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OBJECTIVES: To establish the feasibility of empirically testing crisis standards 
of care guidelines.

DESIGN: Retrospective single-center study.

SETTING: ICUs at a large academic medical center in the United States.

SUBJECTS: Adult, critically ill patients admitted to ICU, with 27 patients admit-
ted for acute respiratory failure due to coronavirus disease 2019 and 37 patients 
admitted for diagnoses other than coronavirus disease 2019.

INTERVENTIONS:  Review of electronic health record.

MEASUREMENTS AND MAIN RESULTS: Many U.S. states released crisis 
standards of care guidelines with algorithms to allocate scarce healthcare resources 
during the coronavirus disease 2019 pandemic. We compared state guidelines that 
represent different approaches to incorporating disease severity and comorbidi-
ties: New York, Maryland, Pennsylvania, and Colorado. Following each algorithm, 
we calculated priority scores at the time of ICU admission for a cohort of patients 
with primary diagnoses of coronavirus disease 2019 and diseases other than coro-
navirus disease 2019 (n = 64). We assessed discrimination of 28-day mortality by 
area under the receiver operating characteristic curve. We simulated real-time deci-
sion-making by applying the triage algorithms to groups of two, five, or 10 patients. 
For prediction of 28-day mortality by priority scores, area under the receiver op-
erating characteristic curve was 0.56, 0.49, 0.53, 0.66, and 0.69 for New York, 
Maryland, Pennsylvania, Colorado, and raw Sequential Organ Failure Assessment 
score algorithms, respectively. For groups of five patients, the percentage of deci-
sions made without deferring to a lottery were 1%, 57%, 80%, 88%, and 95% for 
New York, Maryland, Pennsylvania, Colorado, and raw Sequential Organ Failure 
Assessment score algorithms, respectively. The percentage of decisions made 
without lottery was higher in the subcohort without coronavirus disease 2019, com-
pared with the subcohort with coronavirus disease 2019.

CONCLUSIONS: Inclusion of comorbidities does not consistently improve an 
algorithm’s performance in predicting 28-day mortality. Crisis standards of care 
algorithms result in a substantial percentage of tied priority scores. Crisis stan-
dards of care algorithms operate differently in cohorts with and without corona-
virus disease 2019. This proof-of-principle study demonstrates the feasibility and 
importance of empirical testing of crisis standards of care guidelines to under-
stand whether they meet their goals.

KEY WORDS: crisis triage; ethical triage; intensive care; intensive care unit; 
medical ethics

The coronavirus disease 2019 (COVID-19) pandemic has renewed debate 
over crisis standards of care (CSC) (1, 2). Several states in the United States 
have released guidelines for allocating healthcare resources, like ventilators 

and ICU beds, if the number needed exceeds supply (3). Although U.S. hospitals 
largely avoided implementation of these guidelines, careful scrutiny is needed given 

Maheetha Bharadwaj, MS, MPhil1

Julia L. Jezmir, MD, MBA1,2

Sandeep P. Kishore, MD, PhD1–3

Marisa Winkler, MD, PhD1,4

Bradford Diephus, MD, MBA1,2

Hibah Haider, MD5

Conor P. Crowley, AG-ACNP5

Mayra Pinilla-Vera, MD5

Jack Varon, MD1,5

Rebecca M. Baron, MD1,5

William B. Feldman, MD, DPhil1,5,6

Edy Y. Kim, MD, PhD1,5

Empirical Assessment of U.S. Coronavirus 
Disease 2019 Crisis Standards of Care Guidelines

OBSERVATIONAL STUDY

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bharadwaj et al

2          www.ccejournal.org	 xxx 2021 • Volume 00 • Number 00

the ongoing global COVID-19 pandemic and possible fu-
ture pandemics. CSC guidelines aim to maximize popula-
tion benefits rather than allocate critical care resources on 
an “all-come, all-served basis” (1, 2). Most guidelines rely 
upon Sequential Organ Failure Assessment (SOFA) scores 
as a measure of disease severity to identify those likely 
to survive hospitalization and maximize the number of 
lives saved (3). However, states have differing approaches 
on whether to account for patient comorbidities. Each 
state guideline specifies an algorithm that assigns a pri-
ority score, and the patient with the lower priority score 
receives the scarce resources (Table  1) (Supplemental 
Table 1, http://links.lww.com/CCX/A724). For example, 
in the Pennsylvania system (as initially devised), if two 
patients with the same SOFA score require a ventilator, 
but one patient has fewer comorbidities, then the patient 
with fewer comorbidities would receive the ventilator. 
Each state guideline also outlines tiebreaker procedures 
that are decided by age and/or lottery, and some take into 
account healthcare worker status and pregnancy (4–7).

