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Introduction

Historically, over the last decades, growth disorders 
were managed on the basis of a growth hormone 
(GH)-oriented classification system. However, nowadays
we are well aware that: a) GH is not the major mediator of
skeletal growth; b) scepticism as well as criticisms are 
adequate and accepted while analyzing the variable results
of the various GH stimulation tests; c) many genetic defects
have been described and, therefore, have presented 
important insights into the molecular basis of also non-GH
deficient growth failure. 

Therefore, when a child is not following the normal, 
predicted growth curve, an evaluation for underlying illness
and central nervous system abnormalities is required. 
Where appropriate, genetic defects causing GH deficiency
(GHD) should be considered. Because Insulin-like Growth
Factor-I (IGF-I) plays a pivotal role in growth, where it 
mediates most, if not all, of the effects of GH, in fact GHD
could also be considered somehow as secondary IGF-I 
deficiency (IGFD). Although IGFD can develop at any level of
the GH-releasing hormone (GHRH)-GH-IGF axis, we would
like to differentiate, however, between GHD (absent to low
GH in circulation) and IGFD (normal to high GH in circulation).
The main focus of this review is on the GH gene cluster, the
GHRH- as well as the GHRH-receptor- gene.

Classification of Isolated 
Growth Hormone Deficiency

Structure and Function of GH and CS Genes 
The GH gene cluster consists of five structurally 

similar genes in the order 5' [GH-1, CSHP (chorionic 
somatomammotropin pseudogene), CSH-1 (chorionic 
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somatomammotropin gene), GH-2, CSH-2] 3' encompassing
a distance of about 65,000 bp (65 kb) on the long arm of
chromosome 17 at bands q22-24(1). The GH-1 gene 
encodes the mature human GH, a 191-amino acid (aa) 
peptide, and consists of five exons and four introns (1-3).
Approximately 75% of circulating GH is expressed in the
anterior pituitary gland as a major 22-kDa product, whereas
alternative splicing can give rise to minor forms (2-4). The
most prominent minor form (5-10%) is a bioactive 20-kDa
GH peptide isoform that results from the use of a cryptic 3’
splice site in E3, deleting aa 32-46 (4-7). The GH-2 gene 
encodes a protein (GH-V) that is expressed in the placenta
rather than in the pituitary gland and differs from the 
primary sequence of GH-N (product of GH-1 gene) by 13 aa.
This hormone replaces pituitary GH in the maternal 
circulation during the second half of pregnancy. The CSH-1,
CSH-2 genes encode proteins of identical sequences, 
whereas the CSHP encodes a protein that differs by 13 aa
and contains a mutation (donor splice site of its second 
intron) that should alter its pattern of mRNA splicing and, 
therefore, the primary sequence of the resulting protein.
The extensive homology (92-98%) between the immediate
flanking, intervening, and coding sequences of these 5 
genes suggests that this multigene family arose through a
series of duplicational events. With the exception of CSHP,
each gene encodes a 217 aa pre-hormone that is cleaved to
yield a mature hormone with 191-aa and a molecular weight
of 22kDa. The expression of GH-1 gene is further controlled
by cis- and trans-acting elements and -factors, respectively (2-8).

Familial Isolated GHD
Short stature associated with GHD has been estimated

to occur in about 1/4,000 - 1/10,000 in various studies (9-11).
While most cases are sporadic and are believed to result
from environmental cerebral insults or developmental 
anomalies, 3-30% of cases have an affected first-degree 
relative suggesting a genetic aetiology. Since magnetic 
resonance examinations detect only about 12-20% 
anomalies of either hypothalamus or pituitary gland in 
isolated GHD (IGHD), it can be assumed that many genetic
defects may not be diagnosed and a significantly higher 
proportion of sporadic cases may have indeed a genetic
cause (12). Familial IGHD, however, is associated with at 
least four Mendelian disorders (2-8), including two forms
that have autosomal recessive inheritance (IGHD type IA,
IB) as well as autosomal dominant (IGHD type II) and 
X-linked (IGHD III) forms. Table 1 depicts the mutational
spectrum of GHD, which is discussed in greater detail later
in the review.

IGHD Type IA
In 1970, IGHD type IA was first described by Ruth Illig

in three Swiss children with unusually severe growth 
impairment and apparent deficiency of GH (13). Affected 

individuals occasionally have short length at birth and
hypoglycaemia in infancy, but uniformly develop severe
growth retardation by the age of six months. Their initial 
good response to exogenous GH is hampered by the 
development of anti-GH-antibodies leading to dramatic 
slowing of growth (2,14).

