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Abstract

Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an ani-

mal. In Drosophila, these cells reside in a cellular niche that is required for both their mainte-

nance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that

differs from the GSC). The stem cell—daughter cell transition is tightly regulated by a num-

ber of processes, including an array of proteins required for genome stability. The germline

stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its

molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries

and found significant derepression of many transposon families but not heterochromatic

genes. We also discovered inappropriate expression of multiple classes of genes. Most

prominent are testis-enriched genes, including the male germline sex-determination switch

Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome

2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly,

we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression

of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we

discovered that Stwl localizes upstream of transcription start sites and at heterochromatic

sequences including repetitive sequences associated with telomeres. Stwl is also enriched

at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we

identify Stwl binding motifs that are shared with known insulator binding proteins. We pro-

pose that Stwl affects gene regulation, including repression of male transcripts in the female

germline, by binding insulators and establishing chromatin boundaries.

Author summary

Stem cells are defined by their ability to divide asymmetrically, resulting in a differentiated

cell and a stem cell daughter. In fruit flies, sperm and egg production begins with germline

stem cells (GSCs). The ability of a GSC to differentiate or self-renew is tightly regulated by

a myriad of factors. Some of these are transcription factors, which are responsible for
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activating or suppressing other genes to promote one state in favor of another. Stonewall

is an ovarian nuclear protein required for GSC self-renewal, whose molecular function is

poorly understood. Here we show that Stonewall is responsible for preventing the activa-

tion of “male” molecular programming in the fruit fly ovary. When Stonewall is absent

from the ovary, egg production is terminated and testis-specific genes become highly

expressed, including the male transcript of Phf7, which induces male sexual identity in

female germ cells. We also show that Stonewall is likely localizing to genomic insulators,

which are regions of the genome that shield genes from nearby regulators. Our findings

suggest that Stonewall helps to organize the genome in ovarian germ cells and prevent

expression of male genes.

Introduction

Adult stem cells exist in tissues where there is constant turnover of cells, such as gonads where

gametes are continually produced and released. Germline Stem Cells (GSCs) are one of several

adult stem cell populations that inhabit ovaries and testes. In the female ovary of the fruit fly,

they reside in a niche environment that is required to maintain them [1,2]. Stem cells undergo

asymmetric cell division, resulting in one differentiated daughter cell and one daughter cell

that is identical to the parent, thus undergoing self-renewal. For ovarian GSCs, the differenti-

ated daughter cell is the cystoblast, which then undergoes four rounds of incomplete mitosis to

form a 16-cell cyst. Upon completing these four rounds, one of the cystocytes in the 16-cell

cyst enters meiosis while the other 15 undergo endoreduplication. The meiotic cell will differ-

entiate into an oocyte while the other 15 will become nurse cells that provide maternal factors

to the oocyte.

The entire germ cell population of the ovary is derived from the 2–3 GSCs in each germar-

ium. Drosophila have an intricate regulatory network of factors that are required for normal

GSC function [3], which can be broadly categorized as maintenance factors required for self-

renewal or differentiation factors required for cystoblast production. Many of the genes

involved in GSC regulation are pleiotropic for other functions inside and outside of the ovary.

For example, Piwi is required for both GSC maintenance and differentiation [4,5], as well as

for silencing of transposable elements via the piRNA pathway [6]. Well-known differentiation

factors include the translational repressors Bam, Bgcn, and Sxl. These proteins form a complex

that represses mRNAs associated with GSC renewal, including the maintenance gene nanos
[7]. Ovaries lacking in any of these differentiation factors exhibit a tumorous ovary phenotype,

manifested as an overabundance of GSC-like cells that fail to become cystoblasts. Sxl is essen-

tial for the cell-autonomous sex determination of germ cells [8].

The stwl gene was discovered in a P-element mutagenesis screen for female sterility and

subsequently identified as a germline-expressed gene in an enhancer trap screen [9,10]. It is

primarily expressed in germline cells of the ovary, with weak expression in GSCs and increased

expression in GSC progenitor cells (cystoblasts) and beyond [11]. stwl mutant egg chambers

contain 16 polyploid nurse cells, indicating that the cystocyte-to-oocyte transformation does

not occur and that stwl is required for oocyte determination. Egg chamber growth in stwl null

ovaries arrests between stages 4 and 7, with germ cells undergoing apoptosis. stwl is also

required for GSC maintenance: mutant ovaries typically lack GSCs, especially in older flies

[12]. stwl mutant GSC clones are rapidly depleted from the ovary via differentiation into cysto-

blasts, and egg chambers derived from these clones exhibit oocyte determination defects as

seen in stwl mutant animals [13]. Double mutants with stwl and either bam or bgcn make
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differentiated ovarian germ cell cysts, unlike in bam or bgcn single mutants, suggesting that

stwl function is downstream of bam and bgcn [13,14].

Stwl is also involved in heterochromatin maintenance. Heterochromatic regions are largely

transcriptionally silent and populated by genomic parasites, including transposons. stwl muta-

tions are dominant suppressors of position-effect variegation, suggesting that Stwl is required

to promote the spreading of heterochromatin [13]. Stwl colocalizes with the heterochromatin-

binding protein HP1a and dense, heterochromatin-like structures at the nucleolus in S2 cells,

acts as a transcriptional repressor in in vitro experiments, and promotes the spreading of het-

erochromatic histone markers H3K9me3 and H3K27me3 in larvae [15].

Despite the essential function of stwl in D. melanogaster, the gene is novel to the Drosophila
genus, part of a lineage-specific expansion of MADF-BESS domain genes [16,17]. Further-

more, the stwl locus has undergone recurrent positive selection at least once in the genus and

has higher overall rates of substitution relative to closely related genes [18–20]. The driver of

this evolutionary signature has not been identified, though some have speculated that the role

of Stwl in heterochromatin maintenance may involve interaction with transposons [18,19].

Interestingly, both the narrow phylogenetic distribution and positive selection seen for stwl are

shared with other essential germ line stem cell regulatory genes including bam and bgcn
[19,21].

Stwl colocalizes with the insulator binding protein CP190 in terminal filament cells of the

ovary and presents as puncti at the nuclear lamina [22]. Insulators are genomic regions that,

when appropriately bound by insulator proteins, can prevent interaction between enhancers

and their target promoters, or modulate the spreading of chromatin modifications [23]. We

performed here a range of genomic experiments in order to identify genes regulated by Stwl

and its possible molecular function. We report data from transcriptional profiling in mutant

ovaries and ChIP-Seq in S2 cells which suggest that loss of Stwl results in the activation of

male-specific genetic programming and misregulation of transposable elements, and that Stwl

localizes to insulators.

Results

stwl deficient ovaries exhibit TE derepression

A screen for genes whose RNAi-induced knockdown (KD) in ovaries leads to misexpression

of TEs found that germline KD of stwl results in moderate derepression of three TE transcripts

(Het-A, blood, and burdock), as determined by qRT-PCR [24]. We performed our own

qRT-PCR experiments to test for misexpression of the LTR retrotransposon Copia, and the

non-LTR retrotransposons Het-A, 412, and I element. Het-A, Copia and I element are germ-

line-restricted, while 412 is expressed in both germline and ovarian follicle cells [25,26]. We

tested for misexpression of these TEs in ovaries dissected from 2-day old trans-heterozygous

null (stwlj6c3/Df(3L)Exel6122), hemizygous (stwl+/Df(3L)Exel6122), and wild-type (stwl+/stwl
+) flies. We found that each of these TEs is derepressed in trans-heterozygous null ovaries, rela-

tive to hemizygous and wild-type ovaries (Fig 1A).

The stwl mutant phenotype presents challenges for interpreting assays of transcript abun-

dance. stwl mutant ovaries are largely agametic as a consequence of GSC loss and defects in

oocyte determination (S1 and S2 Figs) [11–13]. Nurse cells in D. melanogaster ovaries are poly-

ploid and produce large quantities of mRNA that are maternally inherited by the developing

oocyte. Differential expression between agametic mutant and wild-type ovaries might there-

fore reflect extensive differences in the cellular makeup of the ovaries rather than changes in

transcript abundance specifically due to stwl. In order to account for differences in tissue com-

position, we chose the approach utilized by previous studies, which is to assay transcripts
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derived from extremely young ovaries [27,28]. These authors reasoned that dissection of ova-

ries from newly-eclosed individuals (dissected within 24 hours of eclosion) would limit the

amount of late-stage egg chambers and eggs that are present. Our analyses confirm that ovaries

from newly-eclosed stwl mutants more closely resemble wild-type in their morphology than

older ones (S2–S4 Figs).

We assayed TE transcripts from newly-eclosed ovaries from both stwlj6c3/Df(3L)Exel6122
and stwl+/Df(3L)Exel6122, as above. We found that the fold-increase of Het-A in trans-hetero-

zygous nulls relative to hemizygotes is similar in newly-eclosed and 2-day-old ovaries (5-fold

and 6-fold increase, respectively) (Fig 1B). Copia transcript is also derepressed in newly-

eclosed stwl transheterozygous null ovaries (8-fold increase over hemizygotes), though this

derepression phenotype is not as large as the one observed in 2-day-old ovaries (23-fold

increase over hemizygotes). We conclude that the TE derepression phenotype we and others

[24] have observed is likely due to loss of stwl activity, not to a general loss of germ cells.

In order to identify the genome-wide consequences of stwl loss, we performed RNA-Seq on

ovaries dissected from newly-eclosed and 2-day old wild-type (y w) and stwl null (y w; stwlj6c3/
stwlj6c3) individuals. The goal of this experiment was to identify and classify genes and TEs

Fig 1. Loss of stwl results in upregulation of transposons and testis-enriched genes. (A) qRT-PCR of TEs from 2-day old ovaries, scaled to wild-type. stwlnull

is a mutant allele (stwlj6c3), stwl- is a deficiency allele (Df(3L)Exel6122). (B) TEs are upregulated in both 0- and 2-day old ovaries. qRT-PCR of TEs from stwl
null (stwlj6c3/stwlj6c3) ovaries, scaled to stwl+/Df(3L)Exel6122. (A-B) Mean and SE plotted from 3 biological replicates, each with 3 technical replicates. (C) Fold-

change of TEs in stwl null (stwlj6c3/stwlj6c3) relative to wild-type from RNA-Seq assay of 0- and 2-day old ovaries. Black arrows point to TEs validated with

qRT-PCR data in Fig 1A and/or 1B. “G”,”S”,”B” indicates whether TE is typically expressed in germline, ovarian soma, or both, respectively [26]. (D) log2Fold-

change (LFC) of TEs vs. all genes from stwl, bam, Sxl, and piwi mutant or deficient ovaries, relative to wild-type. Crossbars show the mean LFC for all TEs. (E)

Fold-change of the top 14 and bottom 14 most affected annotated genes (based on FlyBase annotations) in stwl null ovaries relative to wild-type. Male and

female symbols mark genes with testis- and ovary-enriched wild-type expression, respectively; “�” marks genes that are part of the 59C4-59D testis-specific

cluster described in Fig 2. (F) Enriched tissue classes among the top and bottom 1% of misregulated genes in stwl, bam, Sxl, and piwi mutant or deficient

ovaries. Average LFC is plotted for each set of tissue-enriched genes enriched among stwl, bam, Sxl, and piwi mutant or deficient ovaries relative to wild-type.

