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Abstract Surflex-QMOD integrates chemical structure

and activity data to produce physically-realistic models for

binding affinity prediction. Here, we apply QMOD to a 3D-

QSAR benchmark dataset and show broad applicability to

a diverse set of targets. Testing new ligands within the

QMOD model employs automated flexible molecular

alignment, with the model itself defining the optimal pose

for each ligand. QMOD performance was compared to that

of four approaches that depended on manual alignments

(CoMFA, two variations of CoMSIA, and CMF). QMOD

showed comparable performance to the other methods on a

challenging, but structurally limited, test set. The QMOD

models were also applied to test a large and structurally

diverse dataset of ligands from ChEMBL, nearly all of

which were synthesized years after those used for model

construction. Extrapolation across diverse chemical struc-

tures was possible because the method addresses the ligand

pose problem and provides structural and geometric means

to quantitatively identify ligands within a model’s appli-

cability domain. Predictions for such ligands for the four

tested targets were highly statistically significant based on

rank correlation. Those molecules predicted to be highly

active (pKi � 7:5) had a mean experimental pKi of 7.5,

with potent and structurally novel ligands being identified

by QMOD for each target.

Keywords QSAR � QMOD � Surflex � Extrapolation �
Binding mode prediction � Affinity prediction

Introduction

We introduced the Surflex-QMOD method for 3D-QSAR

(‘‘QMOD’’ hereafter) [1] as a more physically meaningful

approach than the antecedent Compass approach [2, 3],

which itself was offered as a means to improve the fidelity

of predictive models to what is understood about protein–

ligand binding interactions. We have previously shown that

the QMOD procedure is capable of making accurate pre-

dictions across varying chemical scaffolds [1], learning

non-additive structure-activity relationships [4, 5], guiding

lead optimization toward potent and diverse ligands [6],

and incorporating information derived from biophysical

experiments [7]. The QMOD procedure is complex, com-

bining aspects of molecular similarity, multiple-instance

machine-learning, and docking. This complexity has

heretofore inhibited widespread application of the

approach by large numbers of independent investigators.

Here, we report algorithmic and workflow enhance-

ments that provide a simple procedure for model induction,

broad and automatic model application, and interpretation

of model predictions. Results are presented on a set of eight

biological targets, originally assembled by Sutherland et al.

[8]. Seven targets were enzymes, including angiotensin

converting enzyme (ACE), acetylcholinesterase (ACHE),

cyclooxygenase-2 (COX2), dihydrofolate reductase

(DHFR), glycogen phosphorylase B (GPB), thermolysin,

and thrombin, and one was a ligand-gated ion channel, the

GABAAR benzodiazepine site (BZR). Direct comparisons

were made to four other QSAR approaches (CoMFA, two

versions of CoMSIA, and CMF, reported by Zhokhova and
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Baskin [9]). In addition, for four targets with ample

ChEMBL data, we report QMOD results on diverse ligands

that are beyond the reach of many QSAR methods.

The QMOD methodology builds and tests a virtual

binding site (a ‘‘pocketmol’’) in the following six steps:

1. Initial alignment hypothesis: Two or three ligands are

chosen to serve as a seed alignment hypothesis,

derived by maximizing their mutual 3D molecular

similarity. This process may be augmented using

molecular docking, with similarity being used to

identify a clique of suitable mutually-similar poses

from the docked collection.

2. Training ligand alignment generation: For each train-

ing molecule, the initial alignment hypothesis is used

to guide the generation of multiple poses (typically

100–200), again using 3D molecular similarity.

3. Probe generation: The collection of alignments for

training molecules is used to guide the placement of

small molecular probes that represent possible con-

stituents of the cognate binding pocket. This set of

probes may be filtered using experimental information

about the configurations of the binding pocket.

4. Probe subset selection: A probe subset forming an

initial pocketmol is chosen to optimize multiple

constraints: the scores of training ligands against the

pocketmol should be close to their experimental

values, the mutual similarity of the optimal poses

should be high, the spatial redundancy of the probes

low, and the total clash between the probes and the

poses should also be low.

5. Iterative model refinement: The pocketmol is refined

by iteration of adjustment of the fine positions of the

pocketmol probes (to minimize the deviation of

computed training ligand scores to experimental data)

and refinement of training ligand poses to identify the

optimal fit for each.

6. Prediction on new molecules: The final pocketmol

serves as the target of a docking-like procedure. New

molecules are flexibly fit into the pocketmol, seeking

the optimal score subject to constraints on ligand

energetics. The result produces a set of poses, each

with a score and estimates of prediction quality.

Here, we report four enhancements (in addition to work-

flow improvements that are discussed in ‘‘Methods, data,

and computational protocols’’). First, the QMOD procedure

is now fully deterministic, with a slow, stochastic, genetic

algorithm being replaced by a faster, greedy optimization

approach for probe subset selection (Step 4 above). Second,

the explored spatial volume from model induction is used

to help guide scoring of new ligands. Third, rather than

predicting single poses based only on their respective

scores, pose families are ranked based on probabilistic

criteria that combine pocketmol scores with prediction

quality metrics. Fourth, greater control is possible over

ligand conformational and alignment preferences so that

domain knowledge can be used to influence model con-

struction. These enhancements are illustrated in Figs. 1 and

2 using thrombin as a target.

Figure 1a shows three training ligands (the QMOD

alignment hypothesis) in the thrombin binding pocket

bound to benzamidine. This initial alignment was derived

through an ensemble docking procedure [10] that produced

100 poses per ligand, followed by a similarity-driven

choice of a single pose for each [7]. The position of the

benzamidine fragment of the large inhibitors was shifted

from its preferred position when unsubstituted, illustrating

the interdependence of substituent changes and molecular

alignment. The fine positions of the common substructure

shared among the three potent thrombin inhibitors varied as

well, though on a smaller scale. The training and testing

ligand sets for this target [9] all contained the substructural

fragment highlighted in orange in Fig. 1b. For congeneric

series, especially flexible ones as in this case, it can be

desirable to impose a constraint on the conformation and

alignment of a common scaffold.

Here, the particular positions of the methylene-benza-

midine from thrombin molecule 2 were used to constrain

matching subfragments in training ligands and for new

ligands. Figure 1c shows the final optimal poses for all 59

training ligands, which exhibited some minor shifts from the

constraining fragment (the penalty for variation is 1.0 kcal/-

mol/Å2 by default). Figure 1d shows the final derived pock-

etmol alongwith the surface envelope of the union of the set of

optimal training poses. The C=O probes interacting with the

amidine of the inhibitors correspond quite closely to those of

the pair of carboxylate oxygens of Asp-189 and the main-

chain carbonyl ofGly-219 (detailed protein atoms not shown).

The collection of hydrophobic probes enclosing the upper-left

of the pocket approximated the shape of the hydrophobic

enclosure observed in the actual binding pocket.

The construct shown in Fig. 1d represents the QMOD

procedure’s complete model. The model comprises a

solution to a multi-factorial optimization problem. The

central property is that each training ligand’s maximal

pocket interaction score over the collection of poses for

that ligand is close to the experimental value. Further, the

solution is parsimonious in a quantitative sense: training

ligand pairs with similar activity levels will tend to exhibit

similar surface shape and polarity. Here, the ligands are

quite flexible, and many diverse arrangements of the sub-

stituents of the core scaffold are possible. The congruence

observed for the sulfonamide linkers and their hydrophobic

substituents is a property of the shape and composition of

the induced pocket.
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Figure 2a shows the reverse view of what is shown in

Fig. 1d. To predict binding affinities and poses for new

ligands, the model is used in an analogous fashion to a

protein structure with a collection of binding poses for

ligands whose bound configurations are known. The

explored envelope (shown in mesh) is used as an additional

soft constraint when fitting new ligands into the pocketmol:

penetrations beyond the envelope incur a penalty to

encourage identification of solutions that fit within

explored space. Figure 2b shows the highest scoring pose

for thrombin molecule 14 (predicted pKi = 7.3), which

exhibited a protrusion from the explored training pose

envelope (red arrow). Figure 2c shows well-contained

poses for molecule 14, the best of which scored slightly

lower (pKi = 7.2).

We have recently shown that binding pose prediction

from ensemble docking can be very significantly improved

by considering molecular similarity to the bound configu-

rations of prior known ligands [10] (subsequently a related

approach was reported by Kelly et al. [11]). We have

A B

C D

Fig. 1 Thrombin model construction: a PDB structure 1DWB

(thrombin/benzamidine in tan/magenta) shown with the structurally-

guided QMOD alignment hypothesis (green carbons); b the particular

pose of thr-02, with its methylene-benzamidine (MBZ) fragment

shown with orange carbons; c final predicted optimal poses of

thrombin training ligands (lavendar) with the constraining effect of

the MBZ fragment; d final pocketmol probes (pink), optimal poses,

and the surface envelope defined by the training ligands (mesh)

J Comput Aided Mol Des (2016) 30:127–152 129

123



adapted our approach for docking to the QMOD method in

order to improve the reliability of pose and affinity pre-

dictions. The details of the computation are presented

below, but the principle is that a calculated numerical

property of a predicted pose is transformed into a proba-

bility using statistics derived from training ligands. Prob-

abilities from three quality metrics are used to adjust the

energetic score for each pose. Families of related poses

then receive a Boltzmann-derived probability score, and

the family with the highest probability is reported.

Figure 2d shows the highest-probability pose family for

thrombin molecule 14. The predicted pKi was close to the

experimental value (just 0.4 log units low). The three

probability-normalized metrics are described in detail

below. The first is an estimate of overall molecular novelty

that considers the extent to which the full set of training

ligands has explored the spatial and compositional char-

acteristics of the new ligand. The second is an estimate of

confidence based on the maximal similarity of the new

ligand to a particular training ligand. The third is a

A B

C D

Fig. 2 Thrombin model application: a rear view of model from

Fig. 1; b top-scoring single pose of thr-14 (yellow) protruding from

the exploration envelope; c alternative poses compatible with the

envelope (cyan); d full top-ranked pose family shown within the

training envelope surface
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normalized value reflecting penetration into excluded vol-

ume beyond the explored training envelope. Molecule 14,

judged based on its top-ranked pose family, was not par-

ticularly novel when considered in the context of all of the

training ligands, nor did it make excessive penetration

beyond the training ligand envelope. However, it was not

structurally similar to any particular single training ligand,

but rather its surface resembled parts of multiple ligands

cobbled together, allowing QMOD to produce a good

prediction.

