinal
change in MWF within the lesions as well as comparing between dif-
ferent subtypes of lesions. A more sophisticated statistical model
(amixed-effect-model) was implemented tomeasure the effect of mul-
tiple covariates on final MWF within lesions while accounting for pa-
tient heterogeneity.

Mixed-effect-models are extensions of linear regression models for
correlated data and are particularly useful in longitudinal studies
(repeatedmeasurements on same subject induce a correlation structure).
Mixed-effect-models have several advantages over the classical repeated
measure analysis: They naturally handle uneven spacing of repeated
measurements, allowmodeling flexible covariance structures and handle
missing data. A mixed-effect-model has two components: fixed-effects
and random-effects. In this context, fixed-effect terms can be seen as
the traditional linear regression covariates while the random effects are
associated with individual patient variability.

A mixed-effect-model was implemented with the final MWF at the
lesion level as a response variable. This modeling approach was able
to control for the random effect of patient heterogeneity and measure
the fixed effects of the following individual covariates on the final
MWF at the lesion level: baseline MWF (on initial MRI), lesion size,
lesion age in months, interval follow-up, presence of gadolinium en-
hancement, DMT change after new lesion detection, intravenous (IV)
solumedrol treatment after lesion detection, patient age, and estimated
volume change. The best model was found using a back fitting proce-
dure for fixed effects based on p-values.

2.6. Healthy control lesion-sized ROI reproducibility analysis

HCT1W imageswere automatically processedusing FreeSurfer3s cross
sectional stream (Fischl, 2012). The first echo of the spiral sequence was
registered onto the T1W volume using boundary-based registration and
that resulting matrix was then applied to the MWF map (Greve and
Fischl, 2009). Ten patient lesion ROIs, representing varying sized lesions
from the study patient cohort, were linearly aligned to the FreeSurfer av-
erage template and subsequently aligned onto the HC T1 FreeSurfer vol-
umes (Fig. 1). Average MWF values were generated for the 10 WM
lesion-sized ROIs for both test and retest HC scans. To measure lesion-
sized ROI reproducibility, linear regression was performed using myelin
test versus retest HC values at the ROI level and Pearson correlation



Fig. 1. Lesion-sized ROI examples. One slice example of the patient lesion ROIs (in blue)
aligned onto the Freesurfer T1 average surface. Green line represents the estimated edge
of the white matter surface. Red line represents that estimated edge of the pial surface.
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coefficients were calculated between repeated scans for each HC. Lastly, a
Bland–Altman plot was used to report the agreement between test and
retest scans across all HC ROIs (Bland and Altman, 1999).
Fig. 2.HC lesion-sized ROI reproducibility. (A) Scatter plot ofmeanMWFmeasurements obtaine
equation are shown. Both the linear correlation coefficient R squared and the slope of the reg
(B) Bland–Altman plot of the mean ROI measurements obtained from 10 WM ROIs in 11 HC
test and retest scans (0.003) and the blue lines indicate the 95% limits of agreement (−0.022–
3. Results

3.1. FAST-T2 lesion-sized reproducibility

Given that measures of longitudinal changes in myelin content ne-
cessitate techniques that are consistent, precise and resistant to artifact
and normal noise, we sought to first establish these characteristics from
test–retest scans of healthy subjects. Ten WM ROIs were analyzed on
each test and retest HC scan to confirm the reproducibility of FAST-T2.
In total, 110 pairs of test–retest lesion-sized ROIs were created and
106 were ultimately used for reproducibility calculations (4 removed
due to artifacts). The mean MWF of all ROI3s combined was similar be-
tween both scans (0.160 ± 0.030 vs. 0.162 ± 0.029). Linear regression
results in Fig. 2A represents the correlations between MWF values on
test–retest HC scans, for all regions within all subjects combined. Pear-
son correlation coefficients demonstrated that MWF values were highly
correlated between scans within individual HC [mean r = 0.893,
(0.764–.967)]. The Bland–Altman plot revealed a negligible MWF bias
with 95% limits of agreement of approximately ±0.025 (Fig. 2B).