Only gene sets with FDR<0.05 are plotted.

https://doi.org/10.1371/journal.pgen.1010110.g001
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which are consistently differentially expressed in stwl mutants. Therefore, we incorporated all

four sample types (newly-eclosed wild-type, newly-eclosed mutant, two-day old wild-type,

two-day old mutant) into a generalized linear model using DESeq2 [29]. A gene was only con-

sidered differentially expressed in stwl nulls if the transcript count for that gene significantly

changed across both null samples relative to wild-type; that is, if the gene was differentially

expressed between the two genotypes, regardless of age.

After accounting for potential batch effects and GC-content bias (see Methods), sample-to-

sample distances for the resultant count matrices confirmed that the biological replicates for

each sample type cluster together (S5 Fig). Principal Component Analysis (PCA) of the count

data demonstrated that the samples are primarily stratified according to ovary maturity (S6

Fig). Principal Component 1 (PC1) accounts for 58% of the variance in the count matrix,

which separates mature ovaries (2-day old stwl+/stwl + wild-type) from immature ovaries

(2-day old stwlj6c3/stwlj6c3 null, 0-day stwlj6c3/stwlj6c3 null, and 0-day old stwl+/stwl +wild-type).

These trends in the PCA support the rationale behind our experimental design, in that com-

paring null and WT ovaries at two time-points more accurately identifies genes that are differ-

entially expressed due to genotype. We found that analyzing 0-day and 2-day old ovaries

separately yielded similar results to the combined approach in terms of upregulation of TEs

and testis genes (S1 Table, S7 Fig). While stwl deficiency in the 2-day old ovaries resulted in a

larger number of affected genes (ovarian transcripts were especially down-regulated, as

expected), incorporating these data into a GLM with 0-day old ovaries increased the likelihood

of identifying stwl-dependent genes.

We found that 4,839 genes (out of 10,165 genes with mean read count>10 across all ovary

samples) are differentially expressed, with 2,147 genes upregulated in stwl null and 2,692

downregulated in stwl null (48%, 21%, and 26% of expressed genes) (S1 Table, S8 Fig). We also

found that P-element transcript increases ~4-fold in stwl null ovaries; this can be explained by

the P-element insertion into the stwl locus that created the stwlj6c3 allele and serves as an inter-

nal validation for the presence of the stwlj6c3 allele. The RNA-Seq data showed that repetitive

elements are strongly impacted by loss of stwl (Fig 1C). These repeats include the Copia, Het-
A, 412, and I element elements we identified by qRT-PCR.

Loss of stwl, bam, and piwi, but not Sxl, results in TE derepression

Although stwl is expressed in somatic cells of the ovary, we found that RNAi-mediated knock-

down of stwl using follicle cell drivers had no effect on fertility, while germline-specific knock-

down strongly reduces or eliminates fertility (S9 Fig). These results are consistent with

previous findings that the terminal phenotype of stwl mutant ovaries is sterility caused by loss

of germline stem cells and apoptosis of differentiated germ cells (S1 and S2 Figs) [11–13].

DNA damage is also apparent in these sterile ovaries, possibly due to stwl’s requirement for

maintenance of heterochromatin [15]. It is also possible that TE derepression is a consequence

of these defects, rather than reflecting a direct role of Stwl in TE silencing. To help distinguish

between these possibilities, we analyzed published RNA-seq data generated from ovaries for

mutations in various genes affecting GSC maintenance or differentiation. These included the

differentiation factor bag-of-marbles (bam), the sex-determination master regulator Sex-Lethal
(Sxl), and the GSC maintenance factor and piRNA targeting protein piwi (piwi). bam and Sxl
deficient ovaries exhibit a “bag of marbles” phenotype that is characteristic of disruption of dif-

ferentiation factors that results in over-proliferation of GSC-like cells [27,30,31]. piwi mutants

exhibit GSC maintenance defects similar to those in stwl mutants [4,6,32,33]. We found that

loss of bam and piwi, but not Sxl, results in upregulation of TEs, particularly LTR retrotranspo-

sons and germline-expressed TEs (Figs 1D and S10, S2 Table). To our knowledge, TE
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derepression has not previously been observed in bam mutants. These results suggest that the

stwl TE derepression phenotype is not an indirect reflection of the loss of GSCs, since it also

occurs in bam mutants, which have the opposite phenotype of GSC overproliferation. It is also

notable though that the magnitude of effects in stwl mutants is substantially lower than in piwi
mutants, suggesting that stwl may not be a direct repressor of TEs as piwi is. We suggest

instead that loss of stwl may lead to widespread but moderate derepression of TEs through its

role in insulator function described below.

A subset of testis-enriched genes are highly upregulated in stwl null ovaries

Other GSC regulatory genes, including Sxl, are required in ovaries for silencing of testis-spe-

cific transcripts [27]. We tested whether stwl mutant ovaries also exhibit abnormal derepres-

sion of testis-specific genes. We utilized RPKM values from the modENCODE anatomy

RNA-Seq dataset to classify all genes according to tissue-biased expression [34]. We found that

testis-enriched genes are among the most upregulated genes in stwl null ovaries, while ovary-

enriched genes are among the most downregulated (Fig 1E and 1F). Genes consistently upre-

gulated in stwl, bam, Sxl, and piwi deficient ovaries were not biased for expression in any tissue

(S2 and S3 Tables, S11 Fig).

While testis-biased transcripts are among the most upregulated in stwl null ovaries, Gene

Set Enrichment Analysis (GSEA) found that on the whole they are downregulated in stwl null

ovaries (S12 Fig). This reflects a limitation in GSEA performance previously noted when

attempting to perform analyses on large and potentially complex gene sets [35,36]. The essen-

tial problem is that these sets include genes that are misregulated in both directions, presum-

ably because members of the same pathway may be either down- or upregulated in response to

misexpression of an upstream activator or suppressor. We therefore performed an over-repre-

sentation test for tissue-enriched genes among the top and bottom 1% of expressed genes in

each RNA-Seq experiment, to identify strong biases at the extremes of the most differentially

expressed genes (Fig 1F). Our top/bottom percentile over-representation tests confirmed that

testis-enriched genes are over-represented within the top 1% of most highly upregulated genes

in agametic ovaries, but they are much more prevalent in stwl and Sxl null or deficient ovaries,

relative to bam or piwi mutant ovaries. We also found that transcripts enriched in adult head,

as well as pharate and larval stage central nervous system (CNS) are upregulated in stwl null

ovaries (Fig 1F).

Loss of stwl results in ectopic expression of a testis-specific gene cluster

In order to test whether specific regions of the genome are misregulated, we plotted LFC by

genomic location (Fig 2A). We found a striking pattern of expression at 59C4-59D on chro-

mosome 2R, where 11 genes clustered within 227.5 Kb are strongly upregulated in stwl null

ovaries. Four of the genes in this cluster are among the most strongly upregulated genes in stwl
null ovaries (Fig 1E). Coexpressed gene clusters are common in many species, adding a dimen-

sion of organization to the genome by allowing groups of adjacent genes to be regulated simul-

taneously. Testis-specific gene clusters are particularly common in D. melanogaster, with

59C4-59D being the largest, and their expression is tightly regulated to prevent somatic expres-

sion [37]. We confirmed that the 59C4-59D cluster described by Shevelyov et al. [37] is com-

posed mostly (28/34 total genes) of testis-enriched genes, most of which are absent from the

wild-type ovarian transcriptome (S4 Table).

Loss of the H3K9me3 pathway components results in ectopic expression of testis-enriched

genes [27,31]. Similarly, we found that the genes of the 59C4-59D cluster are transcriptionally

inert in ovaries and become ectopically expressed in stwl null ovaries (Fig 2B, S4 Table). We
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also found that this cluster is upregulated in bam, Sxl, and piwi mutant or deficient ovaries

(Fig 2C), making it a potentially useful transcriptional reporter for loss of sex-specific gene

silencing.

Loss of stwl results in derepression of testis-enriched genes in S2 cells and

ovaries

Even when assayed mutant tissues appear morphologically similar to wild-type, the pleiotropic

functions of Stwl nonetheless make it challenging to identify which genes are specifically mis-

regulated as a consequence of Stwl loss. In order to further address this concern, we performed

RNA-seq on a homogeneous tissue, using S2 cells treated with stwl dsRNA (see Methods).

Immunoblotting against Stwl protein showed that stwl dsRNA treatment reduced Stwl protein

levels by at least 80%, and RNA-Seq confirmed that stwl transcript was reduced by ~85% (Fig

3A and 3B).

Fig 2. A cluster of testis-specific genes is derepressed in stwl null ovaries. (A) Differential expression (DE) of genes

in ovaries (stwl null/WT) along chromosome 2. Only DE genes (FDR<0.01) are plotted. Testis-enriched genes are red

(see Methods). Shaded orange area marks pericentromeric heterochromatin; arrow points to the testis-enriched cluster

at 59C4-59D. (B) Reads Per Kilobase of transcript per Million mapped reads (RPKM) of genes in the 59C4-59D cluster

in wild-type and stwl null gonads. Low-count outliers are not plotted. (C) log2Fold-change (LFC) of 59C4-59D cluster

vs. all genes from stwl, bam, Sxl, and piwi mutant or deficient ovaries, relative to wild-type. Crossbars show the mean

cluster LFC.

https://doi.org/10.1371/journal.pgen.1010110.g002
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Relative to loss of stwl in ovaries, stwl dsRNA treatment of S2 cells had a more subtle effect

on transcript abundance and little effect on TEs (S13 Fig). S2 cells are male and hematopoi-

etic-derived, and express fewer genes than ovaries [38,39]. Nonetheless, as in the stwl null ova-

ries we found that testis-enriched genes are among the most highly upregulated genes in stwl
dsRNA-treated S2 cells, including a member of the 59C4-59D cluster (Fig 3B). Due to the very

low average transcript abundance at this cluster in S2 cells, most of these genes were removed

from the differential expression analysis performed by DESeq2 [29] (S1 Table). Our further

analysis of ectopically expressed genes, which was not limited by low average counts, found

that 5/12 of the 59C4-59D genes upregulated in stwl null ovary are ectopically expressed in

stwl dsRNA-treated S2 cells (S4 Table). Testis-enriched genes are over-represented among the

top 1% of ectopically expressed genes in stwl dsRNA-treated S2 cells (Fig 3C).