Although state CSC guidelines have been devel-
oped with considerable debate, their validity has not, 
to our knowledge, been empirically examined in mixed 
COVID-19 and non–COVID-19 cohorts, although 
limited testing has been performed with COVID-19  
patients alone and with non–COVID-19 patients 
alone (8–10). Yet, the ethical justification for these 
guidelines depends, in part, on the assumption that 
priority scores will correlate with clinical outcomes 
and efficiently allocate scarce resources. In this study, 
we propose a proof-of-concept model to empirically 
test CSC guidelines. We compared four representa-
tive U.S. state guidelines that all used SOFA scores but 
had varying approaches to patient comorbidities: New 
York, Maryland, Pennsylvania, and Colorado (Table 1) 
(Supplemental Table 1, http://links.lww.com/CCX/
A724) (3, 11). We also assessed a hypothetical triage 
algorithm that uses raw (i.e., ungrouped) SOFA scores 
and age as a tiebreaker. We first assessed whether the 
priority scores produced by state guidelines correlated 
with 28-day outcomes. Then, we assessed how often the 
algorithms led to tied priority scores requiring a lottery.

MATERIALS AND METHODS

Study Cohort

Our retrospective cohort study included 64 critically 
ill patients, of whom 27 had a primary diagnosis of 

COVID-19 pneumonia and 37 had a non–COVID-19 
diagnosis. The patients with COVID-19 were consec-
utively admitted to the ICU at Brigham and Women’s 
Hospital between March 12, 2020, and April 3, 2020, 
with COVID-19 infection under the Mass General 
Brigham (MGB) Institutional Review Board (IRB)–
approved protocol number 2020P001139. COVID-19  
infection was defined by severe acute respiratory syn-
drome coronavirus 2 real-time polymerase chain 
reaction testing of nasopharyngeal swabs. The 37 non–
COVID-19 patients were drawn from the Brigham and 
Women’s Hospital Registry of Critical Illness, a well-es-
tablished convenience cohort of patients enrolled 
within 48 hours of admission to the medical ICU under 
MGB IRB-approved protocol number 2008P000495 
and described in references (12–17). These patients 
were enrolled prior to the COVID-19 pandemic 
and had a variety of admission diagnoses, including 
sepsis, cardiogenic shock, acute hypoxemic respiratory 
failure, chronic obstructive pulmonary disease exac-
erbation, or upper airway obstruction. We included 
consecutive patients enrolled from November 3, 2018, 
to May 7, 2019, a time range selected to overlap with 
the calendar months of the COVID-19 cohort while 
accruing patients in a 3:2 ratio with the COVID-19  
cohort. This ratio simulates one realistic situation in 
which there is a large number of COVID-19 patients, 
but the majority of patients have non–COVID-19 
diagnoses. Patients were independently reviewed for 
inclusion by two board-certified pulmonary and crit-
ical care attending physicians.

We applied each of the four state’s CSC guidelines 
to the cohort to calculate priority scores at the time 
of patients’ admission to the ICU, a key triage deci-
sion point if resources are limited. Outcomes were 
either dead (0) or alive (1) at 28 days post ICU ad-
mission (18). Two independent reviewers manually 
abstracted data from electronic health records, and 
conflicts were adjudicated by a third reviewer, simu-
lating a typical workflow by which triage teams assess 
priority scores.

Calculating SOFA Scores

We tested the first versions of the CSC guidelines 
released during the COVID-19 pandemic. All state 
guidelines had prioritization algorithms that assign pri-
ority points based on groupings of raw SOFA scores. New 
York’s algorithm included SOFA score groupings alone, 
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whereas the other three state algorithms (Maryland, 
Pennsylvania, and Colorado) included comorbidi-
ties when assigning priority points. The manner by 
which comorbidities were incorporated differed in 
Maryland, Pennsylvania, and Colorado. To calculate 

the final priority score for these three states, the priority 
points from SOFA scores and the priority points from 
comorbidities were added. For Pennsylvania, priority 
scores are also converted into three priority categories 
(Table 1), as specified in their guidelines.