3.2. MWF within new MS lesions at baseline and follow-up

Twenty-three patients were identified from our ongoing database as
having at least one new T2 hyperintense lesion. A total of 62 lesions (37
Gd+, 25Gd−)were identified;multiple new lesionswere present in 12
patients. The median age of Gd− lesions was 6 months (range 1.5–12)
and median time to second MRI was 6 months for both lesion subtypes
(Table 1). None of the 23 patients experienced an additional clinical
relapse and the majority of patients (70%) had stable EDSS scores be-
tween MRI scans. Fig. 3A and B represents the change in MWF among
d from10WMROIs in 11HCs by repeated FAST-T2 scans. The linear regression line and its
ression line approach 1.0; indicating a strong agreement between test and retest scans.
s by test and retest FAST-T2 scans. The red line represents the mean difference between
0.027).



Table 1
Patient and lesion characteristics.

Age of patient, mean years (±SD) 32.8 (7.9)
Female gender, n (%) 16 (66.7)
Disease duration, mean years (±SD) 5.3 (5.1)
EDSS, mean (±SD) 1.5 (1.3)
Patients with RRMS, n (%) 20 (86.9)
Patients with multiple lesions, n (%) 12 (50)
Number of Gd+ lesions, n (%) 37 (58.7)
Number of Gd(−) lesions, n (%) 25 (39.6)
Number of voxels in Gd+ lesions, mean (range) 416 (42–19,437)
Number of voxels in Gd(−) lesions, mean (range) 190 (53–627)
Age of Gd(−) lesions, mean (range) 6 (1.5–12)
Months between MRI 1 and MRI 2 for Gd+ lesions,
median (range)

6 (3–12)

Months between MRI 1 and MRI 2 for Gd(−) lesions,
median (range)

6 (2–12)

Average MWF on initial scan for all lesions, mean (±SD) .065 (.035)
Enhancing lesions, mean (±SD) .052 (.028)
Non-enhancing lesions, mean (±SD) .081 (.033)
Average MWF on follow-up scan for all lesions, mean (±SD) .089 (.036)
Enhancing lesions, mean (±SD) .086 (.032)
Non-enhancing lesions, mean (±SD) .088 (.037)
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individual lesions within the different lesion subtypes: Gd+ versus Gd
−. Gd− lesions showed a trend towards improvement (0.006 ±
0.017, p=0.065)while Gd+showed a greatermagnitude of and statis-
tically significant improvement (0.035 ± 0.029, p b 0.001). Given that
MWF can be diluted due to an increase in extra-cellular water related
to an acute inflammatory event, (Vavasour et al., 2009) the observed
change within Gd+ lesions is likely a combination of both resolving
edema and myelin recovery. This is demonstrated in Fig. 4, wherein
there was a 212% relative improvement in MWF within an enhancing
lesion, however partial resolution of the lesion on T2-FLAIR concurrent-
ly occurred and based upon previous studies, this suggests that resolu-
tion of edema is a contributing factor (Vavasour et al., 2009). Although
baseline MWF was significantly different between Gd+ and Gd−
lesions (p b 0.001), the MWF on follow-up scans (median follow-up
time of 6 months) was similar (p = 0.943). These results suggest that
if remyelination is occurring, the majority is likely to occur within the
initial 6 months after lesion development, which is consistent with pre-
vious observations utilizing MTR to measure lesion recovery (Chen
et al., 2008; Brown et al., 2013). However, two specific Gd− lesions
(aged at 6 and 12months) from different patients, demonstrated signif-
icant improvement. A hypothesis for this observation is that prolonged
Fig. 3.MWF change in Gd+ and Gd− lesions.Trajectory of baseline and follow-upMWF values
values and had greater average change than non-enhancing lesions. Green lines: lesions that in
MWF beyond our reproducibility threshold; gray lines: lesions that increased or decreased wit
myelin recovery can occur in a subset of lesions. Only 1 Gd+ lesion
demonstrated a true MWF decline, all other observed reductions were
within the reproducibility bounds of the FAST-T2 method.