Results on the original Sutherland data set were robust,

and application of the derived QMOD models to diverse

ChEMBL molecules demonstrated practically useful pre-

dictive extrapolation. Together with algorithmic and

workflow enhancements, these results suggest that Surflex-

QMOD will have broad applicability for lead optimization,

and the method is being made widely available to inde-

pendent research groups.

Methods, data, and computational protocols

Surflex computational methods have been described in

detail in previous work: 3D similarity [12, 13], 2D-simi-

larity and computations involving comparisons of single

molecules to sets of molecules [14, 15], docking (including

used of multiple protein structures) [10, 16–18], and both

standard and structure-guided QMOD [1, 4, 6, 7]. Details

of algorithmic enhancements made to the QMOD proce-

dure will be described in what follows, but prior descrip-

tions will not be repeated except in abbreviated form where

needed.

Molecular data sets

The results in this work were derived from the data sum-

marized in Table 1. Ligand sets for eight biological targets

originally assembled by Sutherland et al. (reported in 2004

[8]) were taken from the archive of Zhokhova and Baskin

[9]. The overall benchmark consisted of eight data sets that

had been curated in order to analyze performance of

CoMFA, CoMSIA, and other QSAR methods using de-

signed test sets [8]. The targets, target types, and numbers

of compounds are listed in Table 1, hereafter referred to as

the ‘‘Sutherland benchmark.’’

The sets were used exactly as structured in the original

report in order to facilitate direct comparisons with previ-

ously reported results. As described in Sutherland et al. [8],

the train/test splitting procedure was designed so as to

maximize the diversity of the test set and to examine the

predictive accuracy of methods when extrapolating outside

the training set. Approximately one-third of molecules for

each target were selected by optimization using a maxi-

mum dissimilarity algorithm and assigned to the test set,

with the remaining compounds assigned to the training set.

Selection was optimized under a restraint such that the

selected test compounds had a distribution of activities

similar to that of the complete set. The structural novelty of

thrombin molecule 14 from Fig. 2 compared with typical

training ligands (see Fig. 1) is an example of the effect of

this procedure. This procedure yields more challenging

conditions for predictions than more typical random

selection approaches and was intended to measure extrap-

olative power of QSAR models in order to better reflect

future application rather than interpolation. In 2013, the

Continuous Molecular Fields (CMF) approach was

described in detail using the same data sets with the same

molecular poses [9].

For this work, new test ligand sets and associated

activity data for the eight targets were assembled by

searching the ChEMBL database for matching targets and

then obtaining the sets of compounds with target-associ-

ated bioactivities. Table 1 lists the ChEMBL target ID and

corresponding number of total assay values (N) for each

target. The 4 targets for which there were [ 2000

ChEMBL assays values (ACHE, BZR, COX2, and THR)

were used to test the screening utility of our QMOD

models (the remaining four each had less than 1000 assay

Table 1 Datasets from Sutherland et al. [8] as used by Baskin and Zhokhova [9]

Target Target type Train Test Activity range ChEMBL ID N ligands

Acetylcholinesterase (ACHE) [19] Carboxylesterase 74 37 4.3–9.5 (pIC50) 220 4910

GABAA receptor (BZR) [20] Chloride channel 98 49 5.5–8.9 (pIC50) 1,907,607 2269

Cyclooxygenase-2 (COX2) [21] Oxidoreductase 188 94 4.0–9.0 (pIC50) 230 5670

Thrombin (THR) [22] Serine protease 59 29 4.4–8.5 (pKi) 204 4546

Angiotensin-conv. enzyme (ACE) [23] Metalloprotease 76 38 2.1–9.9 (pIC50) 1808 711

Dihydrofolate reductase (DHFR) [24] Oxidoreductase 237 124 3.3–9.8 (pIC50) 202 974

Glycogen phosphorylase B (GPB) [25] Glycosyltransferase 44 22 1.3–6.8 (pKi) 4696 673

Thermolysin (THER) [26] Metalloprotease 51 25 0.5–10.2 (pKi) 3392 104

J Comput Aided Mol Des (2016) 30:127–152 131

123



values). The sets of total assay values were filtered to retain

compounds with molecular weight between 100–800, and

pIC50 or pKi assay values [ 4.0.

Redundancy was eliminated by using an average activity

for compounds with more than one assay value. Com-

pounds were considered outliers and therefore eliminated if

the difference between the maximum and minimum

activity values was greater than 2 log units. A 2D similarity

method was used to eliminate compounds identical to those

in the training sets. This resulted in ChEMBL datasets for

ACHE, BZR, COX2, and thrombin containing totals of

2454, 1158, 2322, and 3097 compounds, respectively.

The existence of multiple assay values for some com-

pounds provides some idea of the expected lower bound on

absolute prediction errors for the ChEMBL compounds.

The average deviations between minimum and maximum

pIC50 or pKi values for the targets ranged from roughly

0.5–1.0 log units after eliminating outliers. This is signif-

icantly higher that what is seen with biochemical assays

conducted within a single laboratory (typically 0.3–0.5 log

units).

QMOD enhancements

There were four major changes made to the QMOD algo-

rithm for the work reported here, detailed as follows.

Probe set selection

Given initial ligand alignments (typically 100–200 poses

per training molecule) and a large set of possible probes

(often many thousand), a probe subset forming an initial

pocketmol must be chosen. The initial approach for QMOD

to identify a probe subset that approximately satisfied the

desired relationship between computed and experimental

activities was done using a mixed integer programming

solver [1]. That approach required consideration of just

single poses for each molecule for the initial selection.

Subsequently, approaches were implemented that allowed

for consideration of full ligand pose pools, where the probe

set selection method simultaneously optimized fit to

experimental data as well as optimizing multiple con-

straints, as follows:

1. The scores of training ligands against the pocketmol

should be close to their experimental values. Given a

particular probe set, the score of each pose of each

ligand is computed, and the maximal value is defined

as the ligand’s score, with the corresponding pose

being considered optimal. Scores can be constrained to

be equal to some value (plus or minus a user-

settable deviation), or be constrained to be less than

or greater than a particular value. The average of the

sum of squared deviations beyond desired values (the

mean-squared-deviation or D) is optimized toward a

minimal value.

2. The mutual similarity of the optimal poses of molecule

pairs whose activities are close should be high.

Similarities of all non-self pairs of optimal poses are

computed, with the resulting values being weighted by

a Gaussian term (identical activities are weighted 1.0,

and differences in activity reduce the weight), and the

weighted values are summed and normalized to a

maximum value of 1.0. This is the parsimony (P) re-

sulting from the current probe set configuration [4].

3. The spatial redundancy of the probes should be low.

Values are set on the preferred minimal RMS deviation

between like-kind probes, below which a positive-

valued penalty is incurred. Values may be selected, for

example, to skew toward hydrophobic pocket solutions

(by limited spatial closeness of polar probes) or toward

more hydrophilic (by allowing relatively close posi-

tioning of like polar probes). This redundancy value

(R) is optimized toward a minimal value.

4. The average clash between the probe set and the

optimal poses should also be low. This creates a

preference for models in which explanations of ligand

activity are derived through favorable interactions with

pocketmol probes rather than by constructing stiff

enclosures. Average clash (a value C� 0:0) is mini-

mized in absolute magnitude.

5. There should be as few probes as possible (N) while

still meeting the foregoing constraints.

Themost sophisticated of these past approachesmade use

of a genetic algorithm, but this part of the overall QMOD

computation was a bottleneck in terms of speed, and the

results, being stochastic, were more variable with respect to

initial conditions and parameters than was desirable. For this

work, the stochastic probe selection method was replaced

with a deterministic method, which improves speed and

reproducibility. The function that is minimized by compo-

sitional selection of probes is as follows:

f ¼ aDþ bð1� PÞ þ cRþ dC þ �N ð1Þ

By default, the respective weights in Eq. 1 are: a ¼ 1:0,

b ¼ 20:0, c ¼ 20:0, d ¼ �1:0, and � ¼ 0:03. A improve-

ment in the overall objective function of 1.0 can be

achieved by any of the following: reduction in the devia-

tion of each ligand’s computed activity from experimental

by 1.0 pKi units, an increase in parsimony of 0.05, elimi-

nation of a redundant probe whose RMSD from its like-

kind neighbor was 0.05 less than preferred, a reduction in

average magnitude of clashing of 1.0 pKi units, or a large

reduction in the total number of probes. The high weight

c ¼ 20:0 on probe redundancy amounts to a rule to avoid
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excessively close probes, while the constraint on the total

number of probes is quite weak and simply ensures that a

new probe will improve overall fit by at least 0.03 units.

Effective optimization of probe set selection in a typical

case results in an overall score of f � 6:5, with the most

important constituent terms being the MSE (D � 1:5),

parsimony (P � 0:75), and average clash (C � �0:1).

Note that these weights were not chosen systematically

using multiple targets. Rather, using the 5HT1a ligand set

from the initial QMOD report [1], exploration of parameter

values was made with a assumed to be 1.0, and baseline

convergence was established with all other values being

zero. The other values were then increased in magnitude

sequentially (first c, then b, d, and �) to yield probe

selections with comparable convergence in terms of MSE,

but where the effects of each additional constraint were

maximized. Systematic optimization of these parameters

using multiple data sets has not been undertaken and is

likely to yield performance improvements.

Carrying out optimization of the objective function is

done using a series of greedy procedures:

1. Given the set of initial ligand alignments, find a

parsimonious pose clique. This is done by fixing the

choice of a single molecule’s pose, then selecting the

first pose of each remaining molecule as an initial

state. Then, for each pair of molecules, we try all

possible pairs of new replacement poses for those two.

If the best among the replacement choices is better

than the current best, we replace the current solution

with using the replacement choices. The process

iterates until no replacement results in an improvement

in computed parsimony.

