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Abstract: The exploitation of the important features exhibited by the complex systems found in the
surrounding natural and artificial space will improve computational model performance. Therefore,
the purpose of the current paper is to use cellular automata as a tool simulating complexity, able to
bring forth an interesting global behaviour based only on simple, local interactions. We show that,
in the context of image segmentation, a butterfly effect arises when we perturb the neighbourhood
system of a cellular automaton. Specifically, we enhance a classical GrowCut cellular automaton
with chaotic features, which are also able to improve its performance (e.g., a Dice coefficient of 71%
in case of 2D images). This enhanced GrowCut flavor (referred to as Band-Based GrowCut) uses
an extended, stochastic neighbourhood, in which randomly-selected remote neighbours reinforce
the standard local ones. We demonstrate the presence of the butterfly effect and an increase in
segmentation performance by numerical experiments performed on synthetic and natural images.
Thus, our results suggest that, by having small changes in the initial conditions of the performed task,
we can induce major changes in the final outcome of the segmentation.

Keywords: complex networks; cellular automata; image segmentation; butterfly effect;
emergent phenomena

1. Introduction

The various complex systems we directly or indirectly interact with, are either natural
(e.g., societies, ecologies, living organisms, organs) or artificial (e.g., artificial intelligence systems,
artificial neural networks, evolutionary programs, parallel and distributed computing systems).
Both categories are characterized by apparently complex phenomena that emerge as a result of
often nonlinear spatio-temporal interactions among a large number of elements at different levels
of organization [1]. Such a complex system is a collection of simple units (elements, entities, agents)
that interact, leading to emergent outcomes that are often difficult to predict simply by investigating
the individual interactions. Cellular automata (CA) [2] represent important tools in the study of
complex systems and they are being successfully applied in a variety of domains, including image
segmentation [3].

However, we believe that image segmentation does not yet benefit from all advantages of
self-organization and emergence potentially occurring in cellular automata, as in current approaches,
these computational methods are mostly used as a parallelization tool. This motivates the study of
image segmentation methods that build upon cellular automata on the edge of chaos, where remarkable
phenomena occur in complex systems.

In this paper we aim to optimize the GrowCut image segmentation algorithm [3] by introducing
a new neighbourhood system. We analyze the GrowCut algorithm at the cellular automata level and
propose an improvement to the algorithm based on prior work in cellular automata [4–7]. This can
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uncover a butterfly effect: a small change in the automaton specification can determine qualitative
changes in the algorithm output. Moreover, the neighbourhood topology can influence the speed
of the searching process, positively impacting segmentation performance. The investigation of the
classical topologies have revealed that the simple von Neumann neighbourhood can not escape from
local optima, while Moore neighbourhood could overpass this problem.

The size and the topology of the neighbourhood, and implicit of the CA’s grid, have a great
influence on the behavior of the system. Different neighbourhood topologies (lattice, network,
small-worlds) have been investigated in order to study their influence on the rule performance.
In [8–13], the neighbourhood topologies are evolved for cellular automata. In these studies a better
performance of evolved topologies over the regular lattices in CA majority and synchronization tasks
was shown.

Furthermore, enlarging the neighbourhood could weakly improve the segmentation result, but the
added computational effort does not always justify this performance gain [4,5]. Based on this previous
analysis, we intend to enrich the classic neighbourhoods by new elements: some remote neighbours
which are situated at a given distance to the main cell. These outside neighbours could be disposed in
various places: pure randomly (obtaining a star-based topology—like in [4,5]) or controlled randomly
(inside a layer or a band of a given width circumscribed to the classic neighbourhood—as we investigate
in this paper). The resulted neighbourhood’s topologies accelerate the information propagation and
the region growing involved in the segmentation flow.

Moreover, the neighbourhood extension affects the emergence of the underlying CA, enriching
the semantic of the global behaviour of the GrowCut algorithm: a small perturbation (in terms
of considered neighbours) can stimulate in a non-linear manner the segmentation according to
the complex system, giving rise to a butterfly effect. In this case, small events can be viewed as
catalysts changing the initial state of the system. Finally, these small changes also positively affect the
performance of the cellular automaton-based system.

In order to provide an overview of the field,in the beginning of the paper, the reader is familiarized
with the domain of complex systems in Section 2.1 and cellular automata in Section 2.2. An introduction
to the problem considered for validating our approach and its relation to cellular automata is given
in Section 2.3. Our proposed cellular automaton for image segmentation is afterwards described in
Section 3, with supporting numerical experiments in Section 4 and concluding remarks in Section 5.