TABLE 1. 
Crisis Standard of Care State Guidelines

Scoring Criteria

Guidelines by State

Maryland Pennsylvania Colorado New Yorkf

SOFA 
prioritizationa

≤ 8: 1 point < 6: 1 point < 6: 1 point < 7: 1 point

9–11: 2 points 6–8: 2 points 6–9: 2 points 8–11: 2 points

12–14: 3 points 9–11: 3 points 10–12: 3 points > 11: 3 points

> 14: 4 points ≥ 12: 4 points > 12: 4 points  

Comorbidities 
scoringb

Severe comorbidities: 3 
points

Major comorbidities: 2 points Modified Charlson 
Comorbidity Indexc

None

Severe comorbidities: 4 
points

Special 
considerations

Pregnancy:d –1 point Pregnancy: –2 points None None

Healthcare worker: –1 point

Priority score  
calculation

SOFA prioritization + 
comorbidities score + 
special considerations

SOFA prioritization + 
comorbidities score + 
special considerations

SOFA prioritization + 
Charlson Comorbidity 
Index Score

SOFA prioritization

Priority grouping 
based on 
priority score

None High priority: 1–3 None High priority: 1

Intermediate priority: 4–5 Intermediate 
priority: 2

Low priority: ≥ 6 Low priority: 3

Tiebreakerse First tiebreaker: Life 
cycle

First tiebreaker: Life cycle First tiebreaker: Children, 
healthcare workers,  
and/or first responders

First tiebreaker: 
Children

Second tiebreaker: 
Lottery

Second tiebreaker: SOFA 
prioritization

Second tiebreaker: 
Lottery

Third tiebreaker: Lottery Second tiebreaker: Life 
cycle, pregnancy, and/or 
sole caretakers for elderly

Third tiebreaker: Lottery

SOFA = Sequential Organ Failure Assessment.
aPatients assigned lower priority scores are more likely to receive the scare resources.
bPlease refer to text and Table 3 for lists of major and severe comorbidities for each algorithm.
cThe modified Charlson Comorbidity Index is provided in Table 3.
dFor Maryland, only pregnancy with a “viable fetus” is considered for a point reduction.
eLife cycle groupings were different for each algorithm. Maryland: 0–49 = 1 (highest), 50–69 = 2, 70–84 = 3, 85+ = 4; Pennsylvania: 
0–40 = 1 (highest), 41–60 = 2, 61–75 = 3, 76+ = 4; Colorado: 0–49 = 1 (highest), 50–59 = 2, 60–69 = 3, 70–79 = 4, 80+ = 5.
fThe New York Algorithm exclusion criteria include the following: 1) unwitnessed cardiac arrest, recurrent arrest without hemodynamic 
stability, arrest unresponsive to standard interventions and measures, trauma-related arrest; 2) irreversible age-specific hypotension 
unresponsive to fluid resuscitation and vasopressor therapy; 3) traumatic brain injury with no motor response to painful stimulus (i.e., 
best motor response = 1); 4) severe burns where predicted survival ≤ 10% even with unlimited aggressive therapy; and 5) any other 
conditions resulting in immediate or near-immediate mortality even with aggressive therapy. None of the patients in this cohort fell into 
this exclusion criteria.
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Each algorithm outlines procedures for tiebreak-
ers when two or more patients have the same priority 
score. Maryland and Colorado use their own unique 
age categories (Table 1) as tiebreakers and then a lottery 
if ties remain. Colorado also specifies that one’s status 
as a child, healthcare worker, first responder, pregnant 
woman, or caretaker for the elderly may enter into tie-
breaker considerations. Pennsylvania uses its own age 
categories (Table 1) as the first tiebreaker, followed by 
raw priority scores as the second tiebreaker, followed 
by lottery for any remaining ties. New York does not 
use age and goes directly to a lottery when priority 
scores are tied. In addition to these four algorithms, 
we also tested a hypothetical algorithm that used raw 
SOFA scores with age as a tiebreaker.

Primary Analysis

We calculated an area under the receiver operating 
characteristic (AUROC) curve to assess the accu-
racy of each CSC algorithm in discriminating 28-day 
mortality, with admission to the ICU serving as day 
1. For this analysis, we used priority scores of algo-
rithms “without” adding tiebreakers. Patients who 
were discharged alive from the hospital prior to 28 
days were considered to be alive at 28 days (the validity 
of this assumption was verified in a subset of patients, 
described elsewhere) (18).