2. Given a locally optimal pose clique, identify a

weighted probe set that optimizes the objective func-

tion f. Initialize all probe weights to 0. Using a fixed

value to change probe weights, systematically alter the

weight of each probe by the fixed value, ensuring that

probe weights remain on the interval [0, 1]. For each

weight alteration, compute f and keep track of the best

alteration. Make the single best weight change uncov-

ered. Repeat the process for up to 10,000 cycles or

until no improvement is possible. The fixed value for

probe weight changes begins with 0.2 for one iteration

of the procedure, then it is set to 0.1 for one more

iteration. The resulting weighted probe vector is

locally optimal under changes of 0.1 weight units for

any probe.

3. Given the weighted probe solution, open choices for all

ligand poses so that now the optimal pose will result

from that with maximal score for each molecule. The

same procedure just used to optimize probe weights is

repeated, but pose choice is now free. In order to limit

the computational complexity of this step, only those

probes that were ‘‘winners’’ occasionally (‘‘good

probes’’) in the previous step are considered for weight

variation in this step.

4. The real-valued probe weight vector is binarized, and

the optimization process above is repeated, but with

weight values of only 1 and 0. The final probe set

(those probes with weight 1) is locally optimal with

respect to the function f under any single binary weight

change among the good probe set.

As implemented, ten different parsimonious pose cliques

are used, each identified by fixing a single pose of either

the first or second training molecule to one of the first five

poses from the initial alignment process. For each such

initial clique, the remaining optimization process is carried

out. The result with the lowest overall value of f is the

solution that is carried forward for further refinement.

Additional refinement does not vary the composition of the

pocketmol, just the fine positions of the probes that have

been selected in this step. As the pocketmol is refined, so

too are the poses of the ligands.

In cases where selection of an optimal probe set begins

from a pre-existing probe set, the procedure is modified

slightly, never making use of fixed pose cliques. First, the

existing set of probes and poses (whose positions may have

changed from the initial QMOD procedure steps) are used

in order to find a locally optimal weighted probe vector.

Then, all probes are considered in further optimizing f, first

using real-valued weights and then using binary weights, as

above. In practice, large parts of the beginning probe set

are retained, having been the subject of previous opti-

mization. The typical composition of the resulting probe

set is generally at least 80 % original probes, with a total

number of probes slightly larger than the original set.

This is necessarily a complex algorithm, requiring both

time and a large memory footprint in order to avoid

repetitive computations (one can cache computations of

interactions scores between probes and poses as well as

similarity scores among poses of different ligands). Further

improvements are certainly possible.

Exploration envelope

For small, relatively rigid, molecules, the process of

alignment and conformational optimization to fit into a

pocketmol will not typically identify poses that reach

outside of what is seen among a set of similarly-sized

training ligands. However, as seen in Fig. 2, as molecules

become larger and more flexible, especially when branch-

ing creates opportunities for internal clashing, parts of a

ligand may protrude into unexplored parts of space where

no explicit constraints could have been learned. In order to
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encourage exploration of poses within the explored training

envelope, a small penalty has been introduced during pose

optimization. Any atomic extrusion di beyond the training

ligand envelope incurs a sigmoidal penalty, as follows, for

atom i:

ei ¼ g 1� 1

1þ eðdiþjÞ=k

� �
ð2Þ

The constants have not been carefully optimized, and

the values used are: g ¼ �2:0, j ¼ �0:75, and k ¼ 0:15.

With these values, excursions of 0.2 Å receive a penalty of

-0.05 and increase to close to -2.0 as they reach 1.5 Å

(with the inflection point of the sigmoid being at 0.75 Å).

Because any single protrusion is capped at a relatively

modest penalty, the structure of this term provides gener-

ally non-distortive pressure for ligands to lie within the

envelope. However, when a molecule’s score can be sig-

nificantly improved by including an excursion, such a pose

will be retained. As seen in Fig. 2, the presence of a pro-

trusion does not eliminate a pose from consideration, but

the effect of the envelope surface serves to enhance the

exploration of conforming ligand configurations.

Pose families and prediction quality metrics

Previous versions of QMOD produced a set of poses for a

molecule, ranked only by score against the pocketmol. We

have previously used pose families consisting of closely-

related ligand configurations to represent the results of

docking [17]. Recently, we generalized that notion to take

advantage of information derived from the known bound

configurations of previously studied ligands [10].

Rather than treating the final predicted pool of n poses

as individual and independent predictions, pose families

are constructed based on RMSD, and they are ranked based

on Boltzmann-derived probability scores. A given score of

x for a particular pose family means that it is expected for

the experimentally observed bound configurations of the

ligand in question to fall within that family with probability

x. To use information from other ligands, the procedure

takes an idea from statistical potentials, which derive

energy functions from observed distributions of molecular

configurational properties (typically distances). In the case

of amino-acid residues, the free-energy of interactions

between residue types i and j is given as follows [27]:

wij ¼ �RT ln
qijðrÞ
q�

� �
ð3Þ

The notion is that configurations that are common in the

observed data relative to the reference state lead to a high

relative likelihood and consequently a favorable negative

energy. For docking, we used this idea to provide an

energetic correction to predicted molecular poses, where

those that appeared to be more ‘‘native-like’’ were treated

like favorable amino-acid distances. So, a group of ligand

poses that were quantitatively more similar in terms of 3D

surface properties to prior ligands would see improvements

in their corrected energies, which would then lead to a

higher probability for the pose family. Use of this approach

led to significant improvements in predictions of bound

configurations of novel ligands [10].

Here, we extend this notion to exploit quality metrics

computed for each predicted pose of a new ligand. Con-

ceptually, more native-like in the context of a machine

learning prediction means closer to the properties of the

training ligands. A direct and obvious metric is the maxi-

mal molecular similarity of a test molecule pose to any of

the final optimal training molecule poses (we have previ-

ously used this as a measure of confidence within QMOD).

Suppose we have a collection of predicted pocketmol poses

for a ligand, denoted L1...n, some of which are more like

those seen with training ligands and some not, and this is

reflected in the set of corresponding maximal similarities

S1...n.

We can use a similar formulation to Eq. 3 by expressing

the similarities of these poses to training ligand poses in

terms of probabilities. In order to do this, we estimate the

properties of the similarity distribution among the pairs of

optimal final training poses. From prior work, we have

found that such distributions tend be normally distributed

when using the Surflex-Sim metric, so we estimate l and r
for the population of all non-self pairs of poses from the

end of the QMOD model induction process (the lavendar

poses from Fig. 1). So, given a pose Li for a new molecule,

with associated maximal similarity Si, we define a correc-

tion to the energy score (wi) as follows:

pi ¼ 1� 1

2
1þ erf

Si � l

r
ffiffiffi
2

p
� �� �

ð4Þ

wi ¼ �RT ln
1

pi

� �
ð5Þ

Equation 4 is simply the area under the right-hand side

(high similarity) of the observed distribution of similarity

values among the training poses. A predicted ligand pose

that looks much less like the training ligands than other

predicted poses would receive a low similarity score,

resulting in a value close to 1 from Eq. 4 and an energetic

correction of close to zero. Conversely, a predicted ligand

pose that looks very native-like compared with other poses

would receive a low probability and a large, favorable

energy correction from Eq. 5.

The corrections to pose scores may come from multiple

measures, and QMOD currently produces three quality

metrics. The similarity measurement just described

becomes the probabilistically normalized confidence
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(pConf) value. The value represents the degree to which a

particular new ligand looks quantitatively similar to a

particular training ligand. A related measurement, called

novelty (denoted pNov in its normalized form), represents

the degree to which a new ligand looks like what is covered

by the union of all training ligands. The last measure

quantifies the degree to which a particular ligand pose

penetrates beyond the training ligand envelope into pref-

erentially excluded space (pExcl). Each of these measures

for each predicted pose is compared with information

derived from what was observed among the training

ligands in order to arrive at probabilistically normalized

values, which then are used to adjust pose family proba-

bility estimates.

As just described, only the optimal final pose of each

training ligand is used to estimate the distributions for each

quality metric. Because the QMOD learning procedure

maintains a pose pool for each training ligand, it is possible

to obtain more robust estimates for the distributions by

considering all poses for each training ligand that either

geometrically close (by RMSD) to the optimal pose or are

close based on pocketmol score (the RMSD threshold is

1.0 Å and the score deviation threshold is 2.0 pKi units).

For large training sets, this makes little difference, but for

smaller training sets, the effects of single molecules that

may behave as outliers is minimized.

For a new ligand in the scoring process, multiple pose

families may be reported. For each, the ligand score that is

reported corresponds to the maximal (unadjusted) score for

any pose within the family. The reported pConf, pNov, and

pExcl values are the mean values from all poses within the

family. High confidence, low novelty, and minimal pene-

tration into excluded volume all tend to correlate with

lower prediction errors. In practice, thresholds of

pConf[ 0.35 (high confidence), pNov\ 0.85 (low nov-

elty), and pExcl\ 0.95 (non-extreme exclusion penetra-

tion) are used to identify subsets of ligands on which

predictions may be considered to be more accurate.

Recall from Fig. 2 that the single top-scoring pose was

not part of the top-ranked pose family, due to placement of

the sulfonamide substituent in a manner that deviated from

what had been observed in training. It is important, how-

ever, to note that use of this re-ranking approach is nec-

essarily heuristic. It may be the case that a pose for a new

ligand that is discordant with respect to similarity or

exclusion envelope penetration is, in fact, closer to physi-

cally correct than a concordant one. However, it is likely

that, in most cases, on ligands for which a reasonable

prediction might be expected, that the best prediction will

derive from a set of poses clearly similar to those observed

from training and which fall within the training envelope.

Constraints on conformation and alignment

A user may specify a constraint on either the conformation

of a substructure or may constrain both the conformation

and alignment of a substructure. The former is useful in

cases where detailed knowledge of the energetics of a

particular system provide a more accurate geometry than

the QMOD internal forcefield. The latter is useful when

either there is specific knowledge of the binding preference

of a particular moiety or where learning convergence is

otherwise difficult to obtain. Cases where flexible mole-

cules all share a common core element that does not vary

can lead to underconstraint in model-building.

In the case of thrombin, illustrated in Figs. 1 and 2,

model convergence was poor using a purely unconstrained

pocket induction procedure. However, the favored position

of the common benzamidine fragment was useful as an

‘‘anchor’’ which led to adequate convergence. The con-

straints can be upon multiple different substructures, and

penalties from deviation are specified in terms of pKi/Å
2

(default is -1.0 for both conformation and alignment

constraints). As seen in the thrombin example, movement

of the constrained fragment does occur in a context-de-

pendent manner for different ligands. It need not be the

case that either all of the training or all of the new mole-

cules contain fragments to be constrained.