2. Theoretical Background

Cellular automata are ideal tools for modelling both natural processes (e.g., physics, geology,
chemistry, biology, etc.) and complex systems (studying abstract notions of self-organization and
emergent computation in complex systems).

2.1. Complex Systems, Emergence and Self-Organization

A complex system has a large number of elements that are arranged in structures, forming topologies
which can scale very well. These elements interact locally–each one is connected, directly or indirectly,
with other elements. This enables the elements and the associated structures to change, evolve, or adapt to
particular environments or problems, giving rise to complex system dynamics [14]. These dynamics are
influenced by many factors, like number of elements and their interaction patterns, the organizational
structure of the system (e.g., groups, hierarchies), or feedback loops. Complex systems have three
important properties:

• They are robust to outside input and are able to self-organize [1].
• They can behave chaotically: the (highly) non-linear dynamics of some systems can make them

very sensitive to initial conditions, making them unpredictable.
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• They show emergent properties. Here, “emergence” refers to the fact that the whole is not the
sum of its parts [15] and occurs when the behavior of a system (at the macro– or global level)
cannot be reduced to the sum of the behavior of its parts (at the micro level) [15,16].

We have a special interest about the last two properties. An interesting phenomenon, called butterfly
effect, can be observed in non-linear systems: a small change in initial conditions can result in vastly
disproportionate response at a later stage [17]. In this context, it is difficult to model the chaotic behavior
numerically. Related to the emergence process, we are interested in the micro-macro effect [16,18] that
refers to those characteristics which become visible at a higher, macro level and that cannot be explicitly
identified at the lower, micro level.

2.2. Cellular Automata-Prerequisites

Cellular Automata (CA) represent useful and important tools in the study of complex systems
and interactions. Originated from John von Neumann and E. F. Codd in 1950s [19,20] and popularized
by Conway’s Game of Life in 1970s, CA can model complex computations. The formalism behind CA
refers to spread collections of simple and locally interacting elements which evolve following a set of
rules, emerging into a global behavior.

A CA is represented by a set of cells disposed on a grid, and a set of transition rules. At each
point in time, cells are in a given state, evolving from an initial state. The rules dictate how cells
change their state locally, based solely on the current state and the states of the neighbouring cells.
The rules are applied simultaneously for all cells, at each time step. A CA neighbourhood system
determines the connectivity pattern between each cells and the other cells in the system [21]. The two
most popular such neighbourhoods are the Moore and von Neumann neighbourhoods [19,22], which
are exemplified for 2D grids in Figure 1.

r=1 r=2

(a) Moore neighbourhoods of radius 1 and 2.

r=1 r=2

(b) Von Neumann neighbourhoods of radius 1 and 2.

Figure 1. Examples of Moore (a) and von Neumann (b) neighbourhoods.

More formally, a CA is a triplet (S, N, δ), where S is a set of possible states, N is a neighbourhood
system, and δ : SN 7→ S is a transition function, which formalizes the transition rules. The 2D von
Neumann neighbourhood of radius r over a grid Z is formalized as:

Nr
V(x0, y0) = {(x, y) ∈ Z : |x− x0|+ |y− y0| ≤ r} (1)

Similarly, the 2D Moore neighbourhood of radius r over a grid Z is formalized as:

Nr
M(x0, y0) = {(x, y) ∈ Z : |x− x0| ≤ r, |y− y0| ≤ r} (2)

CA, as computational models, are discrete in both space and time (each cell evolves from a state
to another), homogeneous in space and time (all changes of the cell’s state always follow the same
rules) and local in their interactions. Taxonomically, there are various classifications of CA, based on
grid dimensionality (e.g., 1D, 2D, nD), state space (e.g., binary, multi-state CA), or size and topology
of neighbourhood system. It is noteworthy that some particular local phenomena appearing in CA
depend on the size and the topology of the neighbourhood [23].
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From a system’s behavior point of view, Wolfram [24] has investigated the rules of 1D and 2D
binary CA and he has identified four classes of CA:

• Class 1: CA which evolve to a single, unique homogeneous state for all cells, irrespective of the
initial state;

• Class 2: CA displaying simple separated periodic structures that endlessly cycle through a fixed
number of states;

• Class 3: CA displaying chaotic or pseudo-random aperiodic structures;
• Class 4: CA which yield complex patterns of localized structures and are suitable for universal

computation.