Groups of Two, Five, and 10 Analysis

To assess how the prioritization algorithms may function 
clinically, we compared the priority scores for groups of 
two, five, or 10 patients using a bootstrap method. Each 
“group” represented a situation in which a triage algo-
rithm would have to choose one individual of the group 
to receive scarce resources based on the priority score 
assigned by the algorithm. For each group of patients, a 
“winner” with the “best” priority score (i.e., lowest pri-
ority point total) was selected, and the “winner’s” 28-day 
outcome (survivor or deceased) was noted. The group 
was considered “tied” if two or more patients tied for the 
“best” (lowest) priority point total.

We performed 100 iterations of a computational 
simulation in which we randomly selected 1,000 
groups of two, five, or 10 patients (Supplemental Fig. 1,  
http://links.lww.com/CCX/A726). We excluded pa-
tient groups in which all the patients had the same 
outcome (i.e., all survivors or all deceased), since we 

cannot assess if the algorithm correctly selects a patient 
with a better outcome if all the patients in that group of 
two to 10 patients shared the same outcome. For each 
simulation of 1,000 patient groups, we calculated the 
percentage of groups for which the algorithm chose a 
patient who survived, and we computed the percentage 
of groups in which the algorithm required a tiebreak-
ing lottery. These simulations yielded a distribution of 
the “percentage of algorithm decisions selecting a sur-
vivor” and “percentage of decisions requiring a lottery.” 
An unpaired t test was used to calculate significant dif-
ferences between the distributions.

A hypothetical example of this method is illustrated 
in Supplemental Figure 1 (http://links.lww.com/CCX/
A726). In step 1, a simulation of 1,000 groups of five 
patients resulted in 952 groups in which at least one 
patient in the group of five patients had a different out-
come than the other patients. The 48 groups in which 
all patients survived or all died were excluded from fur-
ther analysis. The state CSC algorithms were applied to 
the 952 groups. For one group of five patients shown as 
an example in step 2, CSC algorithms resulted in one 
of three decisions: 1) a tie (e.g., New York, Maryland); 
2) selection of a patient “winner” who was a survivor 
(e.g., Pennsylvania); or 3) selection of a patient “win-
ner” who died (e.g., Colorado, raw SOFA + age). By 
applying the CSC algorithms to the other 951 groups 
of five patients, we determined the percentage of pa-
tient groups with ties and the percentage of patient 
groups for which the algorithm correctly selected a 
survivor at 28 days (step 3). We then repeated this sim-
ulation for a total of 100 iterations (of 1,000 patient 
groups in each iteration) to determine a distribution 
of the percentage of decisions resulting in ties and the 
percentage of decisions selecting a surviving patient 
(step 4). We also conducted these analyses for groups 
of two or 10 patients. We ran these analyses for the en-
tire cohort of mixed COVID-19 and non–COVID-19 
patients, and we ran these analyses for the COVID-19 
subcohort and non–COVID-19 subcohort separately.

Statistical Analysis

The primary outcome was mortality at 28 days post 
hospital admission. For patients who were discharged 
alive from the hospital before 28 days, their 28-day 
outcome was imputed as surviving. Continuous vari-
ables were assessed for normality by the Shapiro-Wilk 
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test, and unpaired t test applied for normal variables 
and Mann-Whitney U tests for nonparametric vari-
ables, both two-tailed. Categorical variables were 
compared by Fisher exact test (two-sided). AUROC 
curve was used to assess each triage algorithm’s dis-
crimination of 28-day mortality (18). The simulations 
of patient groups of two, five, or 10 were performed as 
described above. se was calculated using the DeLong 
et al method, and CIs by exact binomial test. Statistical 
tests were performed in IBM SPSS Statistics Version 
25.0 (IBM, Armonk, NY) and R Version 3.6 (The R 
Project for Statistical Computing, Vienna, Austria).