Protein structure guided hypotheses

For all targets but BZR, protein structural information was

available, and it was used for the generation of initial

alignment hypotheses (Step 1 from the Introduction). Pro-

tein structural information was not used in any other

fashion to influence the resulting models. Protein structures

were downloaded from the Protein Data Bank as biological

assemblies. Ensemble docking for generation of the seven

structure-guided QMOD hypotheses employed five struc-

tures for each target: (1) ACE structures 1UZE, 1UZF,

2C6N, 2OC2, 3L3N, (2) ACHE structures 1MAA, 2GYU,

1Q83, 1Q84, 2GYW, (3) COX2 structures 1PXX, 3LN1,

3NT1, 3RR3, 4COX, (4) DHFR structures 1DRF, 2DHF,

1HFR, 1KMS, 1MVS, (v) GPB structures 2F3P, 1AXR,

2GPA, 1XL0, 1NOI, (vi) thermolysin structures 1QF0,

4TMN, 2TMN, 1THL, 1HYT, and (vii) thrombin structures

1K21, 1CA8, 1DWB, 1BMN, and 1D3P.

The results of ensemble dockings were used as input to an

automatic procedure that selects poses maximally similar to

one-another and also to other native ligands. Procedures for

docking [10] and for identifying an alignment hypothesis

based on the combination of docking and molecular simi-

larity [7] have been described in detail previously.

J Comput Aided Mol Des (2016) 30:127–152 135

123



Computational procedures

The QMOD results reported here were generated using

Surflex-QMOD version 2.039, which includes all of the

algorithmic enhancements described. The current release

(v3.065) makes improvements in workflow, moving from a

script-based approach to a small number of simple com-

mands. The current release exactly reproduces scoring of

new molecules with the resulting models, and these are

available in the data archive associated with this paper.

Model induction results are statistically equivalent between

the versions, but they differ slightly due to changes in

default parameters. Details of the precise computational

procedures are available in the data archive.

Briefly, the procedure for producing a QMOD model is

as follows (illustrated using the v3.065 version):

1 sf-qmod qminit hypo0.mol2 TrainData TrainList qmh0
2 sf-qmod qmbuild qmh0 high qmh0p0
3 sf-qmod qmbuild qmh0 medium qmh0p1
4 sf-qmod qmbuild qmh0 low qmh0p2
5 [Model selection: Tau, Mean error, Parsimony]
6 sf-qmod qmscore qmh0p0 TestList qtest

Line 1 builds the initial ligand alignments and produces

the overall probe set (Steps 2 and 3 from the Introduction)

using an alignment hypothesis (Step 1). The next three

lines build full QMOD pocketmols (Steps 4 and 5) using

three different density values for polar probe selection. In

the case of thrombin, the option ‘‘-qmatch mbz-

frag.mol2’’ was used in order to enforce the pose

constraint depicted in Fig. 1. For COX2 and DHFR, each

with large training sets (188 and 237 molecules, respec-

tively), initial models were built from a fraction of the

training sets, and final models were constructed by iterative

incorporation of the remaining fractions, using the

‘‘qmadd’’ procedure (see data archive for details).

For all but COX2 and DHFR, model selection from

among the three generated was done using the three

training metrics of Kendall’s Tau, average error, and par-

simony, with each yielding a ‘‘vote.’’ The winner was

selected as the preferred model for testing (no ties were

observed). For COX2 and DHFR, each partially trained

model was tested on the next fractional training molecule

set. Rank-correlation predictive performance of the

penultimate trained models on the final fractional training

set was used for model selection.

For the benchmark data set, results are presented for all test

molecules (see Table 1 for counts) using the ‘‘qmscore’’

(Line 5 from above) with the selected model. QMOD pock-

etmols may be applied to new molecules of widely varying

structures, but, depending on the diversity and coverage of the

training set, the reliable domain of applicability varies from

model tomodel, and predictions on ligands of some structural

classes may be more accurate than others.

For the four targets with ample ChEMBL data, the

selected models were tested on data of much more diverse

chemical structural variation than represented in the

benchmark test data. We use the term ‘‘in-model’’ to

describe those molecules for which the QMOD activity

scores are most reliable. The production of distributionally

normalized novelty, confidence, and exclusion values

(pExcl, pConf, and pNov) allows for unbiased selection of

molecular subsets. For ACHE, BZR, and COX2, in-model

molecules were defined as those predicted by QMOD with

pNov\ 0.85. However, in the case of thrombin, the new

ChEMBL ligands were so different from those seen in

training that none of the molecules passed this threshold.

The in-model definition for thrombin for a new molecule

relied on raw final reported values of similarity and

exclusion penalty ([0.70 for similarity and [-0.40 for

exclusion penalty).

Scaffold novelty was characterized using 2D compar-

isons of test ligands to the full set of training ligands for a

particular target. The calculation has been previously

described [14], and it makes use of probabilistically nor-

malized 2D similarity values that are transformed into a

single log-odds score using the multinomial distribution.

Large, positive values indicate high likelihood that a par-

ticular ligand is topologically similar to the set to which it

was compared.

Data and computational protocols are freely available by

download. Software is available by request. Details may be

found at www.jainlab.org.

Statistical analysis

The primary results of QMOD model performance, both on

convergence during training and on quality of test molecule

predictions are reported using Kendall’s Tau (s) [28] and
mean absolute error. The former is a non-parametric rank-

correlation statistic on the interval ½�1; 1� whose meaning

is intuitive: a value of 1 indicates equivalent ranking

between predicted and experimental values, a value of -1

indicates reversed ranking, and a value of 0 indicates no

correlation of ranks. For this work, values are considered

tied if they differ by 0.1 or less, unless otherwise specified.

Statistical significance of s can be computed analytically

for large sample sizes, but in this work, significance has

been assessed used permutation analysis (with 10,000

permutations). The advantages of s over the widely used

Pearson’s correlation (r or r2) include dependence only on

ranks, invariance to increasing monotonic transformations,

and robustness against outliers [29].

Reports of QSAR performance often make use of a term

for test set performance that is not Pearson’s correlation,

but which is also denoted r2 or R2 (or q2 for the analogous
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case of model cross-validation using a leave-one-out

scheme), popularized by use in the initial report of the

widely used CoMFA technique [30]. Here, these values

will be denoted R2
pred and q2 to distinguish from Pearson’s

r2. Recall that the values are defined as follows, where xi
are experimental activity values and yi are the predicted

values:

R2
pred ¼ 1�

Pn
i¼1ðxi � yiÞ2Pn
i¼1ðxi � �xÞ2

ð6Þ

r2 ¼
Pn

i¼1ðxi � �xÞðyi � �yÞ
� �2

Pn
i¼1ðxi � �xÞ2

Pn
i¼1ðyi � �yÞ2

ð7Þ

Equation 6 normalizes the predicted residual sum of

squares (numerator, denoted ‘‘PRESS’’ in the original

report of the partial-least-squares method [31]) by the

spread in the data to be predicted (the denominator) [30].

The formulation was introduced to characterize perfor-

mance of PLS under cross-validation. However, in the case

that predicted values have an equivalent mean to experi-

mental values and the slope of a line fitted against pre-

dicted/experimental values is one, the R2
pred and r2 values

are equivalent (otherwise R2
pred becomes smaller than r2).

One distinct advantage of the Pearson formulation is that it

is invariant to linear transformations, and while being

subject to poor behavior with respect to outliers, it has

good statistical properties in many situations. It has a direct

relationship to linear regression, in that r2 explains the

proportion of variance explained by the linear regression of

y on x or vice-versa.

R2
pred can be made equivalent to r2 by a linear trans-

formation of each yi to ŷi as follows:

b ¼
Pn

i¼1ðxi � �xÞðyi � �yÞPn
i¼1ðyi � �yÞ2

ð8Þ

a ¼ �x� b�y ð9Þ

ŷi ¼ aþ byi ð10Þ

Brown and Muchmore [32] made this transformation to

predicted binding affinity values from MM-PBSA in order

to produce interpretable statistics on prediction deviations

(the center and slope of the values resulting from physical

simulation calculations were far from experimental values).

Here, rather than making explicit transformations on

predicted values, we report r2 values for the QMOD results

and R2
pred and q2 results from the original reports of per-

formance for other methods. Because those methods are

fundamentally regression-based, and because the statistics

of the activity values for test data were carefully controlled,

substantial differences between the two assessment types

are not likely. We report r2 for QMOD, which provides

statistically meaningful values and also produces a sensible

comparison to results from the prior work. Numerical dif-

ferences between r2 and R2
pred were small, and conclusions

about methodological comparisons were done using the

same metrics. Our hope is to encourage the field to make

use of bona fide statistics that have tractable interpretations

with respect to significance [33].

Results and discussion

The primary data set for this work (the Sutherland bench-

mark) was curated as a test for QSAR methods, with an

emphasis on diverse targets and challenging blind test

ligands [8]. In the original report, ligand conformation and

alignment questions were addressed manually for 3D QSAR

methods. The procedures employed for the eight targets

were both involved and target specific, in some casesmaking

use of information regarding known bound ligand poses (e.g.

thrombin) and in some cases making alignments without

using knowledge of binding modes (e.g. ACHE). In all

cases, the alignments were carefully curated in order to yield

consistent substituent-based correspondences.

The goal here was to analyze the performance of the

QMOD approach using automatic procedures to derive

molecular conformation and alignment, both for the model-

building process and for scoring new ligands. For the blind

test data from the Sutherland benchmark, direct comparisons

were made to the performance of four methods, all of which

relied on the same ad hoc fixed alignment procedures

(CoMFA, two versions of CoMSIA, and CMF) [8, 9]. In

addition, the QMODmodels were testedmore thoroughly on

new datasets with molecules both structurally and tempo-

rally distant from the training sets, curated from ChEMBL.