Cellular automata that exhibit some of the most interesting behaviors are those belonging to
classes 3 and 4. In class 3 CA any change in the initial conditions is communicated globally and visible
in the later iterations of the evolution-the so-called butterfly effect. In class 4 this kind of propagation
is also possible but often affects only parts of the system. However, especially when talking about
chaos and complexity, despite many attempts reported in the literature of finding a way to decide the
membership of a CA to a certain class, this issue remains undecidable [25].

2.3. Cellular Automata and Image Segmentation

Image segmentation refers to the task of partitioning an image in sets of regions such that
the regions have similar meaningful characteristics (e.g., they represent the same object of interest).
Each pixel of the image is labelled so that pixels with the same label share some common features
(e.g., they belong to the same organ/bone/blood vessel in a medical image).

The segmentation of an image, I, can be defined as the partitioning of I in L sub-regions, such that:

• The union of all regions sums up the original image;
• Each pixel of the image is assigned exactly one of the L labels (each label corresponds to a region).

Image segmentation can be perceived as a clustering problem: it takes unlabeled data (i.e., pixels or
voxels) and divides it into two or more clusters representing objects and background.

Cellular automata can be successfully applied to the task of image segmentation [3,26]. The cellular
automata used for image segmentation are usually 2D, where each pixel maps to a cell of the CA.
The state of a cell contains information about the labelling of the corresponding pixel, and changes at
each time step based on the state of the neighbouring cells.

Advantages of using CA for image segmentation:

• It is an unsupervised method: it does not require a training set containing ground
truth information.

• It is highly parallel: computing the next state of a cell depends only on the current state and
neighbouring cells’ state.

• For every new image a CA is constructed and evolved in order to identify the corresponding
segments, i.e., no prior training is required. A large number of iterations required to obtained a
segmentation can be view as a drawback, but the possibility of implementing a parallel version of
the CA mechanism counteracts it.

One of the most popular approaches in the literature for CA-based image segmentation is given
by the GrowCut algorithm introduced in [3]. The algorithm has many advantages: it can segment
images of any dimension, it can solve hard segmentation tasks, it is extensible, it works with multiple
labels, it is simple, and it is interactive. This is a seed-based approach, i.e., it lets the user select a set of
pixels belonging to the desired regions (e.g., background and object).

The algorithm defines the state of the underlying CA’s cells to be a triplet (λ, σ, C) where λ is
the label of the cell, σ is its strength and C is a feature vector (e.g., grey intensity). At each time
step, labels (initially described just by the seeds) are propagated locally: each cell updates its label
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and strength of the label according to a “similarity” function between the cell and its neighbours.
This labeling process continues until the automaton converges to a stable configuration.

While GrowCut has been extended in various directions, its classical version is still being successfully
applied to image segmentation tasks, especially in the medical field, either as the main segmentation
method [27,28] or as part of a larger pipeline [26,29,30]. This is the case since, as a segmentation
algorithm, GrowCut provides several desireable qualities such as interactivity, small fine-tuning overhead,
and relatively clear segmentation semantics. To the extent of our knowledge, extensions to the algorithm
have either traded-off some of these qualities for better performance, or specialized the algorithm to a
niche task.

In [31], the authors present an extension of the automaton’s update rule by computing cell’s
strength by means of a fuzzy gaussian membership function. As a consequence, the algorithm becomes
more robust towards the seed selection and it even eliminates the need for specifying background
seeds, while also being more specialized towards unclear segment delimitations. The method’s good
performance was validated on mammography images, where handling of unclear boundaries is of
paramount importance.

In [32], the authors propose a means of automating the GrowCut algorithm by designing simple,
high-recall models of the object of interest. These types of models can then be used to generate a
small number of seed pixels which are fed into the GrowCut algorithm. In this case, the proposed
extension gives up a desireable quality of the algorithm (interactivity and fine-tuning overhead),
while maintaining the algorithm’s generality.

In [6,7,33], a series of fully-automatic extensions of the GrowCut algorithms have been proposed.
While these show general and good performance relative to automatic and unsupervised algorithms,
they give up all of the classical GrowCut’s qualities: interactivity, ease of setup, clear semantics.