RESULTS

Characteristics of Our Cohort

A total of 64 patients with COVID-19 (n = 27) and 
without COVID-19 (n = 37) met criteria for inclusion. 
At 28 days post ICU admission, 18 patients (28%) had 
died (Table 2). Half of the cohort was female. Mean age 
± sd was 62.3 ± 16.9 for the entire cohort, 68.1 ± 13.1 for 
the COVID-only cohort, and 58.2 ± 18.3 for the non–
COVID-only cohort. Mean raw SOFA scores ± sd were 
4.6 ± 3.5 for the entire cohort, 3.2 ± 1.4 for COVID-
only cohort, and 5.6 ± 4.2 for non–COVID-only cohort. 
Among our entire cohort, the prevalence of comorbidi-
ties was active malignancy (23%), chronic pulmonary 
disease (22%), chronic renal disease (19%), congestive 
heart failure (14%), and diabetes with complications 
(9%). Priority scores were calculated at ICU admission, 
a key decision point for many crisis scenarios.

Accuracy of CSC Algorithms in Discriminating 
28-Day Mortality

For the entire cohort, the AUROC (95% CI) was 0.56 
(0.39–0.72) for New York’s algorithm, 0.49 (0.33–
0.64) for Maryland’s algorithm, 0.53 (0.37–0.70) for 
Pennsylvania’s algorithm, 0.66 (0.52–0.80) for Colorado’s 
algorithm, and 0.69 (0.56–0.82) for our hypothetical al-
gorithm that employed raw SOFA scores (Fig. 1C).

For the COVID-19 subcohort, the AUROC (95% 
CI) was 0.50 (0.27–0.73) for New York’s algorithm, 
0.55 (0.32–0.78) for Maryland’s algorithm, 0.52 (0.30–
0.75) for Pennsylvania’s algorithm, 0.72 (0.53–0.92) 
for Colorado’s algorithm, and 0.80 (0.63–0.97) for 
our hypothetical algorithm that employed raw SOFA 
scores (Fig. 1A). For the non–COVID-19 subcohort, 

the AUROC (95% CI) was 0.69 (0.47–0.90) for New 
York’s algorithm, 0.49 (0.27–0.70) for Maryland’s algo-
rithm, 0.58 (0.35–0.82) for Pennsylvania’s algorithm, 
0.70 (0.52–0.89) for Colorado’s algorithm, and 0.76 
(0.57–0.95) for our hypothetical algorithm that em-
ployed raw SOFA scores (Fig. 1B).

The Performance of CSC Algorithms In Patient 
Groups of Two to 10

In simulations applying CSC algorithms to groups of 
two, five, or 10 patients, the size of the patient groups 
strongly affected the ability of CSC algorithms to select 
a patient “winner” without depending on a lottery as 
a tiebreaker. New York’s algorithm selected a patient 
without a lottery in 38% (95% CI, 34–40%) of decisions 
in patient groups of two, 1% (0.1–1.1%) of decisions 
in patient groups of five, and 0% (0–0%) in patient 
groups of 10 (Table 3). For Maryland’s algorithm, the 
percentage of decisions made without lottery (95% CI) 
were 84% (83–87%), 57% (54–60%), and 42% (40–45%) 
for patient groups of two, five, and 10, respectively. For 
Pennsylvania’s algorithm, the percentage of decisions 
made without lottery (95% CI) were 95% (94–97%), 
91% (89–93%), and 82% (80–84%) for patient groups 
of two, five, and 10, respectively. For Colorado’s algo-
rithm, the percentage of decisions made without lot-
tery (95% CI) were 95% (94–97%), 88% (85–90%), and 
79% (76–81%) for patient groups of two, five, and 10, 
respectively. For our hypothetical algorithm using raw 
SOFA scores with age as a tiebreaker, the percentage 
of decisions made without lottery (95% CI) were 99% 
(98–100%), 95% (93–96%), and 92% (91–94%) for pa-
tient groups of two, five, and 10, respectively.

Next in this simulation analysis, we assessed the per-
cent of nonlottery decisions in which the algorithm 
made a “correct” choice and chose a patient with the bet-
ter outcome (i.e., survival). The size of the patient groups 
facing triage decisions strongly affected algorithm per-
formance. New York’s algorithm chose a patient who 
survived in 64% (95% CI, 59–69%) of patient groups of 
two and 72% (24–100%) of groups of five. All decisions 
went to lottery in patients groups of 10. For Maryland’s 
algorithm, the percentage (95% CI) of decisions where 
a surviving patient was selected was 58% (54–61%), 
87% (84–91%), and 99% (98–100%) for patient groups 
of two, five, and 10, respectively. For Pennsylvania’s al-
gorithm, the percentage (95% CI) of decisions where a 
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surviving patient was selected was 67% (66–72%), 83% 
(80–86%), and 92% (91–95%) for patient groups of two, 
five, and 10, respectively. For Colorado’s algorithm, the 
percentage (95% CI) of decisions where a surviving pa-
tient was selected was 67% (63–69%), 89% (87–91%), 
and 98% (97–99%) for patient groups of two, five, and 
10, respectively. For the hypothetical algorithm using 
raw SOFA with age, the percentage (95% CI) of deci-
sions where a surviving patient was selected was 71% 
(67–74%), 92% (90–93%), and 98% (98–99%) for pa-
tient groups of two, five, and 10, respectively.