There were three primary results of this study. First, the

eight targets represented in the benchmark dataset were the

most diverse set tested to date for QMOD. Performance for

QMOD, using a physically realistic, automated, and model-

driven alignment method, was comparable to the methods

that relied upon manual ligand alignments. For all eight

targets, QMOD produced statistically significant rank cor-

relations for predicted activities of test compounds. Sec-

ond, the QMOD ligand alignments, in all cases, were

significantly different from the manual alignments used by

other methods. For the enzymes, where crystallographic

data were available, the QMOD alignments were physi-

cally plausible in all seven cases, whereas the manual

alignments clearly were not for multiple targets. In the

remaining case (BZR), the QMOD alignment was very

different from the manual diazepine-based one, but the

QMOD model corresponded well to a homology-based

BZR binding site structure. Third, for the four cases where
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ChEMBL data were plentiful, QMOD predictions were

statistically significant in their correlation with experi-

mental activities, and QMOD was able to identify potent

and structurally novel ligands reported years in the future

from the ligands used for training.

Tables 2 and 3 show the training and test results for

QMOD and the average of the fixed-alignment methods.

Summary statistics are given for the four fixed-alignment

methods for two reasons. First, the inter-target variation in

performance was much larger than the inter-method vari-

ation (single factor ANOVA yielded a p value [0.5 for

both training and testing performance). Second, the focus

here is not on direct comparison of particular methods.

Rather, the question is whether automatic and generally

applicable alignment and conformation selection can pro-

vide robust performance on challenging QSAR data sets

and produce practically useful results on structurally

diverse ligands that would not be easily modeled using

widely used QSAR approaches.

For the training performance measures, QMOD’s results

come from a de novo re-fit of training molecules to the

induced model (not from cross-validation). This is a mea-

surement of model convergence, and it is not intended to be

a direct estimate of future predictive accuracy. In all cases,

QMOD derived models converged. When training

molecules were fit into the pocketmol in order to optimize

binding interactions through variation of conformation and

alignment, the scores resulting from identification of the

top-ranked pose families were close to experimental val-

ues. In all cases, the ranking produced was highly statis-

tically significant. The fixed-alignment methods all

produced similar results with respect to internally opti-

mized cross-validation performance (with a somewhat

higher level of variation in the case of GPB).

As shown in Table 3, QMOD produced statistically

significant rank correlations for all eight targets on the

Sutherland benchmark’s designed test sets. In terms of

average error, four cases yielded deviations of less than 0.7

pKi units (1.0 kcal/mol), two of 1.0 units (\1.5 kcal/mol),

and two produced significantly higher mean error values

(equivalent to 2.2–2.3 kcal/mol). Note that in a case such

as BZR, with a limited range of experimental activity

values relative to expected assay noise, measures such as

Pearson’s correlation may not be as reflective of predictive

power as rank correlation measures such as s. For the

thrombin case, the fixed-alignment methods produced high

performance with very little inter-method variation,

appearing to show a marginal advantage over QMOD.

However, taken together, characterized by R2
pred for all of

the individual methods (data not shown), the blind test

results reflected much greater inter-target variation than

inter-method variation (p[ 0:5 by single-factor ANOVA).

In direct head-to-head comparisons, QMOD did not con-

sistently outperform any other method, nor vice versa,

either when comparing raw R2
pred values (without consid-

ering confidence intervals) or when comparing such values

in the context of confidence intervals computed by per-

mutation analysis for QMOD (in this latter case, there were

very few differences to count).

While there was not a numerical performance advantage

for QMOD within this set of blind tests, the fact that the

method addresses the conformation and alignment problem

in a general and automatic fashion is a distinct advantage.

Sutherland et al. [8] noted that, while the field-based 3D

Table 2 Training results for the complete Sutherland benchmark

QMOD Fixed-alignment methods

s s p val Avg Err r2 q2 q2 CI SD

ACHE 0.60 \0.001 0.65 0.59 0.52 0.43–0.61 0.05

BZR 0.62 \0.001 0.38 0.52 0.40 0.29–0.50 0.05

COX2 0.51 \0.001 0.65 0.40 0.52 0.38–0.65 0.07

THR 0.66 \0.001 0.48 0.65 0.67 0.54–0.80 0.07

ACE 0.69 \0.001 1.01 0.73 0.68 0.62–0.74 0.03

DHFR 0.56 \0.001 0.88 0.54 0.57 0.41–0.72 0.08

GPB 0.39 \0.001 0.69 0.43 0.54 0.27–0.81 0.13

THER 0.70 \0.001 1.09 0.65 0.54 0.46–0.62 0.04

Table 3 Test results for the

complete Sutherland benchmark
QMOD Fixed-alignment methods

s s p val Avg Err r2 R2
pred R2

pred CI SD

ACHE 0.60 \0.001 0.68 0.56 0.50 0.31–0.69 0.10

BZR 0.42 \0.001 0.65 0.27 0.10 -0.07 to 0.27 0.08

COX2 0.39 \0.001 1.01 0.22 0.21 -0.10 to 0.51 0.15

THR 0.51 \0.001 0.69 0.42 0.61 0.53–0.69 0.04

ACE 0.39 \0.001 1.72 0.32 0.54 0.39–0.69 0.08

DHFR 0.55 \0.001 1.04 0.46 0.60 0.45–0.69 0.06

GPB 0.50 0.001 0.67 0.46 0.47 0.39–0.55 0.04

THER 0.42 0.002 1.63 0.39 0.44 0.20–0.67 0.12
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QSAR methods performed generally better than 2D or

2.5D methods, the methods are not tractable for screening

large collections of compounds (even of congeneric series)

due to the ‘‘manual labor involved in aligning structures.’’

In what follows, we describe each of the QMOD models,

with particular attention to the relationship between the

induced model and what is known about the actual binding

sites. The congruence of models with the physical basis for

binding interactions between ligands and their target pro-

teins is reflected in the degree to which models were able to

quantitatively predict activities for structurally novel

compounds from ChEMBL.

In what follows, the four targets for which ample

ChEMBL data were available will be discussed first,

including examples of extrapolative predictions. The overall

summary of performance on the ChEMBL experiments is

next, and the remaining four targets are discussed last.

Acetylcholinesterase (ACHE)

The mammalian acetylcholinesterase (ACHE) pocket

contains a narrow gorge about 20 Å deep and is comprised

of subsites including the peripheral anionic site at the gorge

entrance, an oxyanion hole along one wall of the gorge, and

the catalytic triad plus quaternary ammonium group

interaction site at the bottom of the gorge [34–36]. Con-

struction of an initial alignment hypothesis from which to

induce a QMOD model can be derived by using molecular

similarity alone. However, as we have previously shown,

structural information from protein–ligand complexes can

be utilized and benefits model performance [7]. For all

targets except BZR, structural information was used for

initial alignment derivation (see ‘‘Methods, data, and

computational protocols’’ for details) but was not used in

any other manner.

Figure 3 depicts the overall QMOD model induction for

ACHE, with the native protein pocket shown for compar-

ison. Figure 3a shows the structures of the two ACHE

ligands used to generate the ACHE alignment hypothesis

that is depicted in Fig. 3b (light green). The correspon-

dence between primary features of the ligand pair is sen-

sible, with the amines superimposed, the hydrophobic

portions occupying shared volumes, and additional close

correspondence between carbonyl oxygen atoms. However,

precise atomic correspondence of specific substituents such

as the benzyl groups does not occur due to differences in

the flexibility of the central linker and overall ligand size.

Whereas manual alignment procedures seek to enhance

such correspondence, a physical solution to the mutual in-

pocket superimposition of the two ligands identifies room

for variation. The native ligand of 1MAA (Fig. 3c) follows

a similar binding pattern across the middle of the gorge, but

it differs in composition and also in how it occupies the

ends of the pocket. It has quaternary ammonium ends that

contact the indoles of Trp286 and Trp86 connected by an

intervening 10-carbon methylene chain [37]. Figure 3d

shows the ACHE pocketmol probes and surface sur-

rounding the optimal learned poses of the training ligands.

The congruence of the learned pocketmol to the protein

pocket (tan surface) is evident.

A B C D

Fig. 3 ACHE QMOD model: a 2D structures of the training

molecules used for the ACHE hypothesis; b structure-guided

alignment hypothesis (light green); c alignment shown with the

ACHE pocket of 1MAA (tan) and native ligand (cyan); d optimal

final poses of the training ligands (purple) in the QMOD pocketmol

(probes and surface in atom color), with the 1MAA pocket (tan)
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Both the initial alignment hypothesis and the final

optimal ligand poses exhibited the characteristics seen

when looking at native binding modes for different ligands

of the same pocket. Figure 4 shows the manual fixed-

alignments alongside optimal QMOD poses and four native

ligands of the ACHE pocket in their experimentally

determined poses. The manual alignment procedure

employed three pharmacophore features: the benzyl group,

the charged nitrogen, and the carbonyl (black arrows),

achieving very tight correspondences. This atomic con-

gruence is not reflected in the relative positions of the

crystallographic ligands. All four contained quaternary

ammonium nitrogens, but none of them bound exactly the

same way despite being flexible and not sterically con-

strained. The QMOD alignments were consistent with the

variation observed experimentally among ligand variants in

a common pocket.

For ACHE, the initial ChEMBL similarity screen (see

‘‘Methods, data, and computational protocols’’) yielded a

set of 342 ChEMBL molecules. Of these 162 met the cri-

terion for being ‘‘in-model’’ (the novelty measure, pNov,

was less than 0.85). For this set, s was 0.36 (ties were set at

0.5 pKi units due to assay variability, p 	 0:001), with

mean absolute error of prediction of 1.2 log units. These

performance statistics were lower than for the Sutherland

test set, but the structural diversity was much higher (an

average 2D log-odds similarity to the training set of 66.4

compared with the benchmark test set’s value of 94.0).

These included examples with significant structural diver-

sity, especially with respect to the bottom portion of the

ACHE ligands from the training set.

Figure 5 shows ChEMBL1651131, reported 
 20 years

after the most similar training molecule. The compound

was typical of the structural diversity of the in-model

ChEMBL compounds. Of the 28 in-model molecules pre-

dicted to have activity � 7.5 (called ‘‘winners’’ hereafter),

the mean experimental activity was 7.6. When considering

all 342 molecules (not just the in-model ones), prediction

quality metrics dropped slightly (s of 0.34 and mean error

of 1.4), but greater structural diversity was explored.