Due to the dimension-agnosticism of the underlying CA, GrowCut can be extended to
multidimensional objects. In [34], the author presents a mathematical framework for defining standard
neighbourhoods with arbitrary density, that has as extreme cases the multidimensional Von Neumann
(sparse) and Moore (dense) neighbourhoods. Moreover, the paper formalizes neighbourhoods of
arbitrary radii, which are relevant in our approach to include long-distance information in CA-based
image segmentation applications.

Finally, previous studies on GrowCut algorithm and classical neighbourhoods [4,5] have shown
the impact of the neighbourhood topology on the final outcome. All these results are indicators of how
novel topologies and neighbourhoods can trigger good performance in CA tasks and can be adapted
to improve segmentation techniques.

3. Proposed Cellular Automata for Image Segmentation

The purpose of our contribution is to bring cellular automata closer to the edge between order and
chaos, where notable phenomena occur, with direct application to image segmentation. We start from
the popular GrowCut algorithm (see Section 3.1 for a description of the algorithm and the notation
used). Analyzing this algorithm at the CA level enables us to extend it using insights from the field of
cellular automata.

Specifically, we extend GrowCut with neighbourhoods which contain, alongside the regular
neighbours, several remote cells that are disconnected from the main neighbourhood. These distant
cells can bring additional information about the image segments which will propagate through the
entire CA evolution. This hybrid neighbourhood combines local and global information in order to
help the system’s convergence.

3.1. GrowCut

We further detail the original GrowCut algorithm, first introduced in [3]. This region growing
method starts with a grid of cells, where some have been labeled in advance (by a user or in an
automatically manner). The states of the CA cells are described using a triplet (label, strength, f eature).
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The labels corresponds to the regions to be segmented, the strengths are controlled by the algorithm
(the initial labelled cells have strength 1, on a continuous [0–1] scale), while the features could have
various semantics. In image segmentation, a possible feature is the pixel intensity, which can be an
integer on a 8-bit, 12-bit or 16-bit scale. From the initial labels, the regions start to grow around them,
the expansion process being guided in the direction of minimum feature difference.

The transition rule for GrowCut’s CA acts as a soft label propagator: A cell p will inherit a
neighbour’s q label (or, alternatively, q will capture p) whenever q is stronger than p. This relation is
formalized by Equation (3):

g(‖C(p)− C(q)‖) · σ(q) > σ(p) (3)

where C(·) is the feature vector associated with the cell, σ(·) is the strength of a cell, and g(·) is a
non-decreasing function bounded to [0, 1]. In our experiments, C(·) is the grey level of the pixel
represented by the cell.

Whenever a cell p is captured by a neighbour q, the label of q is propagated to p
(i.e., λ(p)← λ(q), where λ(·) is the label of a cell). Moreover, the cell p also changes its strength
(i.e., σ(p)← g(||C(p)− C(q)||) · σ(q)). Thus, the strength parameter captures the confidence that a
cell has a particular label. It is worth noting that the most popular neighbourhoods used in GrowCut
are the Moore and von Neumann neighbourhoods of radius 1 [19,22].

3.2. Band-Based GrowCut (BBG)

The proposed algorithm extends the classic GrowCut by a new neighbourhood topology.
This extension consists of a band of distant neighbours (called remote neighbours), possibly unconnected
to the classical ones. We define a neighbour band spanning the radii a through b as:

N(a,b)
BB (x0, y0) = {(x, y) ∈ Z : a ≤ |x− x0| ≤ b, a ≤ |y− y0| ≤ b} (4)

In Figure 2, we present a situation in which the band-based neighbourhood captures information
that is not local enough for the classical GrowCut neighbourhood. This example illustrates one of the
limitations of GrowCut that we are addressing by using band-based neighbourhoods. Specifically,
we have to identify an object that is split into multiple unconnected regions (B and D). If the seeds are
supplied only for one of the main regions of the object (B or D), classical GrowCut will be unable to
propagate labels between the two regions, in spite of substantial similarity.

In our example, we assume that foreground seeds are located only within the D region (Figure 2
shaded area). Because all pixels surrounding region D are background, in classical GrowCut there
is no path through which the seeds can propagate their label to region B. When using remote bands
(region C in Figure 2), though, cell A can receive labels from region D through a remote neighbour.