The Effect of Heterogeneity in Algorithm 
Performance

We next evaluated the effect of cohort homogeneity 
on CSC algorithm performance. We divided our 

cohort into a more homogenous subcohort of only 
patients with COVID-19 pneumonia (n = 27) and a 
more heterogenous subcohort of patients with a mix-
ture of non–COVID-19 diagnoses (n = 37). We per-
formed the simulation of groups of two, five, and 10 
patients on these subcohorts (Supplemental Table 2, 
http://links.lww.com/CCX/A725). For groups of two 
or five patients, more decisions resulted in ties requir-
ing lottery in the COVID-19 subcohort compared 
with the non–COVID-19 subcohort. For groups of 
five patients, the percent of decisions made without 
lottery for New York’s algorithm were 0% (95% CI, 
0–0%) in the COVID-19 subcohort and 5% (4–6%) 
in the non–COVID-19 subcohort. For Maryland’s, 
Pennsylvania’s, and Colorado’s algorithms, the percent 
of decisions made without lottery were 47% (42–51%), 

TABLE 2. 
Demographics, Clinical Characteristics, and Outcomesa

Patient Characteristics
All Patients  

(N = 64)
COVID-19  
(N = 27)

Non–COVID-19  
(N = 37) pa

Age, mean ± sd, yrb 62.3 ± 16.9 68.1 ± 13.1 58.2 ± 18.3 0.019

Gender, n (%)     

  Male 31 (48) 15 (55) 16 (43) 0.45

  Female 32 (50) 12 (45) 20 (54)  

  Other 1 (2) 0 (0) 1 (3)  

Raw Sequential Organ Failure Assessment Scores, mean ± sd 4.6 ± 3.5 3.2 ± 1.4 5.6 ± 4.2 0.06

Comorbidities, n (%)c     

  Congestive heart failure 9 (14) 2 (7) 7 (19) 0.28

  Chronic pulmonary disease 14 (22) 4 (15) 10 (27) 0.36

  Chronic renal disease 12 (19) 7 (26) 5 (14) 0.33

  Dementia 2 (3) 2 (7) 0 (0) 0.17

  Active malignancy 15 (23) 4 (15) 11 (30) 0.24

  Diabetes with complications 6 (9) 3 (11) 3 (8) 0.69

  Chronic liver disease 2 (3) 0 (0) 2 (5) 0.51

28 d outcome, n (%)     

  Death 18 (28) 10 (37) 8 (22) 0.26

  Alive 46 (72) 17 (63) 29 (78)  

COVID-19 = coronavirus disease 2019.
aIn statistical comparison of COVID-19 and non–COVID-19 subcohorts, for age and Sequential Organ Failure Assessment (SOFA) 
score, normality was assessed by Shapiro-Wilk test, unpaired t test was used for age and Mann-Whitney U test used for SOFA score 
(both two-tailed). Fisher exact test (two-sided) was used for the other variables.
bChildren, pregnant women, essential workers, and healthcare workers were not part of the cohort.
cPlease refer to Table 3 to see each algorithm’s definition of major and severe comorbidities.
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57% (48–67%), and 83% (80–86%) in the COVID-19 
subcohort and 68% (65–71%), 84% (82–87%), and 
90% (88–92.3%) in the non–COVID-19 subcohort, 

respectively, with a similar trend in groups of two 
patients. The state algorithms had variable trends 
in performance between the two subcohorts in the 