GH-1 Gene Deletions
In 1981, Phillips et al (14) examined the genomic DNA

from these Swiss children and discovered, using Southern
blotting technique that the GH-1 gene was missing. 
Subsequently, additional cases of GH-1 gene deletions 
have been described responding well to the GH treatment.
The development of anti-GH antibodies is an inconsistent
finding in IGHD IA patients despite the presence of 
identical molecular defects (homozygosity for GH-1 gene
deletions) (15). The frequency of GH-1 gene deletions as a
cause of GHD varies among different populations and 
according to the chosen criteria and definition of short 
stature (1). The sizes of the deletions are heterogeneous
with the most frequent (70-80%) being 6.7kb (2,8). The 
remaining deletions described include 7.6, 7.0, 45 kb, as
well as double deletions within the GH gene cluster (2,8).
At the molecular level, these deletions involve unequal 
recombination and crossing over within the GH-gene 
cluster at meiosis (2).

GH-1 Gene Frameshift- and Nonsense Mutations
Single-base pair deletions and nonsense mutations of

the signal peptide may result in an absent production of 
mature GH and in the production of anti-GH-antibodies on
exogenous replacement therapy (8,16-19).

IGHD Type IB
Patients with IGHD type IB are characterized by low but

detectable levels of GH (<7 mU/l; <2.5 ng/ml), short 
stature (<-2 SDS for age and sex), growth deceleration and
height velocity less than 25th percentile for age and sex, 
significantly delayed bone age, an autosomal recessive 
inheritance (two parents of normal height; two sibs 
affected), no demonstrable direct and/or endocrine cause
for IGHD, and a positive response and immunological 
tolerance to treatment with exogenous GH. This subgroup
of IGHD has been broadened and reclassified on the basis
of the nature of their GH gene defects and includes splice
site mutations of the GH gene, even an apparent lack of GH
has been found by RIA. The phenotype of IGHD type IB,
therefore, is more variable than IA. In one family, the 
children may resemble IGHD type IA, whereas in other 
families, growth during infancy is relatively normal and
growth failure is not noted until mid-childhood. Similarly,
GH may be nearly lacking or simply low following stimulation
test. This heterogeneous phenotype suggests that there is
more than one candidate gene causing the disorder, as
summarized recently. 
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Candidate Genes in IGHD Type IB
Some of the components of the GH pathway are 

unique to GH (18,20), whereas many others are shared. In
patients with IGHD, mutational changes in genes specific to
the GHRH-GH axis are of importance and there is a need to
focus on them. 

GHRH-Gene
Many laboratories put a lot of energy to define any

GHRH gene alterations. To date, no GHRH gene mutations
or deletions causing IGHD have been reported (8,21,22).

This is, however, somewhat a surprising observation, and
the GHRH gene must still be considered a candidate gene
for familial forms of IGHD. 

GHRH-Receptor (GHRHR) Gene
In 1992, Kelly Mayo cloned and sequenced the rat and

human GHRH-receptor (GHRHR) gene that provided the 
opportunity to examine the role of GHRHR in growth 
abnormalities that involve the GH-axis (23). Sequencing of
the GHRHR gene in the little-mouse (lit/lit) showed a single
nucleotide substitution in codon 60 that changed aspartic
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Table 1. Mutational spectrum of GH-deficiency

Microdeletions

Deficiency type Deletion Codon GH-antibodies on treatment References

IA TGcCTG -10 yes 16
IA GGCcTGC -12 yes Mullis unpublished
II CGGggatggggagacctgtaGT 5’IVS-3 del+28 to +45 no 68
IA GagTCTAT 55 no 17
Single base-pair substitutions in the GH-1 gene coding region

Deficiency type Mutation Codon nucleotide AB on treatment References

IA TGG -> TAG - 7 yes 18
Trp -> stop

IA GAG -> TAG - 4 no 19
Glu -> stop

II R183H G6664A no 77
II V110F G6191T no 65
II P89L C6129T no 78
II / bio-inactivity CGC –TGC 77 no 101-105