For comparison, we applied the same methodology to our ovary data and found that 3,777

genes are ectopically expressed in stwl null ovaries. Head- and CNS-enriched genes are highly

overrepresented among these ectopically enriched genes, as are testis-enriched genes, though

to a lesser degree (Fig 3C). However, testis-enriched genes are the only upregulated tissue

Fig 3. RNAi knockdown of stwl in S2 cells results in derepression of testis-enriched genes. (A) Western blot with

anti-Stwl antibody of S2 cells treated with either control dsRNA (lacZ) or dsRNA targeting the stwl transcript. The

estimated number of cells per lane (multiplied by 1000) is shown below the blot. (B) Fold-change of the 13 most

affected annotated genes in stwl KD S2 cells relative to lacZ control. Male and female symbols indicate whether gene is

testis- or ovary-enriched in wild-type. “�” marks genes that are part of the 59C4-59D testis-specific cluster. (C) FDR,

count, and mean log2Fold-change (LFC) is plotted for each set of tissue-enriched genes that is overrepresented among

ectopically expressed genes in stwl null ovaries and stwl dsRNA-treated S2 cells. Overrepresentation tests were also

performed on the top 1% by LFC of ectopic genes in stwl null ovary, and of genes ectopic to both stwl null ovary and

stwl dsRNA-treated S2 cells (for this intersect group, average LFC values in stwl null ovary are plotted). Only gene sets

with FDR<0.05 are plotted.

https://doi.org/10.1371/journal.pgen.1010110.g003
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classes among the top 1% of ectopically expressed genes by LFC (Fig 3C). We found that 49%

(129/262) of ectopically expressed genes in stwl-dsRNA treated S2 cells are also ectopically

expressed in stwl null ovaries. This subset of genes is highly enriched for testis, head, and CNS

transcripts (Fig 3C). We conclude that stwl functions to repress genes with male-enriched

expression, including in somatic tissue culture cells and ovaries.

Stwl regulates key sex-determination and differentiation transcripts

Similar phenotypes of ectopic expression and upregulation of non-ovarian genes in female

gonads have been reported for the female sex-determination gene Sxl, the H3K9me3 pathway

members egg, wde, and hp1a, and the differentiation factor bam [27,31,40]. Sxl is required in

ovaries for female sex determination; one of its critical functions is silencing (via the

H3K9me3 pathway) of the male germline determining protein PHF7, a histone reader whose

expression is necessary and sufficient for induction of spermatogenesis in the germline

[41,42]. PHF7 induction in female germ cells is also necessary for induction of the tumorous

germ cell phenotype of Sxl deficient ovaries [27]. In wild-type female germ cells, transcription

of Phf7 is initiated from a TSS in the second exon, which results in truncation of the 5’ UTR of

the female-specific transcript and absence of Phf7 protein in ovaries (Fig 4A). We found that

the male-specific 5’ UTR is consistently and ectopically expressed in stwl null ovaries, regard-

less of age, but not in stwl-dsRNA treated S2 cells (Fig 4A). Therefore, stwl is required for

silencing of male-specific programming in ovaries.

Since the overlap of genes ectopically expressed in stwl deficient ovaries and S2 cells is so

striking, we predicted that upregulation of these genes may be consistent among ovaries exhib-

iting germline defects. Indeed, we found that these genes are generally upregulated in bam,

piwi, and Sxl mutant or deficient ovaries, as well as egg, wde, and hp1a germline knockdown

(GLKD) ovaries (Fig 4C). Of note, we find that bgcn transcripts are highly upregulated in each

of the mutant and GLKD ovary datasets we examined. Bgcn binds to Bam and suppresses

mRNAs associated with germline stem cell renewal, and both proteins are required to promote

differentiation of developing cystoblasts.

Pleiotropy and substantial changes in ovary composition create challenges for interpreta-

tion of data generated from ovaries deficient for GSC maintenance and differentiation genes.

In bam and Sxl mutant or deficient ovaries, GSC-like cells overproliferate to form structures

with tumor-like and stem-cell-like qualities and gene expression patterns [43,44]. They also

express transcripts associated with early gametogenesis in both wild-type sexes, many of which

are testis-enriched. One possible explanation for the perceived “masculinization” of the ovary

as a result of stwl, Sxl or bam mutations is that it reflects an overabundance of GSC-like cells

and thus of transcripts that are normally expressed during the early stages of wild-type gameto-

genesis [27]. Single cell data make it possible to address these concerns [45]. We found that

some of the most dramatically upregulated transcripts, including bgcn, are expressed in GSCs

(S20 Fig). However, the overlap of testis-enriched transcripts and GSC transcripts is quite

small, and cannot account for the majority of ectopically expressed testis transcripts we

observed in stwl null ovaries. Furthermore, we find that stwl-dsRNA treated S2 cells ectopically

express many of the same testis-enriched genes that we identified in stwl null ovaries. S2 cells

are male-derived, but our analysis nonetheless finds that the affected genes are almost

completely silent in the control S2 cells.

In order to determine whether the effects of Stwl on gene expression that we discovered are

direct or indirect, we developed two ChIP-grade antibodies against the protein and performed

ChIP-Seq experiments on S2 cells. Both Stwl antibodies met our antibody validation criteria,

including recognition of the target protein in immunoblotting (S14 Fig) and
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immunofluorescence (S15 and S16 Figs) experiments, successful immunoprecipitation of the

target protein (S17 Fig), and low background in immunoblots of S2 cells (Figs S17 and 3A).

Our ChIP-Seq experiments produced a robust set of peaks when compared to both input and

mock samples (S18 Fig). We identified 3,265 genes whose transcription start sites (TSS) were

within 1 Kb of a Stwl peak, and therefore could be considered putatively bound by Stwl

(S2 Table).

While we found some evidence of Stwl enrichment at the Phf7 locus (1.7-fold over input,

IDR = 0.048), we found very strong fold-enrichment of Stwl at the bgcn promoter (4.1-fold

Fig 4. Phf7 and bgcn are regulated by Stwl. (A) The male-specific 5’ UTR of Phf7 (indicated by orange shading) is

expressed in stwl deficient ovaries and S2 cells, as well as ovaries lacking Sxl and its downstream targets egg, wde (not

shown), and hp1a (not shown) [31]. Reads were normalized to 1x depth of coverage and visualized in IGV, with Phf7
shown in 3’ to 5’ orientation. Exons 1, 2, and 3 are indicated; exon 1 and part of exon 2 are male-specific. (B) bgcn is

bound by Stwl in ChIP-Seq with two different anti-Stwl antibodies (76 and 77). Two independent replicates of each

condition are shown. Reads were corrected for GC-bias, scaled to RPKM, and visualized in IGV. (C) Genes ectopically

expressed in both stwl null ovary and stwl-dsRNA treated S2 cells (including bgcn, in red) are also upregulated in

ovaries mutant or deficient for other GSC genes.

https://doi.org/10.1371/journal.pgen.1010110.g004
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over input, IDR = 1.3e-5) (Fig 4B). The peak at bgcn is among the top 1% of Stwl peaks when

ranked according to fold-enrichment. bgcn transcript is expressed at very low levels in Dro-
sophila ovaries; its expression is limited largely to GSCs, where it is critical for promoting

asymmetrical division into cystoblast daughters [46]. Loss of bgcn results in a tumorous ovary

phenotype, as GSCs proliferate without differentiating into cystoblast daughters. While over-

expression of Bam, the binding partner of Bgcn, results in GSC maintenance defects, this

defect is not observed when Bgcn overexpression is driven in early germ cells [46,47]. We con-

clude that Stwl directly regulates expression of bgcn in the ovary and posit that aberrant expres-

sion of bgcn caused by Stwl loss results in activation of male-specific programming in the

female germline. This finding is inconsistent with a simple model that stwl acts downstream of

bgcn (and bam), as suggested by previous analyses of double mutants [13,14]. We therefore

also examined bgcn stwl double mutants and corroborated the previous result that they are

able to make differentiated germline cysts (S19 Fig). We also found that the double mutants

are fully sterile, which is unsurprising, given that both single mutants are each sterile.

Stwl binding peak profiles are similar to known insulator binding proteins

We annotated 2,143 Stwl binding sites across the genome using ChIPseeker [48]. Stwl is highly

enriched at promoters, centered ~150 bp upstream of transcription start sites (Fig 5A). To under-

stand this pattern more deeply we compared our Stwl ChIP-Seq profile to the ModERN consor-

tium data of 475 ChIP-Seq experiments on Gfp-tagged DNA and chromatin binding proteins in

D. melanogaster embryos and larvae [49] using the Genomic Association Tester (GAT) program

[50]. Briefly, GAT simulates a null distribution of peaks based on the size of each peakset, then

estimates the number of overlaps expected by chance and compares this to the number of

observed overlaps. We examined the most similar binding profiles according to fold-enrichment

and % overlap. Reassuringly, ChIP-Seq against Stwl-GFP from ModERN had the most similar

Fig 5. Stwl binding sites overlap with insulator-protein bindings sites. (A) Peak density of promoters bound by Stwl and mock antibodies. Frequency for

each condition is weighted by the number of peaks present in the displayed 4 kb space. (B) Peak density of promoters bound by Stwl and known insulator

binding proteins. Frequency for each protein is scaled to a maximum of 1. (C) Enriched motifs identified in narrow Stwl peaks using Meme Suite [51]. (D) For

each motif from (C), we include the transcription factor that motif most closely matches with and the number of Stwl peaks that contain the given motif (#

Matches). The % Matches identify the percent of the given motifs found in 1379 narrow Stwl peaks. Union columns (for example, 1|2) describe the number

and % of narrow Stwl peaks that match to 1 or more of the indicated motifs.

https://doi.org/10.1371/journal.pgen.1010110.g005
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binding profile to our Stwl peakset, according to fold-enrichment (S5 Table). We also found that

Stwl ChIP-Seq profiles were highly similar to a number of established and putative insulator

binding proteins, including BEAF-32, CTCF, Su(Hw), Hmr, and Lhr (Fig 5B).

We utilized the Meme Suite to identify enriched binding motifs in S2 cell Stwl ChIP-Seq

[51]. We found that Stwl peaks are enriched for DNA sequence motifs that are common to

BEAF-32, Dref, and bab (Fig 5C). Dref is an insulator binding protein that is additionally

required for telomere maintenance [52]. bab, which we identified as ectopically expressed in

stwl null and stwl-dsRNA-treated cells, plays an important role in female sex differentiation

[53]. The occurrence of insulator motifs in Stwl ChIP-Seq combined with the above binding

profiles provides strong evidence that Stwl binds to insulators.

Stwl localizes to repetitive DNA, including telomeric repeats, chromosome

4, and pericentromeric heterochromatin

Previous studies have shown that Stwl is required for heterochromatin maintenance and colo-

calizes with HP1 at heterochromatin-like structures at the nuclear periphery [13,15]. We

found that Stwl is highly enriched across the dot chromosome (chromosome 4), which is

highly repetitive and mostly heterochromatic [54] (Fig 6A). Stwl is also enriched at pericentro-

meric heterochromatin on chromosome 2, especially at the heterochromatin-euchromatin

boundary. Finally, we saw a marked increase in coverage at cytological region 31 on chromo-

some 2L. Each of these regions is also enriched in Hmr ChIP-Seq in S2 cells [55]. Hmr localiza-

tion at chromosome 2 has also been identified via immunofluorescence [56].