Figure 1. Area under the receiver operating characteristic (AUROC) curve analyses of prediction of 28 d mortality by priority scores. Shows 
the receiver operating characteristic curves for each of the state algorithms and each curve’s associated AUROC, representing each algorithm’s 
discriminatory capacity for 28 d survival. A, Shows the coronavirus disease 2019 (COVID-19) cohort, (B) shows the non–COVID-19 cohort, 
and (C) shows the entire cohort which includes both COVID-19 and non–COVID-19 patients. SOFA = Sequential Organ Failure Assessment.
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simulation of groups of 10 patients. For New York’s, 
Maryland’s, Pennsylvania’s, and Colorado’s algorithms, 
the percent of decisions made without lottery (95% CI) 
were 0% (0–0%), 49% (46–52%), 50% (48–53%), and 
84% (81–86%) in the COVID-19 subcohort and 0% 
(0–0%), 38% (35–40%), 70% (67–73%), and 79% (78–
81%) in the non–COVID-19 subcohort, respectively.

The performance of state algorithms in “correctly” 
selecting surviving patients in nonlottery decisions 

was similar in the COVID-19 and non–COVID-19 
cohorts. For the simulations of groups of five patients, 
Maryland’s, Pennsylvania’s, and Colorado’s algorithms 
selected a surviving patient in 94% (86–100%), 87% 
(77–96%), and 94% (87–100%) of nonlottery decisions 
in the COVID-19 subcohort and 86% (75–97%), 87% 
(83–90%), and 89% (86–91%) in the non–COVID-19 
subcohort, respectively. All decisions in the New York 
algorithm went to lottery, so this metric could not be 

TABLE 3. 
Crisis Standards of Care Guidelines Performance Inpatient Groups

Group Size and CSC 
Algorithm 

Percent of  
Decisions Made  
Without Lottery CI

Percent of Nonlottery Decisions  
Where Algorithm Chose  
Individual Who Survived CI

Groups of two patients     

  New York 37.8 34.8–40.4 64.3 59.7–68.4

  Maryland 84.3 82.7–86.3 57.8 55.3–60.7

  Pennsylvania 92.1 90.5–93.9 64.5 61.5–67.2

  Colorado 95.1 93.8–96.4 66.5 63.6–69.1

  Raw SOFA 92.3 90.9–93.7 70.8 68.0–72.8

  Raw SOFA with age 98.5 97.8–99.1 69.7 66.8–72.0

  Age 98.5 97.9–99.3 60.2 57.3–63.1

Groups of five patients     

  New York 0.6 0.1–1.1 71.9 24.0–100

  Maryland 57.0 53.9–59.5 87.3 84.8–90.3

  Pennsylvania 80.4 78.4–82.6 85.9 83.4–88.3

  Colorado 87.6 85.8–89.3 89.1 87.2–91.2

  Raw SOFA 72.6 70.3–74.8 93.6 91.9–95.0

  Raw SOFA with age 94.6 93.2–95.8 91.7 89.9–93.1

  Age 97.6 96.7–98.4 81.8 79.3–84.0

Groups of 10 patients     

  New York 0 0–0 NA NA

  Maryland 41.9 39.6–44.2 98.8 97.9–99.5

  Pennsylvania 68.2 65.7–70.8 96.7 95.5–97.9

  Colorado 78.5 76.5–80.5 97.8 96.8–98.5

  Raw SOFA 63.4 61.2–65.7 99.5 99.1–100

  Raw SOFA with age 92.4 91.0–93.9 98.3 97.6–98.9

  Age 97.9 97.2–98.8 94.0 92.8–94.9

NA = not applicable, SOFA = Sequential Organ Failure Assessment.
Shows the percentages and CIs for percentage of decisions made without lottery, and percentage of nonlottery decisions where the 
algorithms chose the survivor.
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assessed. The comparison of performance in COVID-19  
and non–COVID-19 subcohorts in selecting a sur-
vivor was similar in the simulations of groups of two 
or 10 patients.

DISCUSSION

Our study presents a proof-of-concept framework for 
empirically testing CSC state guidelines to assess how 
well they meet their stated goals of maximizing the 
number of lives saved. Our analysis of ROC curves 
showed that, for the initial CSC algorithms from New 
York, Maryland, and Pennsylvania, priority scores 
assigned at ICU admission had poor predictive value for 
28-day survival, with better performance for Colorado 
and raw SOFA score. Application of state guidelines, par-
ticularly New York and Maryland, frequently resulted 
in identical priority scores requiring tiebreakers based 
on age or lottery. In simulations applying CSC algo-
rithms to groups of two, five, or 10 patients, the ability 
of CSC algorithms to avoid tiebreakers and correctly 
select patients who survived to 28-days depended to a 
large extent on the simulation method, specifically the 
number of patients (two, five, or 10) in the triage group.