Arg -> Cys
Single base-pair substitutions affecting mRNA splicing

Deficiency type 5’IVS-3 Δ exon 3 Origin References

II GTGAGT -> GTGAAT yes Chile 51
II GTGAGT -> GTGACT yes Turkey Mullis unpublished
II GTGAGT -> GTGAGC yes Turkey, Asia 62
II GT -> AT yes Europe, America, Africa 63
II GT -> CT yes Turkey 64
II GT -> TT yes India Mullis unpublished
II GT -> GC yes Germany, Holland 65

Exon splice enhancer yes
II ESE1m1:+1G-> T yes Japan 69
II ESE1m2:+2A-> C yes Switzerland Mullis unpublished
II ESE1m3:+5A-> G yes 70

Intron splice enhancer yes
II ISEm1:IVS-3 +28 G -> A yes 68
II ISEm3:IVS-3 del28-45 yes 68

Length of the intron yes
II IVS3 del56-77 yes Italy 76

5’IVS-4 

IB GT -> CT no Saudi Arabia 18
IB GT -> TT no Saudi Arabia 20

GH: growth hormone
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acid to glycine (D60G) eliminating the binding of GHRH to
its own receptor (24). As the phenotype of IGHD type IB in
humans has much in common with the phenotype of 
homozygous lit/lit mice including autosomal recessive 
inheritance, time of onset of growth retardation, diminished
secretion of GH and IGF-I, proportional reduction in weight
and skeletal size, and delay in sexual maturation, the
GHRHR gene was searched for alteration in these patients
suffering from IGHD type IB (25,26). Wajnrajch et al (26)
reported a nonsense mutation similar to the little mouse in
an Indian Muslim kindred. Furthermore, in two villages in
the Sindh area of Pakistan, Baumann (27) reported another
form of severe short stature caused by a point mutation in
the GHRHR gene resulting in a truncation of the extracellular
domain of this receptor. Individuals who are homozygous
for this mutation are very short (-7.4 SDS) but normally 
proportioned. They appear to be of normal intelligence, and
at least some are fertile. Biochemical testing revealed that
they have normal levels of GHRH and GH binding protein
(GHBP), but undetectable levels of GH and extremely low
levels of IGF-I. Later, families from Sri Lanka, Brazil, United
States, Spain as well as Pakistan were reported (28-31).
Mutations in the GHRHR gene have been described as the
basis for a syndrome characterized by autosomal recessive
IGHD and anterior pituitary hypoplasia, defined as pituitary
height more than 2 SD below age-adjusted normal, which is
likely due to depletion of the somatotrop cells (OMIM:
139190). In a most recent report, however, certain variability
in anterior pituitary size even in siblings with the same 
mutation was described (32). This finding is of importance,
as it was thought that patients with a GHRHR gene defect
invariably have an anterior pituitary gland hypoplasia and
that GHRHR gene mutations can be excluded in the 
absence of this pathological feature, because GHRHR may
be critical for pituitary gland development and function of
the somatotropes (33,34). Further, Hilal et al (35) discussed
most interestingly the possible role of GHRHR in the proper
development of extrapituitary structures, through a 
mechanism that could be direct or secondary to severe GHD. 

Overall, mutations in the human GHRHR gene can 
impair ligand binding and signal transduction, and have 
been estimated to cause about 10% of autosomal 
recessive familial IGHD (36). Mutations reported to date 
include six splice donor site mutations, two microdeletions,
two nonsense mutations, seven missense mutations, and
one mutation in the promoter (35,36). These mutations 
have an autosomal recessive mode of inheritance, and 
heterozygous individuals do not show signs of IGHD, 
although the presence of an intermediate phenotype has
been hypothesized. Conversely, patients with biallelic 
mutations have low serum IGF-1 and GH levels (with 
absent or reduced GH response to exogenous stimuli), 
resulting - if not treated- in proportionate dwarfism (36,37). 

Muscarinic Acetylcholine Receptor (mAchR) 
Acetylcholine, as a neurotransmitter, exerts many of its