Figure 2. Example of a scenario where a band-based neighbourhood captures information that is
not local enough for the classical neighbourhood. A: The current cell analysed by the algorithm;
B: foreground object which contains no seed pixels; C: remote neighbourhood of cell A; D: foreground
object which contains seed pixels.
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From a theoretical point of view, this discrepancy in the ability of segmenting unconnected regions
occurs due to the way the labels propagate in the two GrowCut flavors. Figure 3 illustrates an example
image that showcases the inability to propagate labels using standard neighbourhoods. In this example,
pixels A and D are set as background and foreground seeds, respectively. The initial states of the cells
in GrowCut’s CA are detailed in Table 1.

Figure 3. Example image used for showcasing label propagation in GrowCut. A,B,C,D are individual
pixels. Asterisk denotes a seed pixel.

After the first iteration, A will propagate its label to B, and D will propagate its label to C. Table 2
shows the strengths of the attacks of neighbours against cells in the entire CA. The successful attacks,
resulting in label propagation, are emphasized in bold. Thus, the first iteration resulted in mislabeling
the B and C pixels. The state of the cells after this iteration are detailed in Table 3.

Table 1. Initial states of the GrowCut CA cells in our example. BG—background, FG—- foreground.

A B C D

Intensity 1.0 0.1 1.0 0.1
Strength 1.0 0.0 0.0 1.0

Label BG - - FG

Table 2. Strengths of all cell attacks during the first iteration. Columns represent attacking cells and
rows represent defending cells. Bold values represent successful attacks.

Defending
Cell A B C D Defense

Strength

A 0.0 - - 1.0
B 0.1 0.0 - 0.0
C - 0.0 0.1 0.0
D - - 0.0 1.0

At this point, GrowCut has converged (Table 4 shows the strengths of the attacks in the
second iteration). We can see that, due to the limited reachability of the standard neighbourhoods,
the algorithm ended up mislabeling the B and C pixels.

Table 3. States of the GrowCut CA cells after the first iteration. BG—background, FG—foreground.

A B C D

Intensity 1.0 0.1 1.0 0.1
Strength 1.0 0.1 0.1 1.0

Label BG BG FG FG
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Table 4. Strengths of all cell attacks during the second iteration. No attacks were successful, therefore the
algorithm converged.

Defending
Cell A B C D Defense

Strength

A 0.01 - - 1.0
B 0.1 0.01 - 0.1
C - 0.01 0.1 0.1
D - - 0.01 1.0

From an implementation point of view, our proposed algorithm extends classical GrowCut only
with respect to the considered neighbourhood. Thus, at each iteration of the algorithm for each
cell, we also consider the extended neighbourhood (the band-based one) N(a,b)(·). This is done after
considering the original neighbourhood, such that the original neighbours win in case of a tie.

Since, for each cell, the algorithm will compare against all neighbour cells, our extension can
quickly become intractable as the width and distance (to the cell) of the band grow. Specifically,
the number of cells in a d-dimensional Moore neighbourhood band N(a,b) spanning the radii a through
b is stated in [34] to be:

|N(a,b)| = (2b + 1)d − (2a + 1)d (5)

Equation (5) illustrates the rate of growth of these band-based neighbourhoods, and suggests that
considering all of these remote neighbours in each iteration of the algorithm can become intractable.
To address this problem, we propose a scheme involving sampling k such remote neighbours at
each iteration, for each cell (the sampled neighbours are different for each cell). We will denote such
neighbourhood as N(a,b)

k .
This scheme is motivated by the fact that remote neighbours contain highly variable information,

which are not always relevant to the current cell’s labeling. If information is relevant, though, we would
like it to be both spread around the neighbourhood and persistent across time. For this reason,
our scheme has a vey high probability of finding this information if independent samples are drawn for
each cell, at each iteration. In Section 4.3.1 we show experimentally that Band-Based GrowCut is robust
against the choice for k. Moreover, the original hybrid neighbourhood, proposed for 1-dimensional
CA [35] employed a similar random sampling of neighbours, which was validated experimentally to
be robust to dynamic resampling.

3.3. Theoretical Analysis of BBG

Effects on convergence : Changing the neighbourhood of the CA does not affect the convergence
of the algorithm. GrowCut has been shown to be equivalent to the Ford-Bellman algorithm [36]. In the
equivalence proof, the number of neighbours has no effect on the development of the proof.