One state algorithm that included comorbidi-
ties (Colorado) had slightly improved performance 
(by AUROC curve) when predicting 28-day survival 
compared with New York’s algorithm, which relied on 
SOFA score ranges alone. The inclusion of comorbidi-
ties, however, raises several concerns. One worry is the 
risk of exacerbating racial and socioeconomic dispari-
ties since those who are most disadvantaged are most 
likely to have multiple comorbidities (19–21). The use 
of age as a tiebreaker raises further concerns about 
age-based discrimination, although proponents often 
appeal to the goal of giving people equal opportunity 
to experience each stage of life.

Our hypothetical algorithm using raw SOFA scores 
with age as a tiebreaker performed better than other 
algorithms on several fronts. It relied the least on 
a lottery system, making decisions without lottery 
greater than 90% of the time across all analyses. Of 
those nonlottery decisions, this algorithm consistently 
chose a surviving individual in nearly 70% of deci-
sions in groups of two analyses and greater than 90% 
of decisions in groups of five and 10 across all cohorts. 
However, the SOFA score itself has faced criticism 
for racial bias and limited ability to predict mortality 

(8, 22–24). Furthermore, using raw SOFA scores 
may place undue emphasis on a tool that was never 
designed for triage.

A strength of our study was the inclusion of both 
COVID-19 and non–COVID-19 patients. The frequency 
of tied priority scores was higher in the COVID-19  
only subcohort compared with the non–COVID-19 
subcohort. The high rate of ties in the COVID-19 sub-
cohort is consistent with another recent study of New 
York’s and Maryland’s CSC algorithms (9). One poten-
tial reason for these frequent ties is that COVID-19 
often affects only one organ system, the lungs. Patients 
with COVID-19 frequently have SOFA scores with 
a respiratory component of 2+ (since a higher score 
requires mechanical ventilation) while receiving no 
points for other organ systems. The grouping of raw 
SOFA scores into ranges further increases the likeli-
hood of ties. Ties are not necessarily a negative feature 
of CSC algorithms. Some ethicists have favored lotter-
ies as a way to promote fair allocation. However, it is 
important to understand how frequently an algorithm 
results in ties since many algorithms, including those 
examined here, seek to go beyond random allocation 
when allocating resources.

Our study is limited by its small sample size, recruit-
ment at a single center, and limited follow-up time. The 
CSC algorithms continue to evolve, and there are other 
CSC algorithms distinct from the approaches exam-
ined in this study (25, 26). In addition, we excluded 
certain variables (e.g., essential worker status) upon 
which several algorithms rely. Our focus was on triage 
to the ICU, and future work can examine other clinical 
situations, such as triage of noncritically ill patients 
and other potentially scarce resources, such as supple-
mental oxygen, hemodialysis, or extracorporeal mem-
brane oxygenation.

Further work is needed to empirically test CSC 
algorithms. We have demonstrated that computational 
simulations of triage in groups of two to 10 patients can 
differentiate among state algorithms more effectively 
than AUROC analyses. The relevant group size for 
simulations depends on the extent to which demand 
exceeds supply. If 10 people need a ventilator for every 
one that is available, then simulations with groups of 10 
are most relevant; by contrast, when demand is lower 
and/or supply is higher, then simulations with smaller 
groups may be more relevant. Understanding how each 
algorithm performs with different group sizes may 
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help decision-makers choose the right approach for a 
given health crisis. Further work is needed to apply the 
framework that we have developed to larger datasets 
and to identify and validate other types of prognostic 
information that could improve these algorithms such 
as imaging or biomarkers. The ethical defensibility of 
these algorithms depends, in part, on empirical analy-
ses of how they function in practice.

CONCLUSIONS

This proof-of-concept study demonstrates that the 
performance of CSC algorithms can be quantitatively 
tested in cohorts of patients with critical illness due to 
COVID-19 or non–COVID-19 diagnoses. Simulation 
of triage in smaller groups of patients demonstrated 
that CSC algorithms have significant differences in 
percentages of decisions requiring a tiebreaking lot-
tery and performance in selecting patients with a bet-
ter clinical outcome. A hypothetical algorithm of raw 
SOFA score plus age outperformed representative U.S. 
state CSC algorithms.
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