We next asked whether repetitive DNA, including satellite and transposable element

sequences, are enriched among Stwl peaks. Since peak calling methods are not robust to repeti-

tive DNA, we re-analyzed our ChIP-Seq data and instead calculated differential enrichment of

reads in IP samples relative to mock (see Methods). This differential enrichment analysis iden-

tified repetitive DNAs enriched in Stwl IP samples (Fig 6B). All of these repeats passed a FDR

threshold of 0.05, but the fold-changes of significantly enriched repeats were all less than 2. We

note, however, that peak-calling algorithms can robustly identify enriched regions of DNA

where fold-change of IP/mock is very low. In our own peakset, Stwl-bound sites passed IDR

thresholding and were replicated in both antibodies, despite fold-change values as low as 1.2;

the median fold-change for enrichment among all Stwl-bound peaks was 2.0. We are therefore

confident that our Stwl ChIP-Seq has identified binding to repetitive DNA.

We found that Stwl ChIP-Seq is enriched for LTR retrotransposons, specifically members

of the copia, gypsy, and bel superfamilies (Fig 6B). Copia elements are among the most highly

upregulated transcripts in stwl null ovaries, and Stwl was enriched on both the Copia LTR and

internal sequences. However, for other LTR retrotransposons such as Bel and gypsy this

enrichment only occurred along the LTR component and not the internal region. We note

that we did not detect motifs indicative of gypsy insulator binding in our motif enrichment

analysis. These results suggest that Stwl might be involved in regulating these retrotransposons

via their LTR regions. Alternatively, Stwl may be binding to heterochromatic fragments rather

than regulating full-length active elements.

We were surprised to find that telomere-associated sequences are consistently enriched in

Stwl IP (Fig 6B). With the exception of the Jockey family element Doc6, all enriched satellites

and non-LTR retrotransposons are telomeric. These include telomeric satellite sequences and

each of the members of the telomeric HTT array, Het-A, TAHRE, and TART. Furthermore, we

found that Stwl peaks are highly similar to peaks generated from ChIP-Seq against the tran-

scription factor pzg, and that Stwl shares DNA-binding motifs with Dref (S5 Table, Fig 5C).

Each of these factors localizes to and is necessary for telomere maintenance [57,58]. Lastly, we
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found that a majority of Stwl-bound telomeric repeat sequences are also upregulated in stwl
null ovaries (gene names in red in Fig 6B). These findings suggest that Stwl localizes to telo-

meres and represses expression of telomeric repeats.

Discussion

Identifying the molecular functions of Stwl is especially challenging due to its pleiotropic activity,

including in GSC maintenance, oocyte determination, DNA damage response, and TE repression.

Fig 6. Stwl binds to repetitive DNA. (A) Percent (%) coverage of Stwl peaks (Y axis) per 100-kb bins of the genome

(X axis). Shaded orange areas represent constitutive heterochromatin (pericentromeric regions and chromosome 4).

Cytological region 31 on chromosome 2L is also highlighted. (B) Fold-change of read count abundance of repetitive

elements for IP/mock comparison. Y-axis is in log2-scale. All significantly enriched elements (adj p< .01) are plotted.

Red elements are upregulated in stwl null ovaries. All of the satellite and non-LTR retrotransposon sequences (except

DOC6) are telomeric.

https://doi.org/10.1371/journal.pgen.1010110.g006
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Inferring Stwl function is further complicated by the consequences of stwl loss, e.g. apoptosis and

eventual loss of the female germline. The resulting alteration of cellular content could lead to the

identification of misregulated transcripts in stwl mutants that do not correspond to actual targets

of wild-type stwl. We sought to tease apart direct versus indirect effects when analyzing steady-

state RNA profiles of tissues affected by stwl loss. First, we assayed ovaries at two stages of develop-

ment, thereby incorporating ovarian developmental status as a factor in the generalized linear

model for differential expression. Second, we looked at differential expression in S2 cells after stwl
knockdown in order to assay Stwl function in a homogeneous tissue. By combining these two

assays, we were able to identify genes that are consistently upregulated due to stwl loss.

Stwl represses male-specific transcripts

We found that testis-enriched genes show a mixed pattern of both up- and downregulation in

stwl null ovaries. Strikingly, testis-enriched genes are consistently among the most highly upre-

gulated genes in ovaries. Most of these misregulated genes are not directly bound by Stwl, sug-

gesting that derepression of their transcripts may be a downstream consequence of stwl loss.

We found that stwl null ovaries express the male-specific transcript of the master sex determi-

nation factor Phf7, but the evidence for it being bound by Stwl in S2 cells is tentative. Phf7
remains an attractive candidate as a direct target of Stwl regulation in ovaries.

We identified in stwl null ovaries a single cluster of highly upregulated, testis-enriched

genes on chromosome 2R. Genes in this cluster are among the top 1% of upregulated genes in

ovaries, including the GSC genes HP1Lcsd, ord, RpL37b, and RpL22-like. The 59C4-59D cluster

is located within a lamina-associated domain (LAD). Such structures are thought to specifically

repress expression of testis-specific genes by tightly binding these gene clusters to the nuclear

lamina and preventing their expression. With the exception of this cluster, we did not find an

association between stwl loss and misregulation of testis-enriched gene clusters, or LADs. We

also do not find that Stwl is binding to this region, or overlapping with LADs.

We found that multiple genes within the 59C4-59D cluster are also derepressed in stwl-
dsRNA treated S2 cells, as well as Sxl and piwi mutant or deficient ovaries, and egg, wde, and

hp1a germline-knockdown ovaries. In each of these cases, many of the genes in the cluster are

ectopically expressed relative to wild-type ovaries. We conclude that ectopic expression of the

59C4-59D cluster and other testis-enriched genes is a consistent reporter of the “masculiniza-

tion” defect associated with stwl, Sxl, bam, hp1a, wde and egg mutants.

Stwl regulates Bgcn

While male transcripts are upregulated and/or ectopically expressed in stwl mutants, our ChIP

data suggest that Stwl does not bind at these loci in S2 cells, suggesting that the masculinization

defect is an indirect consequence of stwl loss. One possibility is that these phenotypes are asso-

ciated with ectopic expression of bgcn, which is typically restricted to GSCs and cystoblasts in

ovaries, but widely and highly expressed throughout spermatogenesis [46,59]. bgcn is a strong

candidate for Stwl regulation: its promoter is bound by Stwl in S2 cells, and it is highly upregu-

lated in stwl null ovaries and stwl dsRNA-treated S2 cells. Furthermore, the expression of bgcn
transcripts in ovaries is anti-correlated to Stwl, and females expressing a hs-bgcn transgene are

sterile [46]. The ectopic expression of bgcn, however, is unlikely to be the sole cause of the ste-

rility of stwl mutants because bgcn; stwl mutants remain sterile (S19 Fig).

The molecular pathways in which Stwl functions to maintain oogenesis, either at the stage

of germline stem cell retention or oocyte determination, may overlap significantly with path-

ways in which Bam and Bgcn are crucial actors. Stwl acts antagonistic to and downstream of

the GSC differentiation functions of both Bam and Bgcn: bam and bgcn mutants present with
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GSC-tumorous ovarioles, while stwl; bam and stwl; bgcn double mutants form rudimentary

germline cysts [13,14]. Despite the fact that Bgcn has a defined and important role in the

ovary, it is nonetheless largely silent throughout oogenesis [45]. It is possible that one of Stwl’s

functions in the female germline is to restrict expression of bgcn to GSCs. Considering all of

these results, we propose that stwl is downstream of bgcn GSC differentiation function while

also being required to repress its later expression. However, Stwl binding sites in ovaries are

not known, and may differ from those we identified in S2 cells. ChIP-Seq against Stwl in ova-

ries may further elucidate the relationship between Stwl and male transcripts, including bgcn.

Stwl accumulates at genomic insulators and heterochromatin

Loss of stwl results in derepression of repetitive elements, a phenotype that is also observed in

bam and piwi mutant ovaries. While Piwi is a known regulator of TEs via the piRNA pathway,

it is unclear whether upregulation of TEs in bam and stwl mutant ovaries reflects a direct role

in TE silencing. In order to answer whether Stwl directly targets repetitive DNA and how it

may be involved in TE control, we developed antibodies to Stwl and assayed Stwl binding in

S2 cells. Our analyses indicate that Stwl localizes to insulator elements. Most Stwl peaks are

located just upstream of promoters; this binding profile is common among insulator-bound

proteins. More directly, we identified strong sequence similarity between Stwl peaks and peaks

from a number of insulator binding proteins, including BEAF-32, Dref, ZIPIC, Pita, Hmr and

Su(Hw). In addition, we found that stwl peaks accumulate at heterochromatic loci, specifically

pericentromeric heterochromatin boundaries, telomeres and the dot chromosome.

These data suggest that Stwl is an insulator binding protein. Future biochemical studies will

be required to confirm this, and it will also be important to determine whether the localization

pattern we discovered from ChIP-Seq data in S2 cells also occurs in the germline. Nevertheless,

our proposal is consistent with previous work showing that Stwl associates with insulator com-

plexes in immunofluorescence experiments [22]. Insulators have multiple functions including

blocking enhancer-promoter interactions and establishing boundaries to prevent the spread of

chromatin modifications and to separate differentially expressed promoter pairs. Insulator-

binding proteins, such as CP190, can also mediate long-range interactions [60,61]. If Stwl is

involved in the formation of long-range interactions, it may promote tethering of euchromatic

insulator sites to heterochromatic regions. We speculate that Stwl-bound sites are located adja-

cent to regions of repressed chromatin, and that loss of Stwl results in spreading of these

repressed chromatin marks to neighboring loci. It is likely that Stwl performs its function as an

insulator by establishing boundaries, in conjunction with other insulator-binding or hetero-

chromatin-associated proteins, that ensure proper expression of nearby genes.

The D. melanogaster ovary is a complex mixture of cell types in the adult fly. Differentiated

somatic cells function as support cells to shepherd germ cells towards their ultimate fate of

producing viable gametes. Furthermore, each of these cellular lineages is derived from a small

population of self-renewing stem cells. We suggest that insulators allow genes to have pleiotro-

pic functions during development of complex tissues such as ovaries. Insulators add a layer of

genomic complexity to gene regulation by disrupting enhancer-promoter interactions. The

detailed interplay of promoters, enhancers, and insulators during oogenesis is poorly under-

stood but is likely key to explaining pleiotropic gene regulation in the developing ovary.

Methods

Drosophila stocks

P{w[+mC] = lacW}stwlj6C3 (stwlj6C3) was acquired from the Bloomington Stock Center [BDSC

#12087]. This allele is female sterile and shows stwl mutant phenotypes (ovarian atrophy, loss
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of germline, lack of Orb accumulation in oocytes) when trans-heterozygous to a stwl deficiency

chromosome (Df(3L)Exel6122) [BDSC #7601]. We observe no nuclear signal with anti-Stwl

antibodies in stwlj6C3 homozygotes, suggesting that it is a null allele (S2 Fig).