Within this set, 43 molecules were predicted to be winners,

and their mean experimental activity was 7.2. When con-

sidering this larger set of molecules, QMOD identified

much more structurally diverse ligands (see Fig. 5b).

ChEMBL610243 exhibited great structural deviation from

the training ligands, as reflected in the negative 2D log-

odds value.

The degree to which predictions of high activity are

believed enough to warrant follow-up, either by synthetic

chemistry effort or compound acquisition, is influenced by

the evidence supporting the prediction. The QMOD method

is not a black-box predictor of activity, but rather constructs

a physical model. Because it provides not just a numerical

prediction but also an associated set of predicted poses,

judgment can be brought to bear on particular compounds,

and design ideas can be stimulated. In Fig. 5a, the predicted

pose of the ChEMBL ligand follows that of the top half of its

near-neighbor training ligand, including correspondence of

a common carbonyl/pocket interaction. The space explored

by the other training ligands (see Fig. 3) provides a basis to

believe that space exists for the large, rigid substituent.

Quantification of the nominal novelty of the compound in

A B C

Fig. 4 QMOD ACHE training ligand poses and screening utility:

a Pharmacophoric manual alignment superimposing the benzyl,

charged nitrogen, and carbonyl groups; b QMOD optimal alignment

of training molecules; c ACHE 1MAA pocket (tan), native ligand

DME (cyan), and the native ligands of 3 aligned ACHE pockets not

used in study (2HA0-CHH in white, 2HA4-ACH in light green, and

2HA5-ETM in yellow)
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the context of the full training set increases confidence in the

prediction. In Fig. 5b, the predicted ligand has a much

higher degree of structural deviation from the set of training

ligands, but the quaternary amine corresponds with experi-

mentally observed positions of similar fragments. Further,

other interactions (the nitro-group and the carbonyl) reca-

pitulate interactions observed in known ligands. The com-

pound on the left would plausibly make a case for synthesis,

and the compound on the right would make a case for

experimental testing.

The analysis of ChEMBL results, thus far, has only

considered a set of molecules with measurable ACHE

activity. A critical question for large-scale application of

activity prediction models to guide synthetic chemistry

exploration is that of false positive rates. We identified a

randomly selected set of 15,515 ZINC drug-like molecules

to be used as decoys for assessing false positive rates under

the assumption that it is unlikely that such a set would

contain a significant proportion of true ACHE ligands with

activity � 7.5. Using exactly the same procedures as for the

ChEMBL scoring, the fraction of decoys that were both in-

model and were scored as nominal winners was 0.013 %.

From the full set of ACHE ChEMBL compounds (including

those that did not pass the similarity screen), QMOD iden-

tified 3.7 % of the true winners, yielding an enrichment rate

of nearly 300-fold, which is much better than typically seen

for virtual screening using docking approaches. For the

subset of compounds that passed the similarity screen,

QMOD identified 20.9 % of the true positives.

Identification of less than half of the true positives is not

ideal, but from the perspective of real-world use in lead

optimization or scaffold replacement, performance at this

level would appear to be of practical benefit. The prior

marginal value of an untested and unsynthesized com-

pound must be considered to be relatively low, so problems

involving false negatives are not as important as problems

involving false positives. If a large proportion of relatively

inactive ligands were overpredicted, or if even a nominally

small fraction of totally inactive compounds were predicted

as winners, then whatever small number of true positives

that exist among a predicted set of winners would be

overwhelmed, resulting in a low fraction of successes.

Large-scale application of the ACHE QMOD model

considered a total of 2454 ChEMBL molecules with at

least some ACHE activity and 15,515 ZINC decoys likely

to have no activity (or very poor activity). Of this total set

of nearly 18,000 molecules, among the in-model predicted

winners, over half had activity � 7.5, whereas less than

3 % of the overall compound set comprised true winners.

GABAA receptor (BZR)

The BZR dataset contained molecules with the classic

benzodiazepine scaffold as well as molecules with the

seven-membered ring nucleus fused with various hetero-

cyclic rings. For our BZR model, with no experimentally

determined protein structures, the standard de novo QMOD

procedure was used to generate an initial alignment

hypothesis, which is based on 3D molecular similarity. As

seen in Fig. 6a, three BZR training ligands (meclon-

azepam, ro07-3953, and ro16-4019) representing both the

classic and fused ring scaffolds were used to build the

hypothesis (light green). Importantly, the relative poses of

the scaffolds was very different from that observed by

A B

Fig. 5 QMOD predictions on structurally novel ACHE ligands from ChEMBL
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enforcing a strict atomic congruence of common ring

systems, as had been done for the fixed-alignment methods

(not shown). The correspondence between the ligands that

arose was somewhat surprising. In general, for cases where

issues of alignment are not easily resolved, multiple

alignment hypotheses may be employed, with the model

selection being driven by considerations including model

parsimony, convergence, and testing on new ligands.

Another consideration, which we have not quantitatively

explored, is ‘‘frustration’’ with an alignment hypothesis

during model-building, where final optimal poses change

significantly from initial ones. In this case, poses shifted

very little. Figure 6b shows the optimal final poses for all

98 BZR training ligands, and the probes and surface of the

BZR pocketmol are shown in Fig. 6c. Recently, the X-ray

structure of a glutamate-gated chloride channel was used to

construct a homology model of this binding site, which was

used to dock diazepam [38]. The QMOD BZR pocketmol

was superimposed on the homology model pocket, and

Fig. 6c shows the final poses of the hypothesis training

molecules (purple) as well as the surface of the homology

model of the BZR with docked diazepam. Although no

protein structure was used in our BZR procedure, there is a

striking similarity between the pose of the docked diaze-

pam in the BZR homology model to the poses of the

ligands with classic scaffolds in our final training poses.

As with ACHE, we followed a similar procedure to

screen a set of ChEMBL BZR ligands with known activity

and the set of ZINC decoys, the statistics of which will be

discussed later. Figure 7 shows two examples of accurate

extrapolative predictions using the BZR model. At left is

an in-model ligand whose 2D structural similarity to the

training ligands was still much lower than seen within the

Sutherland test set (a 2D log-odds of 12.7 compared with

an average of 40 for the benchmark test molecules). The

predicted pose matched the binding mode of flumazenil, a

closely related compound, from a recent homology-based

study of BZR that employed docking [39]. The carbonyl of

the training compound along with the unsubstituted nitro-

gen of the ChEMBL compound (marked with green

arrows) correspond in the QMOD alignment, and both

interacted with the hydroxyl of Thr142 in the homology-

based prediction. In the QMOD predicted alignment, the

phenyl rings (shaded in green) corresponded exactly with

one another. The manual alignment rule used in the pre-

vious work would not make these correspondences, instead

aligning the key carbonyl of the training compound with a

carbon within the imidazole of the ChEMBL compound,

and producing a geometry where the two phenyl groups

cannot be superimposed.

In Fig. 7b, a structurally novel extrapolation is shown,

with indications of corresponding parts among the pre-

dicted poses of all of the ligands. For this ChEMBL

compound, the manual alignment rule from the previous

work is simply not applicable. However, the QMOD pro-

cedure identifies a pose of ChEMBL10534 that has a

rational relationship to the other scaffolds within the

model. This b-carboline compound resulted from an

attempt to discover full BZR agonists that were structurally

unrelated to the classic benzodiazepine scaffold. [40]. Its

negative 2D log-odds score indicates no topological simi-

larity to the training compound set.

A B C

Fig. 6 BZR QMOD model: a 2D structures of the training hypothesis

molecules and the alignment generated by 3D-similarity (light green);

b optimal final poses of the training ligands; c pocketmol probes and

surface (atom color) with the hypothesis molecules (purple), and the

surface of the homology model of the GABAAR (tan) with docked

diazepam (cyan)
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The BZR target was, along with COX2, the most chal-

lenging for all methods with respect to performance on the

test set in the Sutherland benchmark. Here, on the struc-

turally diverse set of ChEMBL compounds, many of which

represent future predictions, statistical performance was

excellent. For the 129 in-model ligands, s was 0.55

(p 	 0:001, ties considered at 0.5 log units), with a mean

error of 1.0 log units. For the larger and much more diverse

set of 843 compounds that included out-of-model structures,

s was significantly worse (0.17) but was still highly statis-

tically significant (p 	 0:001), with a mean error of 1.4 log

units. Consideration of less stringent thresholds on molec-

ular novelty produced performance between these values. Of

the in-model ligands predicted to be winners, the mean

activity was 7.8, and for the set including out-of-model

compounds, mean activity of predicted winners was 7.2

Cyclooxygenase-2 (COX2)

The COX2 dataset was comprised of compounds in several

structural families grouped according to the central scaf-

fold (e.g. pyrrole, imidazole, cyclopentene, pyrazole, and

isoxazole). Nearly all inhibitors had phenyl-sulfonamide

substituents (with a few containing phenyl-methyl-sulfone

substituents), all were quite rigid, and large variations in

activity hinged upon differences in the presence or absence

of halogens on the non-sulfonamide substituents of the

central ring system. Alignment for COX2 was carried out

using the standard structure-guided protocol described

above for ACHE. Figure 8 shows the two hypothesis

molecule alignments in the derived final pocketmol along

with the bound pose of celecoxib for reference. The

alignments among the different inhibitors varied relatively

little, with the differences between the training ligands and

celecoxib in Fig. 8 exhibiting among the larger deviations.

Despite some central scaffold diversity within the COX2

dataset, there was very high 2D similarity of the COX2 test

set to the training set (an average 2D log-odds of 135).

Examination of the ChEMBL results revealed COX2

ligands with more structural variation, and these are shown

in Fig. 9. Figure 9A shows an in-model prediction with a

central phenyl ring, which, while being reasonably well

predicted, was not terribly novel. Figure 9b shows an out-

of-model prediction (pNov = 0.99) with a novel benzimi-

dazole scaffold reported over a decade later than the

nearest training ligand had been reported. If one considers

predicted ChEMBL molecules with activity � 7:0, one

begins to reveal much more novel scaffolds, as depicted in

Fig. 9c. ChEMBL318881 had a significantly different

structure from the training ligands, with a 2D log-odds of

just 3.0. The corresponding 3D overlay with the most

similar training ligand (which was a phenyl methyl sul-

fone) shows ChEMBL318881 with the 4-fluorophenyl ester

group both non-planar and in the E conformation. Although

this may not be the lowest energy state, this conformation

of a 4-fluorophenyl alkyl ester is not unreasonable [41].