Higher-dimensional images: The algorithm and neighbourhood specifications are agnostic on
image/grid dimensionality. In practice, however, the dimensions of the image might not have the same
semantics, e.g., in medical images, multiple consecutive 2D slices are packed into a 3D volume, but a
step along the third dimension discards information available between the slices. In such situations,
the neighbourhoods used need to be adapted to fit the application, e.g., by rescaling along a dimension,
using slice-based neighbourhoods.

Emergence: The purpose of proposed neighbourhoods is to check whether the pixels situated
outside the current cell’s immediate vicinity can influence the results of the segmentation task. In this
context, remote neighbours’ (desired) effect is to influence the state of the cell using global information.

From a systems point of view, GrowCut is the underlying CA that governs the dynamics of
the system. GrowCut can grow spatial regions of cells with identical labels—a simple emergent
process belonging to class 2 of CA, known as synchronization [37]. As the CA evolves, the majority
of cells from such a synchronized region can either maintain their states or show a periodic pattern.
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The cells that do not subscribe to these simple dynamics are located on the edges of the synchronized
regions. These cells govern the evolution of the synchronized region, by increasing/decreasing its
volume. Thus, the contribution of edge–cells in this process is enhanced by including remote bands in
the neighbourhood.

In the context of image segmentation, a synchronized region corresponds to a segment of the
image (foreground or background). The proposed neighbourhood will influence the growth or the
shrinkage of these segments (when the neighbourhoods of cells located on the segment edge become
more distant, the segment will expand and viceversa). The proposed approach can create new regions
because of remote neighbours (as opposed to classical GrowCut).

4. Numerical Experiments

In order to assess the performance of classic GrowCut and Band-Based GrowCut (BBG),
we performed a set of quantitative and qualitative experiments. For all experiments, we compared
different neighbourhood configurations of BBG as well as the classical GrowCut neighbourhoods.

4.1. Data

We ran experiments on synthetic, real-world and medical data, covering both 2D and 3D scenarios.
We describe below the used datasets:

4.1.1. Synthetic Images

We designed a set of 10 synthetic images featuring different types of noise (denoted as Synthetic).
The purpose of this dataset is twofold: on one hand, it’s simplicity enables us to better understand
the dynamics of the algorithm; on the other hand, it was used to gather numerical insights into the
butterfly effect of the underlying CA.

4.1.2. Real-World and Medical Data

We ran experiments on a randomly selected subset of 100 2D images from the Berkeley dataset [38]
(denoted as Berkeley). The dataset contains natural images, lacking a specific theme.

For 3D images, we used the MMWHS dataset [39], a dataset of clinical MRI and CT scans of
the human heart. We used 20 MRI scans of this dataset (the mr train subset), along with ground
truth volumes that segment the heart from the rest of the scan (denoted as 3D MRI). We have also ran
experiments on a 2D projection of the (same) MRI data, by selecting the most representative slices
(denoted as 2D MRI). For all datasets, we simplified the segmentation task to foreground/background
segmentation by considering all labeled objects as foreground.

4.2. Methodology and Setup

In this batch of experiments, we explored the performance of the different proposed neighbourhood
systems, as measured not only by standard image segmentation metrics (e.g., Dice Coefficient, Hausdorff
Distance), but also by other metrics related to the complexity of the proposed approach.

In all of our experiments only Moore neighbourhoods were considered. We note that the classical
radius 1 Moore neighbourhood is part of every BBG configuration. The neighbourhoods we considered
are presented in Table 5.
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Table 5. GrowCut configurations considered for our experiments. The columns describe the type
of local and remote neighbourhoods used, as well as the number of neighbours sampled from the
remote band. The remote bands are coded by specifying their neighbourhood type (e.g., Moore) and,
in parantheses, the radii they span. For example, Moore (2,5) refers to a neighbour band spanning radii
2 through 5.

Standard
Neighbourhood

Remote
Neighbourhood

Neighbours Sampled
from Remote Neighbourhood

Classical GrowCut Moore - -
BBG-5 (2, 5) Moore Moore (2, 5) 5
BBG-5 (5, 10) Moore Moore (5, 10) 5
BBG-5 (10, 30) Moore Moore (10, 30) 5
BBG-5 (30, 45) Moore Moore (30, 45) 5

The limits of these neighbour bands were chosen somewhat arbitrarily as they would cover an
area large enough (up to 90 px) relative to the image sizes. The width of the neighbourhoods were
chosen as further bands would be wider and nearer bands would be thinner. For all experiments we
chose to sample 5 neighbours from the remote band (i.e., k = 5), since we could not find a significant
difference in performance when varying k (see Section 4.3.1 for details of this experiment).