3.3. Variables associated with final lesion MWF

Two-tailed T-tests indicated that mean final MWF for both Gd+
(0.86 ± 0.032) and Gd− (0.88 ± 0.037) was significantly reduced
(p b 0.001, p b 0.001, respectively) when compared to the overall mean
MWF of all HC WM ROI derived from the initial test scan (0.160 ±
0.030). From this result, it was inferred that some level of myelin damage
was detected in both lesion types at follow-up.We utilized amixed effect
model to examine association between several clinical and lesion charac-
teristics and subsequentMWF for all lesionswhile controlling formultiple
lesions per patient. The final model (R2 = 0.61) included baseline MWF
(β=0.8536, p b 0.001) and the presence of Gd enhancement at baseline
(β=−0.0273, p= 0.0004) as the only significant covariates. Lesion size,
patient age and treatment interventions, such as intravenous steroid use,
and baseline EDSS were not statistically significant. A lower baseline
MWF, which is a combination of higher levels of edema (water) and
lower myelin content, is associated with lower final MWF and sug-
gests that more extensive acute inflammation leads to less myelin
within lesions.

4. Discussion

Investigating the potential of myelin repair strategies in multiple
sclerosis (MS) requires both a quantitative tool to measure myelin con-
tent in vivo and an understanding of natural dynamics of myelin repair/
regeneration after initial lesion formation. The two imaging techniques
most widely utilized to quantify myelin change are MWF and magneti-
zation transfer ratio (MTR), (Chen et al., 2007) both of which provide an
indirect measure of myelin. MTR has been more widely utilized given
the wide availability of the sequence and simple reconstruction
(Brown et al., 2013). In this study, we utilized FAST-T2 to describe
MWF within two subtypes of new MS lesions (Gd+ and Gd− le-
sions). We chose to focus on multi-compartment T2 relaxometry,
largely, because our group has developed a clinically feasible se-
quence and novel post-processing approach to minimize the typical
noise present in MWF maps. In addition, we have devoted consider-
able effort to MWF given that the short T2 component of the T2
spectrum, representing myelin water, is felt to be more specific to
for (A) enhancing and (B) non-enhancing lesions. Enhancing lesions started at lowerMWF
creased in MWF beyond our reproducibility threshold; red line: a lesion that decreased in
hin our threshold.



Fig. 4. An example of an enhancing lesion that demonstrated a large improvement inMWF. (A) Baseline T2-FLAIR image and the correspondingMWFmap. (B) Follow up T2-FLAIR image
and it3s corresponding MWF map 6 months later (212% improvement). Partial resolution of the lesion can be appreciated on both the T2-FLAIR and MWF images (inset).
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myelin as compared to MTR (Laule et al., 2007). MWF has been
shown to highly correlate with histological myelin measurement
in animal models (Gareau et al., 2000) and ex-vivo brain, (Laule
et al., 2006; Laule et al., 2008) and has been applied to MS patients,
(Laule et al., 2004) for which significant differences have been found
when compared to controls (Kolind et al., 2012; Oh et al., 2006;
Vavasou et al., 2006). In addition to our approach, there are a num-
ber of other investigators proposing sequences with the similar goal
of clinically feasible whole brain myelin mapping (Neema et al.,
2009; Prasloski et al., 2012; Oh et al., 2007; Deoni et al., 2008). In
this study, we demonstrate that it is possible to implement longitu-
dinal FAST-T2 mapping into a large cohort of over 500 patients,
which allowed us to capture and present one of the largest study
of MWF within acute MS lesions. Furthermore, we established that
FAST-T2 is a reliable method to study MWF within lesions given
that our reproducibility testing in HC is within the range of previous
MWF studies (Meyers et al., 2009; Meyers et al., 2013).

We found that themost dynamic change occurred in newMS lesions
having the presence of gadolinium on T1 post-weighted images, which
we consider the younger of the two subtypes of lesions. Our results
imply that lesions have the most potential to improve during the first
6 months after enhancement and stabilize during the second 6 months.
Although we are unable to determine the precise timing of lesion for-
mation, it has been accepted that the presence of gadolinium represents
early stage lesions due to the breakdown of the blood brain barrier and
is indicative of active inflammation within lesions (Cotton et al., 2003;
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Blezer et al., 2007). Furthermore, we confirmed that all Gd+ lesions in
this study were not present on previous MRI scans. Even though MWF
measurement can be confounded by edema, it is likely that some of
the change in Gd+ lesions is due to myelin repair, given that patholog-
ical studies showed that remyelination increases dramatically after the
onset of demyelination in acute lesions (Prineas et al., 1993; Raine and
Wu, 1993) and is consistent with previous MTR studies (Chen et al.,
2008). We observed that the slightly older Gd− MS lesions were fairly
quiescent, although improvement in MWF occurred within two lesions
and thus raises the possibility that the temporal course of myelin repair
may be prolonged in some lesions. In contrast to our study, which shows
stability of the myelin signal in the majority of lesions N6 months of age,
an MTR lesion study reported that the majority of lesions this age show
progressive decline in the MTR signal, suggesting continued demye-
lination throughout the first year of lesion development (Chen et al.,
2008). This divergence from our results may be reflective of MTR3s
sensitivity to other white matter microstructural changes, such as
axonal loss (van Waesberghe et al., 1999) whereas MWF is specific
for myelin (Laule et al., 2008).