actions via interaction with one or more of the five mammalian
muscarinic acetylcholine receptor (mAchR) subtypes, 
M1-M5. The importance of cholinergic pathways in the 
regulation of GH secretion in humans is well established. 
Central cholinergic stimulation gives rise to an increase in GH
release, whereas cholinergic blockade is followed by a 
blunting in GH secretion (38). Acetylcholinesterase inhibitors,
which indirectly activate cholinergic neurotransmission, are
believed to act by reducing the release of somatostatin
(SRIF), thus increasing spontaneous GH secretion, and 
potentiating GH responses to GHRH or to other stimuli.
Conversely, muscarinic cholinergic receptor antagonist
drugs reduce spontaneous GH release as well as GH 
responses to GHRH, sleep, exercise, L-dopa, glucagon, 
arginine, and clonidine. Mouse models have been generated,
in which a specific subtype of mAchR has been ablated by
genetic engineering (39). These animals have a wide variety
of phenotypic abnormalities but not growth failure, 
seemingly showing, that at least in rodents, the lack of
muscarinic receptor function would not cause a significant
reduction in GH secretion. However, very recently a murine
model was created, in which the function of the M3 
receptor was ablated in both alleles exclusively in the 
central nervous system (40). In this model, body length is
reduced, and this is associated with significantly reduced
GH and IGF-I serum levels and a reduction in pituitary 
somatotroph cell mass. Although the degree of growth 
retardation and pituitary hypoplasia is not as marked, the
phenotype of this animal has a striking similarity with the
murine model of ablation of the GHRH gene (41), and with
the naturally occurring mutation in the GHRHR gene that
occurs in the little mouse (24). These observations are 
consistent with the hypothesis that the neuronal muscarinic
receptors play an important role in controlling GH secretion.
Based on all the above observations, we hypothesized that
a subgroup of IGHD type IB families may have inactivating
mutations in these receptors. To test this hypothesis, we
analyzed the M1-M5 receptor genes in 39 of these families.

However, we concluded from this study that mAchR
mutations are absent or rare (less than 2.6%) in familial
IGHD type IB (42).

Ghrelin Receptor, GH Secretagogue Receptor (GHSR) 
To date, there is one recent report describing a loss of

function of the constitutive activity of the GH secretagogue
receptor (GHSR) in familial short stature (43,44). GHSR is
highly expressed in the brain and in the pituitary gland. The
first endogenous ligand of this receptor was discovered
back in 1999 and was named ghrelin (45). Although 
pharmacological studies have demonstrated that this 
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endogenous ligand stimulates, through the GHSR, GH 
secretion and appetite, the physiological importance of the
GHSR-dependent pathways remains an open question that
gives rise to much controversy (43). 

Homeobox Gene Expressed in ES Cells; HESX1
It has been shown that familial septo-optic dysplasia

(SOD), a syndromic form of congenital hypopituitarism 
involving optic nerve hypoplasia and agenesis of midline
brain structures, may be associated with homozygosity for an
inactivating mutation in the homeobox gene hesx1/HESX1.
Importantly, a small proportion of mice heterozygous for the
hesx1 null allele show a milder form of SOD, implying that
heterozygosity in human HESX1 gene alteration may lead to
a mild phenotype of IGHD only (46). Therefore, actually the
HESX1 gene has to be studied whenever looking for any
molecular reason causing IGHD type IB (47). 

SOX3 SRY (Sex Determining Region Y)-Box 3
SOX3 is located on the X-chromosome and both 

under- and overdosages of the gene lead to hypopituitarism
(48,49). Male patients present with variable hypopituitarism
(combined pituitary hormone deficiency (CPHD) or IGHD)
and infundibular hypoplasia, an ectopic/undescended posterior
pituitary and abnormalities of the corpus callosum with or
without mental retardation, in other words, this gene needs
a closer look as well while studying IGHD (47,50). 

Specific Trans-Acting Factor to GH-Gene
Any alteration to the specific transcriptional regulation of

the GH-1 gene may produce IGHD type IB. Mullis et al (51)
have reported a heterozygous 211 base pairs (bp) deletion
within the retinoic acid receptor a gene causing the 
phenotype of IGHD type IB.

Transcription Factors, Important for 
Pituitary Gland Development
In addition, as the occurrence of the various hormonal

deficiencies caused by transcription factors important for
the pituitary gland development may vary quite drastically
also with a family presenting with an identical gene defect,
GHD can be the only defect at the beginning. Therefore, the
two most important transcription factors, namely 
POU1F1 (Pit-1) and PROP 1, are shortly discussed (Table 2).