The ChEMBL assay data for COX2 had more variation

than for the prior two targets, with average deviations

between maximum and minimum reported activity values

among those compounds with multiple values being close

to 1.0 log units. For the 627 in-model compounds s was

0.21 (p\0:01, ties at 1.0 log units). There were 33 com-

pounds whose predicted activity values were less than 5.0,

which included some significant outliers. Considering only

those ChEMBL compounds whose predicted activity was

at least 5.0, s was 0.30 (p 	 0:001, ties at 1.0 log units).

A B

Fig. 7 QMOD predictions on structurally novel BZR ligands from ChEMBL
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It is possible to make use of multiple filters on new

compounds, which create subsets on which predictions

become more accurate. For example, considering the set

with relatively low novelty (pNov \ 0.85) and relatively

high confidence (pConf � 0.35) produces 271 predictions,

with a s of 0.63 (p 	 0:001, ties at 1.0 log units). Recall

that the novelty measure considers whether a new ligand

arranges itself so as to probe the binding pocket space in a

manner that is well covered by the union of training

molecules. The confidence measure addresses whether a

particular training ligand is similar to the new ligand, as

measured in their respective predicted poses.

Thrombin

The Sutherland benchmark’s thrombin dataset contains

ligands structurally similar to the potent inhibitor

3-TAPAP, which contains a central 3-amidino-phenyl-

alanine scaffold with phenyl-sulfonyl and piperidine sub-

stituents [42]. Recall that Fig. 1 shows the initial alignment

hypothesis (guided by structural information), the con-

straining effect of the methyl-benzamidine fragment, and

the optimal final poses of the 59 training ligands. There

were moieties which were relatively fixed in the pocket

(e.g. the benzamidine) versus those with more flexibility

(e.g. the substituted piperazine groups). The pocketmol

probes formed three distinct regions corresponding to the

thrombin pocket: acceptor probes mimicking the S1 pocket

surrounding the benzamidine, and steric and donor probes

representing both the S2 pocket around the substituted

piperazines and the S4 pocket around the arylsulfonyl

groups.

Screening ChEMBL compounds using the thrombin

QMOD model provided an interesting difference from the

other ChEMBL screens. Because the benchmark training

set had little structural diversity (just a single central

scaffold), all of the 804 ChEMBL thrombin ligands scored

using the QMOD model were nominally out-of-model

(pNov � 0.85), and a number of molecules had substan-

tial exclusion protrusions as well. For these reasons, the

definition of in-model utilized raw values for similarity and

exclusion penetration (similarity [ 0.70 and exclusion

penalty [ � 0:4), which identified 219 molecules. Fig-

ure 10 shows four ChEMBL inhibitors predicted by

QMOD to be winners. For each of the four examples, the

predicted pKi was within 0.5 log units. The 2D similarity to

the training sets of the ChEMBL molecules (2D log-odds

range of 3.0–16.9) was significantly lower than that seen in

the Sutherland benchmark’s thrombin test set (mean 2D

log-odds = 95).

The ligand shown in Fig. 10a was perhaps the most

interesting (the two in Fig. 10b, c were variations). It was

predicted to have higher activity than any training ligand

(whose maximum pKi was 8.5), and its experimental

activity exceeded that of all training ligands. Instead of

benzamidine in the S1 specificity pocket, a 1-amidinopi-

peradine is present. The linker to the S4 pocket was

completely different than that seen in the training series.

Also, the rank order among the three amidinopiperadines

was predicted correctly, with the cyclooctane filling the S4

pocket more effectively than the cyclohexane or

cyclopentane. Changes in the amine substituents created

minor variations in the predicted bound poses, but all made

similar interactions to the predicted binding pocket.

The ligand shown in Fig. 10d was one of just a few

among all of the ChEMBL ligands for the four targets that

was reported before the ligands used in the respective

training sets. The inhibitor is inogatran, whose bound

structure (PDB code 1K21) was among the five structures

chosen for alignment hypothesis guidance, so its alignment

with respect to the derived pocketmol was known. Recall

that the structural guidance aspect of the model induction

procedure only affected the initial alignment hypothesis,

not the composition of the pocketmol or the final refined

poses of the training ligands. The QMOD predicted pose

Fig. 8 COX2 QMOD model: 2D structures of training molecules for

COX2 hypothesis (top) and COX2 pocketmol (probes and surface in

atom color) with the hypothesis molecules (purple) and the native

ligand celecoxib (cyan) from structure 3LN1
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deviated by 2.4 Å RMS from the bound configuration of

inogatran.

For a molecule with more than ten rotatable bonds, with

such significant structural novelty, prediction of the activity

and the binding mode at this level of accuracy should be

able to support real-world application. Often, a single

scaffold has been elaborated for structure-activity rela-

tionships, including some potent examples, but the scaffold

may have liabilities that are not target-specific. In such

cases, effective SAR transfer can support scaffold

replacement. Here, given a training set with extremely

limited structural variation, rank correlations on the in-

model compounds was still highly statistically significant

(s ¼ 0.26, p 	 0:001), with predicted winners having an

average experimental activity of 7.6. Predicted binding

modes also qualitatively agreed with the well-understood

behavior of thrombin inhibitors having cationic S1 recog-

nition elements. In the thrombin case, rank correlation of

all molecules, including out-of-model ones, was not sta-

tistically significant, owing to the narrowness of the

training set compared with the diverse ChEMBL

compounds.

ChEMBL screening statistical analysis

Results for ACHE, BZR, COX2, and thrombin show how

QMOD pocketmols can be used to predict the activities and

poses of new, structurally diverse, molecules. This is pos-

sible because the QMOD model itself defines the optimal

pose of a new ligand as the pose that best fits the model,

and because the conformation and alignment optimization

procedure is fully automated. However, because models

are trained on limited structure-activity data, the utility of

model application in a screening capacity is enhanced by

making use of quantitative filtering in order to constrain the

space of molecules on which predictions are likely to be

accurate.

The procedure employed here first made use of pure 3D

similarity-based virtual screening, utilizing the initial

QMOD alignment hypotheses to identify molecules with a

baseline level of similarity to the known ligands. Next, the

models were run, with the top-ranked pose families being

considered as potentially valid predictions. In-model pre-

dictions were those whose QMOD pNov parameter was

less than 0.85 (for ACHE, BZR, and COX2), or in the case

of thrombin where raw similarity and the exclusion penalty

values exceeded particular thresholds (0.7 and -0.4,

respectively). Further, a set of decoy molecules from ZINC

were utilized in identical procedures to estimate false

positive rates.

The foregoing has described rank correlation results as

well as highlighting particular chemical structures. Table 4

summarizes results with respect to the numbers of com-

pounds within each screening and filtering stage, as well as

A B C

Fig. 9 COX2 new ChEMBL molecules: molecule pairs comprised of a training molecule (purple) with maximum similarity to a new ChEMBL

test molecule (blue) correctly predicted by QMOD to be an active COX2 ligand
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the estimates of true and false positive rates. The first group

of three columns indicate, respectively, the total number of

filtered ChEMBL compounds (see ‘‘Methods, data, and

computational protocols’’), the number in the similarity-

based subset of ChEMBL molecules, and the number of in-

model molecules. The next set of three columns indicates

the number of positives (those compounds with experi-

mental pIC50 or pKi � 7:5) within each of the three sets of

molecules. The next trio of columns characterizes the

nominal winners (in-model molecules with predicted

activity � 7.5) according to their total number, average

experimental activity, and the total number of true posi-

tives among the winners.

The final three of columns in Table 4 characterizes the

true positive rate, the estimated false positive rate, and the

enrichment ratio. TP percentage is simply the percentage of

total positives in the ChEMBL data set predicted to be

winners by QMOD (the parenthetical number considers the

true positives within the similarity-screened subset). The

false positive rate was the percentage of decoys predicted

Table 4 ChEMBL datasets and screening utility of the ACHE, BZR, COX2, and thrombin QMOD models

N molecules N Positives Winners TP% FP% Enrichment

ChEMBL Sim In-model ChEMBL Sim In-model N Avg pKi N Pos ChEMBL (Sim) ZINC TP/FP

ACHE 2454 342 162 493 86 57 28 7.6 18 3.7 (20.9) 0.0129 283

BZR 1158 843 129 309 234 30 34 7.8 24 7.8 (10.3) 0.9026 9

COX2 2322 1283 627 351 282 191 156 6.9 57 16.2 (20.2) 0.0064 2520

THR 3097 804 219 1069 251 81 31 7.6 19 1.8 (7.6) \0.0064 [276

A B

C D

Fig. 10 Thrombin new ChEMBL molecules: molecule pairs comprised of a training molecule (purple) with maximum similarity to a new

ChEMBL test molecule (blue), each correctly predicted to be an active thrombin ligand
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to be winners. Estimated enrichment is the TP% divided by

the FP%.

In all cases, the average experimental pKi for molecules

predicted by QMOD to be winners was high, corresponding

to 10–100 nM IC50 or Ki. For three targets (ACHE, COX2,

and thrombin), enrichment rates were very high, suggesting

sufficiently specific predictions to be useful in prioritizing

large sets of molecular candidates. A surprising outlier

within these results was the estimated false positive rate for

the BZR QMOD model, which was 100 times greater than

the average for the other three targets. Due to this much

higher rate, the computed enrichment was modest, but the

true positive recovery rate was consistent with the other

three targets. True positive rates for the full ChEMBL sets

ranged from 2 to 16 %. The corresponding rates from

among the subset that passed the similarity screen ranged

from 8 to 21 %.

The utility of a method for identification of potent new

scaffolds depends on the extent to which nominal predicted

winners have a large fraction of active molecules. Fig-

ure 11 shows the experimental activity distributions for the

large ChEMBL dataset (red curve), the similarity-screened

subset (green curve), and the set predicted to be winners by

QMOD (blue curve). Not surprisingly, the similarity-based

subset was not enriched for highly active molecules for any

of the four targets. As with docking-based virtual screen-

ing, 3D similarity screening can be effective in identifying

novel ligands that share specific binding with target

ligands, but such methods are not directly useful for

activity prediction. In contrast, the molecules predicted by

Fig. 11 Distributions of experimental activity values for sets of ChEMBL compounds for four targets
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QMOD to be winners were significantly enriched in active

molecules and depleted in inactive ones (p 	 0:01 by

Kolmogorov–Smirnov).