MWF, given the nature of the fraction (myelin water/total water),
is diluted with additional extra-cellular water and will likely over-
representmyelin recovery. Vavasor et al. demonstrated that an increase
in water content (WC) occurred within acute lesionswhichwas follow-
ed by subsequent resolution within the following months; this study
provided evidence thatWCmust be taken into accountwhilemeasuring
MWF change in acute lesions (Vavasour et al., 2009; Laule et al., 2004).
Given this limitation ofMWF in Gd+ lesions, prediction ofMWF change
would not be appropriate nor would be an estimation of absolute mye-
lin recovery in these early staged lesions. However, MWF as a combined
measure of edema anddemyelination provides ametric to represent the
intensity of the initial demyelinating event. In our random effectmodel,
we found that initial MWF was associated with subsequent MWF, thus
more edema and demyelination during the acute inflammatory event
influence the subsequent MWF value. From pathological studies, we
know thatwithin the acute phase of a newMS lesion, there are activated
mononuclear cells, including lymphocytes, microglia, andmacrophages
which destroy myelin and to a variable degree, oligodendrocytes
(Lassmann, 2011). If this highly inflammatory process is arrested at an
early phase, plaques are partially remyelinated (Franklin and Ffrench-
Constant, 2008). If instead, this inflammatory state persists, a variety
of pro-inflammatory mediators are secreted, such as cytokines, reactive
oxygen species, nitric oxide and glutamate, and these are able to induce
further tissue damage and lead to failure of remyelination (Bitsch et al.,
2000; Smith and Lassmann, 2002). Our work is in keeping with, but
does not conclusively validate, the histopathological observations that
inflammation may deleteriously impact remyelination potential. In ad-
dition, baseline MWF is predictive of follow-up MWF in Gd− lesions
where, presumably, theMWF is less confounded by edema. This implies
that even outside of the acute inflammatory event, baselineMWF is pre-
dictive of future MWF within lesions.

There are limitations to our study. Given the small sample size,
limited duration of follow-up, and the estimated ages of Gd− lesions,
we are not able to accurately determine the precise timing of MWF re-
covery within new lesions nor can we generalize our results to larger
populations of MS patients. Importantly, we plan to further explore
the dynamic changes of MWF in various aged lesions, compare MWF
in T1 hypointense lesions to those that are T1 isointense, and expand
our patient cohort in an attempt to make clinical correlations with
MWF recovery. In addition, as discussed previously, changes in local tis-
sue water in acute edematous lesions can confoundMWF-basedmyelin
quantification (Laule et al., 2004). It would be reasonable to postulate
that the bulk of the dynamic change we observe in Gd+ lesions is due
to inflammation resolution rather than remyelination. This limitation
can be overcome by mapping absolute myelin water (expressed as mil-
liliter of myelin water per milliliter of brain tissue) by referencing the
myelinwater signal to the signal of an external water standard attached
to a subject3s head (Whittall et al., 1997) or the signal of the CSF. The
FAST-T2 sequence used in thiswork is being furthermodified to provide
fast absolute myelin water mapping in clinically relevant scan time.

In conclusion, it is known that remyelination can occur within the
adult central nervous system, however this mechanism fails to occur
in a reliable manner in patients with multiple sclerosis, and factors con-
tributing to this limited reparative response are not fully elucidated
(Fancy et al., 2010). Understanding the potential for endogenousmyelin
repair among different subtypes of MS lesions is essential when consid-
ering the design of therapeutic clinical trials for remyelination. FAST-T2,
is a feasible method to investigate specific patient and lesion character-
istics that may contribute to differences in MWF recovery as well as to
assess the potential benefit of a treatment intervention. Furthermore,
we demonstrated that the majority of change occurs in the earliest
stages after lesion development and that the intensity of the acute
inflammatory event is detrimental on MWF recovery.
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