POU1F1 (PIT1)
The pituitary transcription factor PIT-1 is a member of

the POU-family of homeoproteins, which regulates 
important differentiating steps during embryological 
development of the pituitary gland as well as target gene
function within the postnatal life (8). Further, it is 291 aa in
length, contains a transactivation domain and two conserved
DNA-binding domains: the POU-homeodomain and the 
POU-specific domain. As PIT1 is confined to the nuclei of
somatotropes, lactotrops and thyrotropes in the anterior 
pituitary gland, the target genes of PIT1 include the 
GH-, prolactin- (PRL) and the thyrotropin (TSH)-subunit-, and
the POU1F1 gene itself. Therefore, the defects in the 

human POU1F1 gene known so far have all resulted in a total
deficiency of GH and PRL, whereas a variable hypothyroidism
due to an insufficient TSH secretion, at least during childhood,
has been described (Table 2). Although it is important to
stress that the clinical variability is due to other factors than
the exact location of the mutation reported, the type of 
inheritance, however, seems to correlate well with the 
genotype. The first mutation within the POU1F1 gene was
identified by Tatsumi (52). The majority of the mutations 
reported so far are recessive, however, a number of 
heterozygous point mutations have been reported (53). Of
those, the aa substitution R271W (Arg271Trp) seems to be
a “hotspot”. Further, the dominant negative effect of the
R271W POU1F1 form has been recently challenged by 
Kishimoto et al (54). Although most cases with R271W 
were sporadic and presenting with an autosomal dominant
mode of inheritance, Okamoto et al (55) reported a family
with normal family members, who were clearly heterozygous
for that mutation. Therefore, further in vitro expression 
studies were performed that could not confirm its dominant
negative effect, which is well in contrast with the original
report using identical experimental conditions (8,54).

PROP1
Wu et al (56) described four families, in which 

CPHD was associated with homozygosity or compound 
heterozygosity for inactivating mutations of the PROP1 
gene. PROP1 (prophet of Pit1) is a paired-like homeodomain
transcription factor and, originally, a mutation in this gene
(Ser83Pro) was found causing the Ames dwarf (df) mouse
phenotype (57). In mice, Prop1 gene mutation primarily 
causes GH, PRL and TSH deficiency, and in humans,
PROP1 gene defects also appear to be a major cause of
CPHD. In agreement with the model of Prop1 playing a 
role in commitment of dorsal lineages (GH, PRL and TSH),
Prop1 mutant mice exhibit a dorsal expansion of gonadotrophs
that normally arise on the ventral side.

To date, many different missense, frameshift and splice
site mutations, deletions, insertion have been reported and
it has been realized that the clinical phenotype varied not
only among the different gene mutations, but also among
the affected siblings with the same mutation (58,59). In 
addition, although the occurrence of the hormonal 
deficiency varies from patient to patient (8), the affected 
patients as adults were not only GH, PRL and TSH deficient,
but also gonadotropin deficient (Table 2). The three tandem
repeats of the dinucleotides GA at location 296-302 in the
PROP1 gene represent a “hot-spot” for CPHD (58-60). Low
levels of cortisol have also been described in some patients
with PROP1 gene mutations (61). In addition, pituitary 
enlargement with subsequent involution has been reported
in patients with PROP1 mutations (61). The mechanism, 
however, underlying this phenomenon remains still 
unknown.
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IGHD Type II
Focusing on the autosomal dominant form of IGHD,

type II (IGHD II) is mainly caused by mutations within the
first six bp of intervening sequences 3 (5’IVS-3) (8,62-66),
which result in a missplicing at the mRNA level and the 
subsequent loss of E3, producing a 17.5-kDa hGH isoform
(8,65). This GH product lacks aa 32-71 (del32-71 GH), which
is the entire loop that connects helix 1 and helix 2 in the 
tertiary structure of hGH (67,68). Skipping of E3 caused by
GH-1 gene alterations other than those at the donor splice
site in 5’IVS-3 has also been reported in other patients with
IGHD II. These include mutations in exon 3 (E3) splice 
enhancer ESE1 (E3+1G->T:ESE1m1; E3+2A->C:ESE1m2,
E3+5A->G:ESE1m3) as well as ESE2 (downstream of the

cryptic splice site in E3; ESE2: Δ721-735) and within 
suggested intron splice enhancers (ISE) (IVS-3+28 
G->A: ISEm1; IVS-3del+28-45: ISEm2) sequences (8,64,69-75).
Such mutations lie within purine-rich sequences and cause
increased levels of E3 skipped transcripts (64,69-71,73-75),
suggesting that the usage of the normal splicing elements
(ESE1 at the 5’ end of E3 as well as ISE in intron 3) may be
disrupted (73-75). Importantly, the first 7 nucleotides in E3
(ESE1) are crucial for the splicing of GH mRNA (75) such that
some nonsense mutations might cause skipping of one or
even more exons during mRNA splicing in the nucleus. This
phenomenon is called nonsense-mediated altered splicing
(NAS); its underlying mechanisms are still unknown (76). 
Furthermore, there is a recent report of Vivenza et al (77)
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Table 2. Transcription factors of clinical importance