We found that the stwlj6C3 chromosome is homozygous lethal, suggesting an accumulation

of lethal recessive mutation(s). In order to remove these lethal mutations and homogenize the

genetic background, we outcrossed stwlj6C3 mutant females to males from an inbred y w strain

(10 generations of inbreeding; strain will be subsequently referred to as y w F10) for 8 genera-

tions. Stocks were founded by balancing recombined 3rd chromosomes over TM6b from w;

Sp/CyO; TM2/TM6b stock in single female matings. Presence of the P-element insertion in

stwlj6C3 was followed by its w+ marker and confirmed by PCR. The resultant stock produced

viable and fertile homozygous males and viable but sterile homozygous females. The y w F10

stock was used as a wild-type (stwl+) control.

In Figs 1A, S4, and S19, the stwl null genotype corresponds to stwlj6C3/Df(3L)Exel6122 as

explained in the figure legends. In S2 and S3 Figs, we utilized the stwlΔ95 null mutant (stwlΔ95,

ry/TM3, Sb e ry), kindly provided by Prof. D. McKearin (HHMI, Washington, DC). This allele

contains a 5’ deletion at the stwl locus that results in a frameshift mutation and stwl null pheno-

type [11]. In all other experiments, the stwl null genotype corresponds to stwlj6C3/stwlj6C3.

For fertility assays in S9 Fig, assayed females were generated by crossing Gal4-containing

females to UAS-stwl-RNAi (y1sc
�

v1; P{y[+t7.7] v[+t1.8] = TRiP.GL00337}attP2) [BDSC

#35415] males. The following Gal4 lines were used: Actin5c-Gal4: y1 w�; P{Act5C-GAL4}
17bFO1/TM6B, Tb1 [BDSC #3954], nos-Gal4: w1118; P{GAL4::VP16- nos.UTR}CG6325MVD1

[BDSC #4937], C355-Gal4: P{w[+mW.hs] = GawB}c355, w1118 [BDSC #3750], T155-Gal4: P{w
[+mW.hs] = GawB}T155 [BDSC #5076], GR1-Gal4: w�; P{w[+mW.hs] = GawB}GR1 [BDSC

#36287], C306-Gal4: P{w[+mW.hs] = GawB}c306, w1118 [BDSC #3743], Matalpha-Gal4: w�; P
{w[+mC] = matalpha4-Fal-VP16}V37 [BDSC #7063], y1 w� P{w[+mC] = bam-Gal4:VP16}1
[BDSC #80579]. Tub-Gal4/TM3 was a gift from the Wolfner lab (Cornell University, Ithaca,

NY).

To generate bgcn transheterozygous mutants, we crossed y w; bgcn1/CyO to cn bgcnz2-1748

bw/CyO. Both bgcn stocks were gifts from the Aquadro lab.

Preparation of gonadal tissue for qRT-PCR and RNA-seq

All flies were raised at 25˚ C. Virgin males and females of each genotype were collected and

aged for two days for the “older” samples; for the newly-eclosed samples, virgin females were

collected and dissected immediately (<4 hours post-eclosion). Testis and ovary dissections

were performed according to previously published protocols [62,63]. Briefly, 15–30 flies at a

time were sedated using CO2 and stored on ice. Gonads were extracted in ice-cold 1x PBS

using sharp forceps, separated from gut tissue (and accessory glands, in males) and stored in

ice-cold 1x PBS for ~30 minutes. PBS was aspirated and tissues homogenized in 100–600 μl of

Trizol (depending on total volume of dissected tissue) prior to snap-freezing in liquid NO2

and storage at -80˚ C. All sample replicates for RNA-seq consisted of ~30 ovary/testis pairs,

most of which were collected in single dissections at approximately the same time of day over

a span of 23 days. Trizol homogenate from phenotypically “large” ovaries (2-day old y w F10)

was diluted 1:10 prior to RNA extraction, to prevent overloading of columns.

RNA was extracted according to previously published protocols [64]. Briefly, Trizol-

homogenized tissue samples were thawed at room temperature and treated with 0.2 volumes

chloroform to promote phase separation. RNA was extracted from the aqueous phase using

Qiagen RNeasy Plus Mini Kit. This included application of aqueous phase to Qiagen gDNA

Eliminator spin columns to limit carryover of genomic DNA. DNA contamination was also
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addressed by on-column DNAse digestion (Promega RQ1 DNAse). RNA quality and concen-

tration was validated via Agilent Bioanalyzer; RNA quality for all samples was confirmed to

have an RQN> = 7.0 and at least 1.0 μg of starting material.

Stranded cDNA library preparation was performed by Polar Genomics (Ithaca, NY).

mRNA was isolated and fragmented from total RNA pools, followed by 1st and 2nd (dUTP

incorporated) strand synthesis. dsDNA was subsequently dA-tailed and adaptor-ligated, fol-

lowed by size selection, UDG digestion to eliminate the second strand, and PCR amplification.

All libraries (18 in total) were sequenced on a single lane of Illumina NextSeq (single-end, 75

bp). Raw sequence reads have been uploaded to NCBI Sequence Read Archive (SRA) in.fastq

format under the BioProject ID PRJNA788954.

During preliminary analyses of sequencing reads we found that 2 libraries (2 replicates

from 0-day old y w; stwlj6C3/stwlj6C3 ovaries) were of insufficient quality, likely due to contami-

nation during sample recovery or library preparation. We therefore discarded these reads and

prepared new samples. Ovaries were collected, dissected and homogenized in Trizol, as

described above (with the exception that the ovary pool was increased from 30 to 45 ovary

pairs per replicate). Stranded cDNA libraries were prepared as described above and subse-

quently sequenced on a single lane of Illumina HiSeq 2500 High Output (single-end, 50 bp).

For qRT-PCR, ovaries were dissected and processed as above, with three biological repli-

cates of ~30 ovary pairs each per sample. cDNA was synthesized with Invitrogen oligo-dT

primers and reverse transcriptase using standard protocols. All qRT-PCR assays were per-

formed with three technical replicates. Transcript abundance of each technical replicate was

normalized to average levels of Rpl32 transcript in the source biological sample.

Production and validation of polyclonal antibody against Stwl

A DNA fragment coding for amino acids 911–1037 from the C-terminus of the Stwl protein

was amplified from D. melanogaster ovarian cDNA extracted from ~20 y w F10 individuals.

This region is lacking in predicted interaction domains, making it more likely to be accessible

for immunoreactivity. The fragment was cloned into a N-terminal tagging MBP fusion vector

(Genbank: AF097412.1) using NEB Gibson Assembly Kit [65] and transformed into chemi-

cally competent E. coli (One Shot TOP10). Successful assembly and transformation were con-

firmed via PCR and Sanger sequencing.

MBP-Stwl antigen was purified from induced bacterial culture using Amylose Resin (NEB:

E8021L). Briefly, antigen expression was induced in 1 L of bacterial culture containing

MBP-Stwl plasmid at log phase (OD 600 = 0.6) with 0.2 mM IPTG, then shaken for ~18 hours

at 18˚ C. Bacteria were pelleted and resuspended in lysis buffer (50 mM Tris pH 8.8, 200 mM

NaCl, 2 mM DTT, 1 mM PMSF, 1 mg/ml lysozyme, 1x Roche cOmplete EDTA-free Protease

Inhibitor Cocktail) at 4˚ C. Lysate was sonicated on ice to ensure thorough lysis, then spun at

20,000x g for 45 minutes to pellet debris. Supernatant was then applied to Amylose Resin on

column. Stwl-MBP bound resin was washed 4 times with 1 column volume of low salt buffer

(50 mM Tris pH 8.8, 200 mM NaCl, 2 mM DTT), followed by 4 washes with 1 column volume

of high salt buffer (50 mM Tris pH 8.8, 1.5 M NaCl, 2 mM DTT) and another 4 washes with 1

column volume of low-salt buffer. Stwl-MBP was eluted with 10 mM maltose in low-salt

buffer. Presence of 57.5 kDa MBP-stwl protein was confirmed using Coomassie stain on 10%

SDS PAGE; concentration was estimated using Bradford assay. Protein-containing fractions

were pooled using Amicon Ultra-4 10K Centrifugal Filter Devices to a final concentration of

1.0 mg/ml.

Purified protein was submitted to Pocono Rabbit Farm & Laboratory Inc. for injection.

Two guinea pigs (henceforth referred to as GP 76 and GP 77) were selected for antigen
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injection based on absence of background signal in pre-immune sera (determined by probing

wild-type D. melanogaster ovaries with sera in immunofluorescence assays).

We found that both antibodies recognize a ~135 kDa protein in wild-type ovaries (S14 Fig)

and S2 cells (Fig 3A). This signal is absent in null and RNA knockdown samples, as well as

wild-type lysates probed with pre-immune sera. The primary stwl transcript is predicted to

produce a 112.9 kDa protein; previous work has shown that antibodies against Stwl recognize

a similarly sized protein [11].

We performed immunofluorescence (IF) experiments to confirm that the Stwl antibodies

target a nuclear protein and to compare to IF experiments done with other Stwl antibodies. D.

melanogaster ovaries were dissected from wild-type (y w F10) individuals in cold 1x PBS and

fixed in 4% paraformaldehyde with 0.1% Triton X-100 in PBS. Tissue was then washed 3x in

PBT (1x PBS with 0.1% Tween 20), followed by 4x washes in PBTA (PBT with 1.5% BSA).

Samples were incubated overnight at 4˚C with primary antibody at a concentration of 1:200

for Stwl antisera and 1:200 for Rabbit Vasa from Santa Cruz Biotechnology, Inc. Following 3x

washes in PBT and 4x washes in PBTA, tissue was incubated for 2 hours with secondary anti-

bodies (1:500 Goat anti-Guinea Pig Rhodamine Red-X, 1:500 Goat anti-Rabbit Alexa 488).

Following 3x washes in PBT, tissue was mounted in vectashield with DAPI and imaged on a

Zeiss Confocal. We found that both antibodies specifically labeled germ cell nuclei in testis

and ovaries (S15 Fig). Furthermore, ectopic expression of HA-tagged Stwl [FlyORF stock

#F001844] colocalized with signals from both Stwl antisera [66] (S16 Fig).

Cell culture and RNAi

S2 cells were cultured in M3+BPYE medium, made as directed from Shields and Sang Pow-

dered Medium (Sigma S-8398), supplemented with 0.5 g KHCO3, 1 g yeast extract and 2.5 g

bactopeptone per liter, pH adjusted to 6.6 and sterile-filtered. 100x Antibiotic-Antimycotic

(Thermo-Fisher 15240062) and Fetal Bovine Serum (Sigma F2442 Lot # 078K8405) were

added to concentrations of 1x and 10%, respectively. Cells were maintained at 25˚C and pas-

saged every 3–4 days for 7 passages prior to use for RNAi experiments.

For dsRNA-induced knockdown, cells were plated in serum-free medium at a concentra-

tion of 2.5 million cells/ml, then treated with 30 μg/ml of lacZ- or stwl-dsRNA for 60 minutes

before addition of M3/BPYE medium containing 13% FBS (final concentration, 10% FBS,

7.5 μg/μl dsRNA). Cells were chemically cross-linked and frozen after 3 days.