ACE and thermolysin

Angiotensin-converting enzyme and thermolysin are zinc

metalloproteases with similar binding pockets, and

accordingly these enzymes share a subset of inhibitors,

albeit with different activities. Two ACE inhibitor drugs,

enalapril and lisinopril, resulted from rational drug design

projects based on thermolysin inhibitors [43–46]. Relevant

to the datasets used in this work, SAR and crystallographic

studies of ACE and thermolysin inhibitors revealed a

minimum set of ligand moieties desirable for inhibition: (1)

a zinc-chelating group such as a phosphonate, carboxylate,

thiolate, or hydroxamate, (2) a carbonyl oxygen that

hydrogen bonds to an active site residue, and (3) for ACE,

a carboxyl group for ionic bonding to a positively charged

residue of the enzyme [23]. In our preparation of these

datasets, the zinc-coordinating groups were deprotonated to

the charged forms known to be the enzyme-bound states.

All aspects of QMOD model induction and testing were

similar for the two targets (see Tables 2, 3) (including rank

correlation, average errors, and statistical significance for

both training and testing on the Sutherland benchmark).

Results for these two targets was numerically worse in

terms of absolute errors than for the other targets, which is

perhaps not surprising given that typical numbers of

rotatable bonds for these largely peptide-like inhibitors

often exceeded 15. Such extreme flexibility increases the

burden on model induction and convergence as well as on

the optimization of poses for new ligands. Rank-correlation

results were consistent with the other targets. In the interest

of space, this discussion will focus on ACE alone, as all

observations hold equally for thermolysin.

Figure 12a shows the structures of the ACE hypothesis

ligands and 3D structures for the ACE hypothesis and final

optimal training poses. The final training poses showed

some movement in the zinc-chelating groups, reflecting the

known structural observation that zinc-chelating moieties

have different preferred geometries [23]. Most of the zinc-

chelating groups were correctly co-localized in the final

optimal ligand poses (Fig. 12b, green arrow), but a few

were misoriented, including a phosphonate group (black

arrow).

The manual alignment procedure used previously for the

Sutherland benchmark ACE ligands, described in [23],

included constraints to superimpose the terminal carboxy-

late, the amide carbonyl, and the zinc ligand of each

molecule. These alignments often resulted in incompatible

chelation geometries, both within-class and between-class

in terms of zinc chelation group. Nevertheless, the reports

of 3D QSAR performance for the fixed alignment methods

[8, 9] (see Table 3) were slightly better than those for

QMOD. Interestingly, performance for 2D and 2.5D PLS-

based QSAR was also reported [8], and ACE was one of

only two targets where these methods performed well and

equivalently to the 3D approaches. The ACE dataset

appears to be one where it is possible to get right answer

for the ‘‘wrong’’ reason using simple regression methods,

but it represents a difficult case for a physically realistic

method, due to the size and flexibility of the ligands. In

addition, for both ACE and thermolysin, very broad

A B

Fig. 12 ACE QMOD model: a 2D structures and alignment hypothesis (purple), and b optimal final poses of the set ACE training ligands

(purple)
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activity ranges (roughly spanning 8–9 log units) present

greater difficulties for methods such as QMOD that are not

regression-based. Additional constraints on ligand align-

ments (e.g. providing preferred chelation fragment place-

ment) would likely improve both training convergence and

performance on the test set.

Dihydrofolate reductase (DHFR)

DHFR was the other target for which 2D and 2.5D methods

performed competitively with 3D methods in previous

work [8]. The DHFR dataset was composed of several

structural families, including variants of both folate and

methotrexate. Given that all methods performed well (in-

cluding non-3D ones), perhaps the most interesting aspect

of the QMOD results on this target was that the model

reflected a fully automated protocol for deriving initial and

final, physically realistic, poses for the ligands. The

Sutherland benchmark’s manual alignment of the 237

training ligands involved a labor-intensive procedure,

making use of three different crystallographic structural

templates along with numerous choices for how to position

each substituent of each, rather flexible, ligand.

Figure 13 depicts the alignment results for the QMOD

model, with the 2D ligands yielding a strongly congruent

initial alignment (light green). Some movement during

model induction occurred, as seen in Fig. 13b with the

structure of bound folate shown for reference (cyan). The

ring systems reflected the correct relative geometry based

on experimental determinations. Representative poses of

the optimal final poses of the training set is shown in

Fig. 13c. Agnostic and automated generation of poses that

have a physically meaningful relationship to reality is an

advantage of the QMOD model building procedure, even in

cases where there may be little or no numerical prediction

advantages on a particular data set. As we have previously

demonstrated [4, 7], as the structural diversity of new

ligands increases, the prediction quality for models that

match true bound ligand poses becomes much better than

for models with poor agreement with the true protein–li-

gand interactions.

Glycogen phosphorylase B

Glycogen phosphorylase catalyzes the release of glucose-1-

phosphate from glycogen, and at least four distinct binding

sites of this enzyme have been exploited as targets for type-

2 diabetes therapies [47]. One of the earliest attempts

employed glucose-analog catalytic site inhibitors [48], and

glucose-analog dataset employed here contains inhibitors

from that work [8, 25, 48, 49]. More recent studies have

focused on GPB inhibitors that bind the AMP allosteric site

with good potency (effective at nanomolar-level concen-

trations) [50].

Given that the majority of the GPB inhibitors in the

dataset used here had pKi\3:0 (millimolar or worse

effective concentrations), we did not consider this a rele-

vant dataset from the perspective of drug discovery.

Nonetheless, it was subject to the same procedures as with

the other targets, and results were very similar to those

reported for previous methods (see Tables 2, 3). Align-

ments for the ligands (both initial and optimized final

poses) were unsurprising.

A

B

C

Fig. 13 DHFR model: a 2D structures of training molecules,

b structure-guided DHFR alignment hypothesis (light green) and

final optimal poses for the two hypothesis molecules (purple) with

native ligand folate (cyan) from structure 1DRF, and c optimal final

poses representative training ligands (purple)
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Conclusions

We have reported results for the largest and most diverse

public data set on which the QMOD method has been

applied. The Sutherland benchmark is a challenging set for

QSAR methods by design, in that the test compounds were

identified in order to present extrapolative questions rather

than interpolative ones. However, given the limitations of

the most widely used 3D QSAR methods, the chemical

series of the test ligands, in all cases, shared underlying

scaffolds with at least some training molecules. Numerical

test prediction performance among methods relying upon

fixed alignments (CoMFA, CoMSIA, and CMF) and for

QMOD was not significantly different overall, with inter-

target variation dominating inter-method variation. The

QMOD approach exhibited some weakness on highly

flexible peptidic ligands (e.g. those of ACE and ther-

molysin), but showed strength in the particular case (BZR)

where the automated alignment procedure produced a very

different inter-scaffold correspondence than that assumed

by the other methods.

Four algorithmic enhancements contributed to the abil-

ity of QMOD to yield convergent models and to provide

interpretable results on diverse data derived from

ChEMBL: 1) the complex optimization procedure for

identifying initial pocket configurations has been engi-

neered to be deterministic and focused upon finding par-

simonious solutions; 2) the envelope of space explored by

training ligands is now explicitly characterized and pro-

vides a soft boundary into which new ligands are encour-

aged to fit; 3) predicted pose families are produced and are

ranked probabilistically, taking into account whether a pose

looks like an outlier with respect to what is known; and 4)

model building can be influenced using knowledge of

binding modes while still allowing for broad application of

the resulting models.

Application of the resulting models to large and diverse

ligand sets from ChEMBL for four targets demonstrated

four important features. First, fully automatic application

of the models to predict activity and bound poses for

structurally novel molecules was possible. Second, use of

probabilistically normalized quality criteria to define a

subset of molecular space was quantitatively useful in

identifying predictions most likely to be accurate. Third, in

all four cases, highly active molecules were identified with

novel scaffolds, and in three of these cases, estimated

enrichment rates were very high. Fourth, where such

scaffolds were identified, their predicted poses were either

clearly close to correct or presented plausible correspon-

dence to the training ligands.

The choice to make use of a 2D QSAR method, a fixed-

alignment 3D method, or a dynamic-alignment 3D QSAR

method such as QMOD depends on what is required from

the resulting models. QSAR methods that are 2D tend to be

extremely fast, can often provide interpolative predictions

that are quite accurate, and are not subject to any noise

from pose optimization (or many aspects of ligand prepa-

ration). When data are plentiful and interpolation is valu-

able, application of such methods makes sense. Even in

more complex cases, use of such methods can provide

baseline performance estimates, as had been done previ-

ously for the data sets described here, and as we have done

previously [6–8]. Methods requiring manual 3D alignment

can be useful to go beyond what is possible with 2D

methods to achieve a degree of extrapolation, as was shown

in the work by Sutherland et al. in the work that described

the data sets under study here [8]. However, there are

practical challenges in constructing complex alignments

and limitations in their breadth of application on new

molecules. Further, in cases like the GABAAR benzodi-

azepine site, intuitive and easy-to-apply alignment rules

may thwart the construction of models that generalize and

predict well.

The QMOD method offers a quantitative means to

address the ligand conformation and alignment selection

process that respects physical constraints such as ligand

energetics, can directly incorporate biophysical informa-

tion, and mirrors the protein–ligand binding process in

important ways. In cases where no information is known

about the structure of a shared binding site for a set of

ligands, an objective function based on 3D surface shape

and electrostatics is used to produce initial alignments,

which are then refined in the context of a physical model.

QMOD models constructed with or without the use of

structural knowledge using several dozen ligands from

limited chemical series known at a particular time point

can be used effectively to screen large parts of future

chemical space to identify potent ligands with novel

scaffolds.

Improvement to the QMOD method will be ongoing,

with particular attention to speed of model induction and

application, model selection questions when multiple

convergent models exist, more careful treatment molecular

charge distribution, and robustness in cases with very

flexible ligands. In addition, systematic exploration of

strategies and parameters for determination of the initial

probe configuration will likely lead to improvements in

performance. However, the results presented here suggest

that the method is ready for broad, real-world application.
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