Gene Phenotype Inheritance

Pit1 / POU1F1 hormonal deficiencies: GH, PRL, TSH R/D
imaging: anterior pituitary gland: normal to hypo
posterior pituitary gland: normal
other manifestation: none

PROP 1 hormonal deficiencies: GH, PRL, TSH, LH, FSH, (ACTH) R
imaging: anterior pituitary gland: hypo to hyper
posterior pituitary gland: normal
other manifestation: none

HESX1 hormonal deficiencies: GH, PRL, TSH, LH, FSH, ACTH, IGHD, CPHD R/D
imaging: anterior pituitary gland: hypo
posterior pituitary gland: ectopic
other manifestation: eyes, brain, septo-optic dysplasia

LHX3 hormonal deficiencies: GH, PRL, TSH, LH, FSH (ACTH) R
imaging: anterior pituitary gland: hypo
posterior pituitary gland: normal
other manifestation: neck rotation 75-85° (no:160-180°), 
sensoneural hearing loss

LHX4 hormonal deficiencies: GH, TSH, LH, FSH, ACTH D
imaging: anterior pituitary gland: hypo
posterior pituitary gland: normal, ectopic
other manifestation: sella turcica / skull defects
cerebellar defects

SOX2 haploinsufficiency de novo
hormonal deficiencies: GH, LH, FSH 3q26.3-q27
imaging: anterior pituitary gland: hypo ?/D
posterior pituitary gland: normal / hypo
other manifestation: bilateral anophthalmia, spastic, altered brain 
development oesophage atresia, sensoneural
hearing loss

SOX3 hormonal deficiencies: GH Duplication;
imaging: anterior pituitary gland: normal to hypo PolyA expansion
posterior pituitary gland: normal, ectopic Xq26-q27
other manifestation: mental retardation, abnormality of XL
corpus callosum, absent infundibulum

IGHD: isolated growth hormone deficiency; CPHD: combined pituitary hormone deficiency; R: autosomal recessively inherited; D: autosomal dominantly inherited. XL: X-linked
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presenting a patient with a specific deletion within intron 3
leading to E3 skipping, which underlines the importance of
intron length on the splicing machinery, as it was previously
suggested by the elegant work by Ryther et al (75). In addition
to the above described splice site mutations that result in
the production of del32-71 GH, three other mutations 
within the GH-1 gene (missense mutations) are reported to
be responsible for IGHD II, namely, the substitution of 
leucine for proline, histidine for arginine and phenylalanine
for valine at aa positions 89 (P89V), 183 (R183H) and 110
(V110F), respectively (66,78,79). 

At the functional level, the 17.5-kDa isoform exhibits a
dominant-negative effect on the secretion of the 22-kDa
isoforms in both tissue cultures as well as in transgenic 
animals (80-82). The 17.5-kDa isoform is initially retained in
the endoplasmic reticulum, disrupts the Golgi apparatus,
impairs both GH and other hormonal trafficking (83), and
partially reduces the stability of the 22-kDa isoform (80).
Furthermore, transgenic mice overexpressing the 17.5-kDa
isoform exhibit a defect in the maturation of GH secretory
vesicles and the anterior pituitary gland is hypoplastic due
to a loss of the majority of somatotropes (73,80,81). Trace
amounts of the 17.5-kDa isoforms, however, are normally
present in children and adults of normal growth and stature
(84), and heterozygosity for A731G mutation (K41R) within
the newly defined ESE2 (which is important for E3 
inclusion) led to approximately 20% E3 skipping resulting in
both normal as well as short stature (73,75,85). 

From the clinical point of view, severe short stature 
(<-4.5 SDS) is not present in all affected individuals, 
indicating that in some forms of IGHD II, growth failure is
less severe than one might expect (66). It has been 
hypothesized that children with splice site mutations may
be younger and shorter at diagnosis than their counterparts
with missense mutations (66). In addition, more recent 
in vitro and animal data suggest that both a quantitative and
qualitative difference in phenotype may result from variable
splice site mutations causing differing degrees of E3 
skipping (8,85-89). In summary, these data suggest that the
variable phenotype of autosomal dominant GHD may 
reflect a threshold and a dose dependency effect of the
amount of 17.5-kDa relative to 22-kDa hGH (81,82,85). 
Specifically, this has a variable impact on pituitary size, as
well as on onset and severity of GHD and, unexpectedly,
the most severe, rapid onset forms of GHD might be 
subsequently associated with the evolution of other 
pituitary hormone deficiencies (90,91).