RNA was synthesized using NEB HiScribe T7 High Yield RNA Synthesis Kit (E2040S) from

PCR products generated from YEp365 plasmid (lacZ control) or genomic DNA extracted

from S2 cells. For efficient stwl KD we generated three distinct dsRNAs from reference, each

targeting the second exon of stwl, which is present in all stwl transcripts [67]. S2 cells were

treated with 10 μg/ml of each dsRNA.

Chromatin immunoprecipitation in S2 cells

Subsequent to dsRNA treatment for 3 days, cells were centrifuged for 5 minutes at 1000xg fol-

lowed by removal of media, washed once in 1x PBS, and resuspended in 1x PBS and cross-

linked via addition of 16% paraformaldehyde to 1% final concentration for 2 minutes at room

temperature. Cross-linking was quenched by addition of 2.5 M glycine in 1x PBS (final con-

centration 0.15 M) for 5 minutes at room temperature. Cells were nutated for 15 minutes at

4˚C, spun and washed in 1x PBS brought to 4˚C, and pelleted and flash-frozen in liquid

nitrogen.

Cells were thawed on ice and lysed in RIPA buffer containing 0.1% SDS, 1% Nonidet P-40,

and 1 tablet/10 ml Pierce Protease Inhibitor Mini Tablets, EDTA-free (A32955), for 20
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minutes. Lysates were then sonicated at high intensity in a Bioruptor (Diagenode) water bath

to shear DNA to desired size range (300–500 bp) for 45 minutes total with cycles of 20 seconds

on, 1-minute rest, with quick spins of lysates every 15 minutes to settle samples and re-fill the

Bioruptor with ice-cold water.

6 μl of freshly thawed Stwl antisera and pre-immune sera were added to 300 μl of cell lysate

(1:50 dilution) and incubated overnight at 4˚C. Cell lysates were prepared with approximately

34,000 cells per μl, so that each IP experiment was performed on roughly 10 x 106 cells. IP

complexes were immunoprecipitated with Invitrogen Dynabeads Protein A for Immunopre-

cipitation (10001D). Prior to use, beads were washed 2x 10 minutes in blocking buffer contain-

ing 1 mg/ml BSA, 1 mg/ml propyl vinylpyrrolidone blocking agent, and 1 tablet/10 ml Pierce

Protease Inhibitor Mini Tablets, EDTA-free (A32955), and 1x 10 minutes in chilled RIPA

buffer (also with protease inhibitor). IP samples were added to blocked beads and incubated at

4˚C for 2 hours; 50 μl of beads were used for each IP.

Beads were washed 1x in low-salt buffer, 2x in high-salt buffer, 1x in LiCl buffer, and 2x in

TE buffer. IP complexes were eluted from beads in 10% SDS, 1M NaHCO3 elution buffer for

30 minutes at 65˚C. Cross-linking was reversed by addition of 5 M NaCl to 0.2 M NaCl final

concentration and overnight incubation at 65˚C. DNA was treated with RNAse A for 2 hours

at 37˚C and Proteinase K for 2 hours at 55˚C, then cleaned using Qiagen QIAquick Gel Extrac-

tion Kit. Input samples were frozen following sonication, then thawed and reverse-crosslinked

as above. DNA libraries were prepared using NEBNext Ultra II DNA Library Prep Kit for Illu-

mina (NEB# E7645), using Ampure XP beads for cleanup, without size selection.

RNA was extracted in triplicate from S2 cells originating from the same populations used

for ChIP-Seq experiments, using Qiagen RNEasy plus extraction kit, which includes additional

elimination of gDNA from samples. All RNA samples had RQN>7.0, as determined by Bioa-

nalyzer instrument (Agilent). cDNA libraries were prepared using NEBNext Ultra II Direc-

tional RNA Library Prep Kit for Illumina (E7760G), using Ampure XP beads for cleanup. All

cDNA and ChIP libraries (22 in total) were pooled together and sequenced on a single lane of

Illumina NextSeq (single-end, 75 bp). Raw sequence reads have been uploaded to NCBI

Sequence Read Archive (SRA) in.fastq format under the BioProject ID PRJNA788954. RNA--

Seq data processing, QC, and analysis of S2 cell samples was performed as described in the

“Read processing, alignment, and normalization” section.

Read processing, alignment, and normalization

We assayed quality of raw reads in fastq format using FastQC (version 0.11.6) and trimmed

reads for adapter sequences and quality using Trimmomatic (version 0.32); (java -jar trimmo-

matic-0.32.jar SE [raw_reads.fq] [trimmed_reads.fq] ILLUMINACLIP:TruSeq3-SE.fa:2:30:10

SLIDINGWINDOW:4:20 MINLEN:50 AVGQUAL:20) [68,69]. We used FastQ Screen to

identify non-Drosophila contaminants in our libraries [70].

For RNA-Seq, we aligned reads to a curated list of consensus sequences for repetitive ele-

ments using relaxed bowtie2 settings (bowtie2 -x [repetitive_consensus_sequences.fasta] -U

[trimmed_reads.fq] -S [repetitive_alignment.sam]—un-gz [unmapped_reads.fq.gz]—score-

min L,0,-1.5 -L 11 -N 1 -i S,1,.5 -D 100 -R 5) [71]. Unmapped reads from this alignment were

saved and aligned to the unmasked Drosophila melanogaster genome (r6.03) using bowtie2

default settings [72]. We counted the number of reads mapping to each repetitive element; we

utilized HTSeq version 0.6.0 to count the number of reads aligning to exons in the genomic

alignment [73]. We concatenated the read counts into a single file for each sample.

In order to normalize for sequencing bias resulting from GC-content bias or batch effects,

we normalized the read counts using EDAseq [74]. We removed counts for all genes with a

PLOS GENETICS Stonewall gene function in Drosophila

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010110 March 24, 2022 19 / 32

https://doi.org/10.1371/journal.pgen.1010110


mean read count less than or equal to 10 across all samples. We then performed within-lane

normalization for GC-content: read counts within individual samples were transformed via

full-quantile normalization between feature strata to normalize for GC-content of assayed

genes. Between-lane normalization was then performed (again using full-quantile normaliza-

tion between feature strata) to account for differences in sequencing depth, and offset values

were generated for each transcript in the count matrix so that raw counts could be analyzed

for differential expression analysis.

In order to provide context for our biological observations, we compared stwl null ovary

data to available data from genotypes that reduce or eliminate bam, egg, wde, hp1a, Sxl, and

piwi in ovaries. The bam data comes from bam1/bam114-97 females (SRA PRJNA117723); piwi
data from piwi1/piwi2 females (SRA PRJNA289709); egg, wde and hp1a data from germline-

specific RNAi knockdown females (SRA PRJNA432192); and Sxl data from snf148 homozygous

females, a mutant that phenocopies germline-specific loss of Sxl (SRA PRJNA275434)

[27,30,31,33]. Alignment and normalization for all datasets were as described above.

For ChIP-Seq, trimmed reads were aligned to the unmasked Drosophila melanogaster
genome (r6.03) using bowtie2 default settings [72]. All reads with mapping quality <20 were

removed using SAMtools [75]. All alignment files were corrected for GC bias using the deep-

Tools commands computeGCbias and correctGCbias [76]. Briefly, the distribution of GC con-

tent per read is assessed over the contents of each alignment file, typically revealing

overamplification of high-GC content sequences. The correctGCbias command generates an

alignment file identical to the original, except with reads artificially removed or duplicated at

biased regions to eliminate GC bias.

Repetitive DNA alignment and analysis for ChIP-Seq

Limitations and challenges of identifying enriched repetitive elements from ChIP-Seq data

have been well documented [77–79]. With relatively short (75 bp) single-end reads, it is nearly

impossible to identify the genomic origin of most reads coming from repetitive DNA, and

therefore enrichment cannot be called against a true background signal. We therefore instead

calculated differential enrichment of repetitive DNAs in IP samples relative to mock samples,

normalized against genomic reads. The process is explained below in greater detail.

For analysis of repetitive DNA, reads were trimmed and aligned as described for RNA-Seq

reads. For genomic reads, rather than counting reads aligned to gene bodies as we did for

RNA-Seq analysis, we calculated the number of reads aligned to each 1 kb bin of the genome.

We concatenated the repetitive and genomic read counts into a single file for each sample.

Differential expression/enrichment analysis

We analyzed count data using DESeq2 [29]. We imported raw counts and offsets as described

above from genes with mean read count>10 across all samples. For testis, we estimated differ-

ential expression of genes between mutant and wild-type samples. For ovary comparisons, age

of the samples was taken into account: genes were called as differentially expressed if the nor-

malized read counts from the experimental genotype were consistently different from those in

the control genotype, excluding those cases where genes were found to be differentially

expressed between 0- and 2-day old samples.

For ChIP-Seq, we estimated differential enrichment of genomic regions between IP and

mock samples, taking into account the antibody used (GP 76 or GP 77) and the source S2 pop-

ulation (replicate 1 or 2). A genomic region was reported as differentially expressed only when

the normalized read counts for that region were consistently greater in IP samples than in

mock samples, and not due to differences in IP conditions (source animal antibody or source
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cell population). PCA on the count matrix confirmed that the majority of the variance in the

count data was explained by the variance between mock and IP samples (S21 Fig).

Subsequent to differential expression/enrichment analysis, all log2(fold-change) estimates

were transformed using apeGLM shrinkage estimator to reduce variability in LFC values

among low-count genes [80]. Shrunken LFC values were used for all subsequent analyses,

including overrepresentation tests, gene set enrichment analysis, and Gene Ontology analyses,

implemented using the R package ClusterProfiler [81].

ChIP-Seq peak calling and analysis

Each IP experiment was performed with 2 biological replicates; each biological replicate origi-

nated from a single 150 cm2 flask of lacZ-dsRNA-treated S2 cells. From each flask, we immu-

noprecipitated chromatin using Stwl antisera 76 and 77 (IP), pre-immune sera 76 and 77

(mock), and also sequenced input DNA. Therefore each ChIP-Seq experiment could be called

against enrichment from its own input DNA, and mock datasets against both antibodies could

be used to exclude spurious peaks.

We followed peak calling standards established by the ModERN consortium [49]. We per-

formed peak calling on all mock and IP samples using the peak calling algorithm MACS2 [82].

In order to generate an intentionally noisy set of peaks for downstream IDR (irreproducible

discovery rate) analysis, peaks were called with low stringency (FDR<0.75) as follows: macs2

callpeak -t {IP/Mock.bam} -c {Input.Bam} -g 142573024—tsize 75 -n output.file -m 2 50 -q

0.75—keep-dup all. This command generates a large set of statistically insignificant peaks

which can be fed into the IDR algorithm [83]. Confident peak sets were identified by perform-

ing IDR analysis on peaksets between biological replicates, using an IDR cutoff of 0.05; signifi-

cant peaks passing this IDR threshold co-occur in the same genomic location at similar

intensities. IDR was also done on mock samples with a much looser restriction (IDR<0.25), in

order to create a more expansive list of peaks that could potentially be generated from biologi-

cal noise (S18 Fig).

After IDR, any peaks in the IDR 76 and IDR 77 IP peaksets that overlapped with spurious

peaks from either mock were removed using BEDTools subtract [84]. These filtered peaksets

were then merged together using BEDTools merge so that the final Stwl peakset contained the

union of peaks confidently called in IPs from either antibody. Finally, peak calling was

repeated using MACS2 broadpeak setting (mfold 2–50, q<0.50), and the same steps were fol-

lowed as before. The final broadpeak and narrowpeak calls were merged together to form a

single set of peaks in broadpeak format. Motif identification, which requires narrow, sharply

defined peaks, was done on only the narrowpeak calls; all other analyses were performed on

the broadpeak format calls.

For motif analysis, we extracted summits from 1,379 narrowpeak calls as described above.

Symmetrical peaks were then extracted as 500 bp sequences centered at each summit. These

sequences were loaded onto the MEME-ChIP web browser (version 5.0.5) and motifs were

identified using MEME, DREME, and CentriMo programs on default settings [51].

Identifying tissue-enriched and ectopically expressed genes

We utilized RPKM values from the modENCODE anatomy RNA-Seq dataset to classify all

genes according to tissue-biased expression [33]. The Tau metric is among the most simple

and reliable tools for determining tissue-specific expression of a given gene [85,86]. Tau was

calculated from log2(RPKM) values in a subset of available tissues (S6 Table). Tau values range

from 0 to 1, corresponding to the range from ubiquitous expression to highly tissue-specific

expression. Genes with Tau> = 0.7 were considered tissue-specific; to identify which tissue(s)
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each of these genes are enriched in, we assigned any tissue where log2(RPKM) is greater than

1.5 standard deviations above the mean log2(RPKM) across all tissues to that gene (S7 Table).

According to this classification, we found that 45.5% of annotated genes exhibit tissue-specific

expression, meaning that transcripts for those genes are preferentially enriched in one or more

of the represented tissues (S8 Table).

Ectopic gene expression refers to the expression of a gene in a tissue where it is silent under

normal conditions. Due to the nature of ectopic expression (i.e. an increase in transcript abun-

dance from a baseline of very low counts), it is challenging to capture accurate log2(Fold-

change) values, especially since GC-normalization typically requires removal of low-count

genes. Ectopic gene expression in ovaries, testes, and S2 cells was assayed from library size-cor-

rected RPKM values calculated in DESeq2, without the removal of low-count genes. We

defined ectopic gene expression by 1) identifying the gene as phenotypically silent in wild-type

tissue and 2) finding that gene expression increases significantly by at least 2-fold in the

mutant tissue. Genes with mean RPKM< 2.0 in a given WT tissue according to a Mann-Whit-

ney (p<0.1) were considered transcriptionally inert. Inert genes where mean_RPKM_null/

mean_RPKM_WT>2.0 were subjected to a BH-corrected Mann-Whitney test (p<0.25) to

identify ectopic expression.

Supporting information

S1 Fig. stwlj6c3/stwlj6c3 ovaries display the known stwl null phenotype. Ovaries were dis-

sected from females of the indicated genotype 3–6 days post-eclosion. stwl null ovaries typi-

cally lack germ cells or contain severely disordered germline cysts [11–13]. α-Vasa labels germ

cells, α-Hts-1B1 labels branched fusomes or spectrosomes as well as follicle cell membranes.

Germaria are positioned with anterior to posterior going (left to right). stwl+ ovaries (y w F10)

contain self-renewing GSCs (anterior-most germ cells) which differentiate into cystoblasts and

become ordered, organized germline cysts. All images are maximum-intensity projections

from a z-series representing a depth of 10 microns. Scale bars are 20 microns.

(TIF)

S2 Fig. stwl deficient ovaries fail to retain germline cells as they age. D. melanogaster ovaries

were dissected from females 10–15 days post-eclosion, immunostained with α-Stwl sera from

GP 76 (Methods). α-Vasa labels germ cells, which are typically not retained in older mutant

ovaries. Germaria are positioned with anterior to posterior going left to right. All images are

maximum-intensity projections from a z-series representing a depth of 10 microns. In stwl
mutant images, the green channel is overexposed to demonstrate the absence of Stwl signal.

Scale bars are 20 microns. The stwlΔ95/Df(3L)Exel6122 ovary (middle row panels) is displayed

at 0.4x magnification relative to other images, to demonstrate loss of germline across the

ovary.

(TIF)

S3 Fig. Newly-eclosed ovaries from stwl mutants resemble WT ovaries. D. melanogaster ova-

ries were dissected from females <12-hours post-eclosion and immunostained with α-Stwl

sera from GP 76 (Methods). α-Vasa labels germ cells, which are typically not retained in older

mutant ovaries. Germaria are positioned with anterior to posterior going left to right. Wild-

type ovaries produce egg chambers up to stage 7 or 8, while stwl mutant ovaries maintain egg

chambers up to about stage 6 or 7. Low (0.24x) magnification images are of a single confocal

slice (first and third rows), higher magnification images are maximum-intensity projections

from a z-series representing a depth of 10 microns (second and fourth rows). In stwl mutant
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images, green channel is overexposed to demonstrate absence of Stwl signal.

(TIF)

S4 Fig. stwl null and WT ovaries are more similar in size from newly-eclosed individuals

relative to older flies. Ovaries were dissected from newly-eclosed and two-day-old females of

the indicated genotypes. stwl deficient ovaries are rudimentary, but more closely resemble

wild-type ovaries when from newly-eclosed individuals. Scale bars are 1 mm.

(TIF)

S5 Fig. Sample-to-sample distance matrix of RNA-Seq samples. Read counts were regular-

ized log transformed in DESeq, and the distance between samples was calculated based on

these transformed count values. The heatmap is sorted by similarity after hierarchical cluster-

ing and color-coded according to distance, where dark blue cells indicate a distance of 0

(completely self-similar) and white cells a maximal distance (completely dissimilar). Samples

within the same group (identical age and genotype) occur together and form blue clusters.

(TIF)

S6 Fig. Principal Component Analysis (PCA) of RNA-Seq count matrices. PCA was per-

formed on regularized log transformed read counts of the 500 most variable genes in the count

matrix. Samples within the same group (identical age and genotype) cluster together, indicat-

ing minimal batch effects.

(TIF)

S7 Fig. Transposons and testis-enriched genes are consistently upregulated in stwl null

ovaries. (A-B) Fold-change of TEs in stwl null (stwlj6c3/stwlj6c3) relative to wild-type from

RNA-Seq assay of 0- and 2-day old ovaries. Black arrows point to TEs validated with qRT-PCR

data in Fig 1A and/or 1B. “G”,”S”,”B” indicates whether TE is typically expressed in germline,

ovarian soma, or both, respectively [26]. (C) log2Fold-change (LFC) of TEs vs. all genes from

stwl null ovaries in the combined GLM, 2-day, and 0-day datasets, relative to wild-type. Cross-

bars show the mean LFC for all TEs. (D-E) Fold-change of the top 14 and bottom 14 most

affected annotated genes (based on FlyBase annotations) in stwl null ovaries relative to wild-

type. Male and female symbols mark genes with testis- and ovary-enriched wild-type expres-

sion, respectively; “�” marks genes that are part of the 59C4-59D testis-specific cluster

described in Fig 2. (F) Enriched tissue classes among the top and bottom 1% of misregulated

genes. Average LFC is plotted for each set of tissue-enriched genes enriched among stwl null

ovaries relative to wild-type. Only gene sets with FDR <0.05 are plotted.

(TIF)

S8 Fig. MA plot of RNA-Seq data from ovaries. Fold-change for each gene is plotted against

its average transcript abundance across all assayed ovarian samples (wild-type and null). Tran-

script abundance is represented by counts normalized according to GC-content and library

size. The log2(Fold-change) values (LFC) were “shrunk” to minimize the variance associated

with low-count genes. Filled points (blue and red) identify genes which are differentially

expressed (adjusted p-value <0.01) in this comparison. Red points represent entries from

Repbase, blue points are from the genomic annotation.

(TIF)

S9 Fig. stwl expression in ovarian follicle cells is dispensable for female fertility. Age-

matched Gal4/UAS-stwl-RNAi transheterozygous virgin females were continuously mated to

1–5 day old y w males to determine the effect of stwl KD in follicle cells and germ cells. Prog-

eny per day is the total number of progeny that emerged as in the indicated timeframe, divided

by the number of days in that span. Each vial contained 10 females and 10 males. C355-Gal4,

PLOS GENETICS Stonewall gene function in Drosophila

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010110 March 24, 2022 23 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010110.s009
https://doi.org/10.1371/journal.pgen.1010110


T155-Gal4, and C306-Gal4 drive expression in border cells and follicle cells from stage 9

onward (C306-Gal4 additionally drives expression in stalk cells); GR1-Gal4 drives expression

in follicle stem cells of the germarium into later stages of oogenesis; bam-Gal4 drives expres-

sion in germ cells starting at the cystoblast; Mat-alpha-Gal4 drives expression in the post-GSC

germline; bam-Gal4 drives expression in early and late germ cells; nos-Gal4 drives expression

in GSCs; Act5c-gal4 and Tub-Gal4 drive ubiquitous expression in germline and somatic cells.

(TIF)

S10 Fig. TE de-repression in stwl, bam, and piwi mutant ovaries. Comparison of Gene Set

Enrichment Analysis (GSEA) results. Normalized Enrichment Score (NES) is plotted for each

set of repetitive elements enriched among mutant/WT ovaries. Higher NES indicates that the

gene set is more upregulated in mutant ovaries. Count represents the number of genes in that

set. Only gene sets with FDR<0.05 are plotted. Sxl deficient ovaries were also analyzed but are

not shown because they were not enriched for any repeat classes.

(TIF)

S11 Fig. Overlap of genes upregulated in stwl, bam, Sxl, and piwi mutant or deficient ova-

ries. Venn diagram showing number of genes (from genomic annotation) that were upregu-

lated (LFC>0, FDR<0.01) in each of the DESeq2 results outputs from S2 Table.

(TIF)

S12 Fig. Comparison of Gene Set Enrichment Analysis (GSEA) results for tissue-enrich-

ment. Normalized Enrichment Score (NES) is plotted for each set of tissue-enriched genes

enriched among mutant or deficient/WT ovaries. Higher/lower NES indicates that the gene

set is highly upregulated/downregulated in mutant or deficient ovaries. Count represents the

number of genes in that set. Only gene sets with FDR<0.05 are plotted.

(TIF)

S13 Fig. MA plot of RNA-Seq data from S2 cells. Fold-change for each gene is plotted against

its mean transcript abundance across all assayed S2 cell samples (cells treated with stwl dsRNA

and lacZ dsRNA as a control). Transcript abundance is represented by counts normalized

according to GC-content and library size. The log2(Fold-change) values (LFC) were “shrunk”

to minimize the variance associated with low-count genes. Filled points (blue and red) identify

genes and repeats which are differentially expressed (adjusted p-value <0.01) in this compari-

son. Red points represent entries from Repbase, blue points are from the genomic annotation.

Y-axis scale is identical to S8 Fig, for comparison.