IGHD Type III
This reported type is X-linked, recessively inherited. In

these families, the affected males were immunoglobulin-as
well as GH-deficient (92,93). Recent studies have shown
that the long arm of X-chromosome may be involved and
that the disorder may be caused by mutations and/or 

deletions of a portion of the X-chromosome containing two
loci, one necessary for normal immunoglobulin production,
and the other for GH expression (94). In addition, Duriez et
al (95) reported an exon-skipping mutation in the btk-gene
of a patient with X-linked agammaglobulinemia and IGHD.

Bioinactive GH

Short stature associated with bioinactive GH was first
suggested and described by Kowarski and co-workers in
1978 (96). It is clinically characterized by normal or slightly
increased GH secretion, pathologically low IGF-I levels, and
normal catch-up growth on GH-replacement therapy. On a
clinical basis, additional cases of bioinactive GH were 
described in the eighties (97-101). Chihara and co-workers
(102-104) reported two missense mutations (R77C and
D112G) in the GH-1 gene leading to Kowarski’s syndrome
in two Japanese patients. However, these mutations were
both found in the heterozygous state only, and furthermore,
the mutation R77C was also identified in the normal-statured
father. Further, six GH variants were suggested to be 
bioinactive by Millar and co-workers (85). Again, all these
mutations were found in the heterozygous state and no 
clear correlation between laboratory/clinical phenotype and
patient genotype was shown. Later, also our group described
a heterozygous R77C mutation in the GH molecule in a 
patient with growth retardation and delayed pubertal 
development. However, no differences between wt-GH
and GH-R77C were found by functional characterization of the
GH-R77C through GHR binding, activation of JAK2/STAT5
pathway and additional secretion studies together with cell
proliferation when stably GHR transfected cells (293GHR)
were used (105,106). On the other hand, reduced capability
of GH-R77C to directly induce GHR/GHBP gene transcription
rate could indirectly affect the levels of GHBP in the 
circulation of our patient. In addition, this group of patients
deserves further attention, because they could represent a
distinct clinical entity underlining that an altered GH peptide
may cause partial GH insensitivity through direct impact on
GHR/GHBP gene expression leading to the delay of growth
and pubertal development. Finally, GH-R77C is not 
invariably associated with short stature, although the serum
IGF-I levels are low, the GH is elevated, and the GHBP 
levels are somewhat low, consistent with some degree of
GH insensitivity, which is, presumably, compensated for by
excess of GH production. Whether this is due to GH 
receptor transcription defects, remains unclear. 

Furthermore, in one of the more convincing cases of 
bioinactive GH reported to date, a homozygous missense
mutation (bp:G705C; aa:C53S) leading to disruption of the
disulfide bond between Cys-53 and Cys-165 was found in a
short (-3.6SDS) Serbian boy. Both GHR binding as well as
JAK2/STAT5 signalling activities were markedly reduced (107). 
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Functional Analysis of Any Gene 
Variant is Important

To make the story even more complicated, we reported
a patient suffering from a specific form of IGHD II caused
by a GH-1 gene alteration on a hypomorphic partial agonistic
allele, emphasizing the importance of detailed functional
analysis of GH variants. The patient was heterozygous for
the GH-R178H mutation (108). Clinical findings combined
with the experimental data of secretion studies confirmed
the diagnosis of IGHD II. However, although the GH 
concentration after stimulation was reduced, admittedly
supporting the diagnosis of GHD, neither the severity of
short stature (-6.0 SDS at the chronological age of 5 years)
nor the low IGF-1 concentrations could be fully explained. 
Therefore, further functional characterization of this GH 
mutant was performed through studies of GHR binding and
activation of the JAK2/STAT5 pathway. Binding activity and
the bioactivity of GH-R178H were investigated and 
compared with the wt-GH and revealed that GH-R178H by
itself behaves more like a partial agonist. Therefore, 
phenotype and hormonal data underlined the fact that 
GH-R178H mutation expressed from a hypomorphic partial
agonistic allele seems to functionally overlie IGHD II in our
patient (108).
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