(TIF)

S14 Fig. Stwl antibodies recognize a ~130 kDA fragment. Western blots on whole-fly lysates

from ~10 stwl+ (y w F10) and ~10 stwl null (stwlj6c3/Df(3L)Exel6122) individuals aged 1–4

days. 6% SDS PAGE gel was loaded with lysates as indicated (row labelled “stwl genotype”),

then transferred and probed with pre-immune or antibody sera of each animal, as indicated.

The bottom panel shows the same membrane stripped and re-probed with a loading control

(guinea pig α-Chromator). Final-bleed serum of each Stwl antibody recognizes a ~130 kDa

fragment specific to stwl+ lysates.

(TIF)

S15 Fig. α-Stwl sera label germ cell nuclei in stwl+ testes (A, B) and ovaries (C, D). Tissues

were dissected from y w F10 flies 10–15 days post-eclosion and immunostained with α-Stwl

sera from GP 76 (A, C) and GP 77 (B, D). Vasa labels germ cells, DAPI labels cell nuclei. All

images are maximum-intensity projections from a z-series representing a depth of 10 μm.
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Scale bars are 20 μm.

(TIF)

S16 Fig. α-Stwl sera detect ectopically expressed Stwl-HA protein. Ovaries were dissected

from Act5c-Gal4/UAS-stwl-HA females 0–1 days post-eclosion. Ovaries were probed with α-

Vasa (germ cells), α-HA, and either GP 76 or GP 77 α-Stwl serum. HA signal recognizes cells

in which Stwl-HA is being expressed; in these examples, expression is mostly limited to

somatic cells (follicle cells and stalk cells). α-Stwl signal for both antibodies clearly overlaps

with HA signal, resulting in bright yellow foci in the composite image. All images are maxi-

mum-intensity projections from a z-series representing a depth of 10 μm. Scale bars are

20 μm.

(TIF)

S17 Fig. α-Stwl sera immunoprecipitate Stwl from S2 cell lysates. S2 cell nuclei were lysed

in RIPA buffer (Input), then incubated with one of two α-Stwl serum or a control antibody (α-

Chromator) at 1:50 and 1:100 dilutions. Antibody-Protein complexes were isolated with Pro-

tein-A Agarose beads. Western blot of input, flow-through (FT) and IP complexes (IP) probed

with α-Stwl GP 76 serum (top panel), then stripped and probed with α-Chromator antibody

(bottom panel). Stwl runs at ~130 kDa (as shown in Figs S14 and Fig 3A), as does Chromator.

Both α-Stwl sera immunoprecipitate Stwl effectively at a concentration of 1:100 (Stwl protein

is eliminated from flowthrough). α-Chromator antibody fails to immunoprecipitate Stwl (Stwl

protein remains in flow-through), but successfully immunoprecipitates Chromator.

(TIF)

S18 Fig. Stwl IP replicates create reproducible peaksets. IDR plots show the distribution of

peak scores in replicate 1 (x-axis) vs replicate 2 (y-axis). Grey dots are reproducible peaks that

pass the given IDR threshold, red dots are irreproducible peaks. Each dot represents a ChIP--

Seq peak called in both replicates of a single antibody (C, D) or mock (A, B) experiment. Peak

scores reflect the fold-enrichment of reads in the IP or mock sample relative to input. IDR

identifies peaks whose signal intensities (i.e. scores) are similar in both replicates. Peaks with

low signal intensity in both replicates do not pass the IDR threshold, but are useful for generat-

ing a background dataset for IDR analysis. Very few peaks were identified in mock ChIP-Seq

experiments, even with a relaxed IDR threshold of 0.25.

(TIF)

S19 Fig. bgcn; stwl double mutant ovaries resemble stwl mutant ovaries. Ovaries were dis-

sected from females of the indicated genotype 1–3 days post-eclosion. α-Vasa labels germ cells,

α-Hts-1B1 labels branched fusomes or spectrosomes as well as follicle cell membranes. Ger-

maria are positioned with anterior to posterior going left to right. stwl mutants form rudimen-

tary cysts, indicated by branched fusomes, while bgcn mutant ovaries are populated with GSC-

like cells, as indicated by spectrosomes and lack of branched fusomes [11–13,46–47]. Arrows

point to branched fusomes in stwl mutants and bgcn; stwl double mutants, and spectrosomes

in bgcn mutants. The bgcn; stwl result is consistent with previous findings [14]. All images are

maximum-intensity projections from a z-series representing a depth of 10 microns. Scale bars

are 20 microns.

(TIF)

S20 Fig. GSC genes are enriched in stwl null ovaries. Single-cell data from Rust et al. 2020

[45] was used to identify GSC, undifferentiated germ cell and older germ cell transcripts in

assayed datasets. These were the only three types of germline cells identified in the Rust et al.

study. (A) Germline transcripts among the top and bottom 1% of misregulated genes in the
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indicated mutant or deficient ovary. (B) Germline transcripts overrepresented among ectopi-

cally expressed genes in stwl null ovaries and stwl dsRNA-treated S2 cells. Overrepresentation

tests were also performed on the top 1% by LFC of ectopic genes in stwl null ovary, and of

genes ectopic to both stwl null ovary and stwl dsRNA-treated S2 cells (for this intersect group,

average LFC values in stwl null ovary are plotted). (A-B) Average LFC in the indicated mutant

or deficient ovary is plotted for each single-cell germline cluster. All gene sets with FDR >0.1

are shaded grey. (C) Overlap of genes belonging to the following categories: enriched in testis

(S7 Table), expressed in GSCs, or ectopically expressed in stwl null ovaries and stwl dsRNA-

treated S2 cells.

(TIF)

S21 Fig. Principal components analysis (PCA) of α-Stwl ChIP-Seq read counts separates

mock from IP. PCA for read counts generated from alignment to genomic bins and repeat

index. Experiments labeled as mock were performed with pre-immune sera, IPs were per-

formed with Stwl antibodies. Antibodies were generated from two different animals (referred

to as 76 and 77) using the same epitope. DNA was isolated from two pools of S2 cells (biologi-

cal replicates). The majority of the variance in the data is contained in PC1 and is explained by

differences between mock and IP conditions, not by differences in the source animal or repli-

cate pools.

(TIF)

S1 Table. Summary of differentially expressed genes. For each experiment, differential

expression analysis was performed by contrasting counts in the “numerator” samples to the

“reference” samples. Genes were identified as Differentially Expressed (D.E.) if the adjusted p-

value was<0.01 (Wald Test p-value with a Benjamini-Hochberg FDR correction). Upregu-

lated and downregulated genes have Log Fold Change (LFC) values greater than 0 (Up) or less

than 0 (Down). For the ovary dataset, newly-eclosed and two-day old ovary data were com-

bined in a GLM as described in Methods.

(XLSX)

S2 Table. Results of DE analyses. Results of DESeq2 output for all RNA-Seq datasets used in

this study. LFC = shrunken log2FoldChange values, FDR = adjusted p-value (Wald Test p-

value with a Benjamini-Hochberg FDR correction). “Repeat info”: for repeats, details of speci-

fied repeat are listed; genomic annotations are labelled “Genome”. “Ectopic status in stwl
mutant” specifies whether indicated gene is ectopically expressed in stwl null ovary, stwl KD S2

cells, or both. “Stwl_Bound” indicates whether there is a Stwl peak within 1 Kb of the TSS of

the indicated gene, in either direction.

(XLSX)

S3 Table. Genes upregulated in stwl, bam, Sxl, and piwi mutant or deficient ovaries. Inter-

section of all genes (from genomic annotation) that were upregulated (LFC>0, FDR<0.01) in

each of the DESeq2 results outputs from S2 Table.

(XLSX)

S4 Table. Summary of genes and expression profiles in the 59C4-59D cluster. Methods for

estimation of tissue enrichment, wild-type expression, up-regulation and ectopic expression

are described in the text. Distance between genes is calculated as the difference between the

right-most coordinate of the indicated gene body and the left-most coordinate of the adjacent

gene body, regardless of gene orientation.

(XLSX)
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S5 Table. Transcription factors with ChIP-Seq overlap to Stwl. Comparison of Stwl ChIP--

Seq peakset identified in this study to all peaksets compiled by the ModERN group (including

their independent analysis of Stwl). This table represents a subset of the top 40 transcription

factors whose binding profiles are most similar to Stwl (from a total of 475 TFs). Fold-enrich-

ment refers to the number of observed peaks overlapping with Stwl relative to the number of

expected peaks, based on the size of the peaksets and the mappable genome. Also shown are

the number of peaks in the listed peakset, the number of these peaks that overlap with the Stwl

peakset, the % of Stwl peaks that are in this overlap (from a total of 2153 peaks), the % of Stwl

sites (bp) that are covered in the listed peakset, the % of overlap peaks in the listed peakset, and

the % sites in the listed peakset covered by Stwl.

(XLSX)

S6 Table. Tissue groupings key for tissue-enrichment data, based on modENCODE anat-

omy RNA-Seq [34]. We selected a subset of the tissues assayed for the modENCODE tissues

profile. Column 1 gives the name of each dataset as listed in the modENCODE database.

Where relevant, tissues were grouped into broader categories (e.g. A_MateM_4d_head and

A_MateF_4d_head are grouped into a single “Head” category). A—Adults; L3_Wand—Wan-

dering 3rd instar larvae; WPP—White pre-pupae; P8—Pharate adult stage P8; MateM/MateF

—for adults, mated males or females; 4d - for adults, 4 days post-eclosion.

(XLSX)

S7 Table. Tissue-specificity index (τ) calculations per gene, based on modENCODE anatomy

RNA-Seq [34]. For each transcript, RPKM was downloaded from Flybase precomputed file, "gen-

e_rpkm_report_fb_2018_05.tsv.gz". modENCODE tissues were grouped according to S6 Table,

so that enrichment in any member of a given group was called as enrichment in that tissue group.

All RPKM values were converted to log2(RPKM) in R, excluding 0 counts. log2(RPKM) is shown

in each tissue column. log2(RPKM)< = 1 was considered not expressed. All transcripts that are

not expressed in at least one tissue were coded as "Not Expressed". For each transcript, τ was cal-

culated from log2-normalized RPKM values, as described in Yanai et al., 2005:

t ¼

Pn
i¼1
ð1 � x̂iÞ

n � 1
; x̂i ¼

xi

maxðxiÞ

where xi is the expression of a transcript in tissue i. Transcripts where τ<0.70 were called "Not

enriched". Transcripts were considered enriched in a given tissue where τ> = 0.70 and expression

in that tissue was greater than the cutoff (mean expression + 1.5 standard deviations).

(XLSX)

S8 Table. Summary of tissue-enrichment based on modENCODE anatomy RNA-Seq [34].

Total number of genes with tissue-specific expression, by tissue category (S6 Table). Genes

marked as “Not Expressed” are not expressed in any of the 18 selected modENCODE datasets

(RPKM <2 in all samples). “Not Enriched” genes are expressed genes that do not pass the tau

(τ) threshold specified in S7 Table. % of Genome is based on a total of 18,194 annotated genes.

(XLSX)

S9 Table. Primers used in this study.

(XLSX)
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