Growcut parameters. When running the experiments, we limited the number of iterations for one
image to 2000. If this number of iterations was reached without convergence, the segmentation was
returned in its non-converged form.

Seeds. GrowCut requires a set of initial values (i.e., seeds) to be set by the user. In order to avoid
subjectivity in setting these seeds, we created the seeds algorithmically. In this algorithm one vertical
seed (i.e., a line of pixels running down the same column of the image) is generated for the background
and one for the foreground. These seeds are chosen in a way that, out of all possible vertical seeds for
that region (background/foreground), they have the maximum height. The seeds are then scaled to a
percentage of their height (we used 75% in our experiments).

Handling 3D images. 3D volumes can be interpreted in two different ways: on one hand, they can
be seen as a stack of 2D images slices, and on the other hand, they can be seen as full 3D volumes, in which
case we require that all dimensions have the same scale (isovoxels). These two ways of interpreting the
3D volumes map to different ways of extending the GrowCut algorithm to 3D volumes. For a stack of
slices interpretation, it is natural to segment each 2D slice independent of the others and reassemble
the slices into a 3D volume. For a full 3D interpretation, we can leverage the 3D formulations of CA
neighbourhoods. On our experiments, we have used both formulations and used one seed for each slice:

• Stitch: we segment each slice individually and stack the resulting segmentations.
• Full: we use the neighbourhoods’ definition for 3 dimension, i.e., a cell in the CA corresponds to a

voxel in the 3D volume.

Performance measures. The performance measures used in this experiment are divided into two
categories: supervised and unsupervised measures. Some of the supervised performance measures
are: Precision, Recall, False Positive error (FP), False Negative error (FN), True Positive error (TP),
Jaccard index, Dice overlap measure, Probabilistic Rand Index (PRI), Variation of Information (VoI),
Global Consistency Error (GCE) and Boundary Displacement Error (BDE) [40,41].

The Dice score reports segment overlap as the ratio between the total overlap area and the sum
of the two segments’ individual areas. When the two segments are the predicted and ground truth
segment, Dice penalizes both false positive and false negative segmentations. Precision and Recall offer
a more clear view of the segmentation error, since they only penalize false positive or false negative
segmentations, respectively. The Dice score can be derived from precision and recall scores as their
harmonic mean [42].

Discrepancy, foreground error, background error, and uniformity are unsupervised measures used
to measure the performance of the proposed method. These measures summarize properties of the



Entropy 2020, 22, 1028 11 of 24

segmented regions, without taking into account the ground truth segmentation. Discrepancy measures the
grey-level difference between the original image and the output image after thresholding. It was proposed
to evaluate thresholding-based segmentation techniques that separate the foreground object from the
background [43]. The foreground error and the background error quantify the intensity homogeneity
of the foreground and background regions, respectively. More specifically, this is calculated as the sum
of squared differences between the intensities of the pixels in a region and the mean intensity in the
same region. The uniformity measure is a convex combination of foreground and background error,
with coefficients given by the proportion of foreground and background pixels, respectively.

After using these, we considered other performance measures too, as they have different relevance
in qualitative analysis of segmentation. Some of these metrics are based on the overlap between the
resulted segmentation and the ground truth (e.g., TPR, Adjusted Rand Index, Global Consistency
Error, Mutual Information, Cohen’s Kappa). Although overlap is an important aspect of segmentation
quality, overlap-based metrics do not emphasize the fidelity of the segmentation’s contour. Therefore,
the distance-based metrics (e.g., Mahalanobis Distance, (Average) Hausdorff Distance) can be
considered, since they are able to highlight the differences between two segmentation’s profiles.

In addition, the performance measures borrowed from supervised classification domain (e.g., TP,
TN, etc.), work well in the case of balanced classification problems, where each class has the same number
of examples. In the case of segmentation, it is common to have a disproportionate number of training data
in one class (background pixels) compared to the other class. Therefore, in addition to the classic accuracy
metrics, other performance measures are taken into account (Area Under ROC Curve, Adjusted Rand
Index, Mutual Information, Recall, Variation of Information, Over/Under Segmentation Entropy [44]).

4.3. Results

4.3.1. Experiment 1

The first experiment aimed to validate the proposed Band-Based GrowCut by comparing against
ground truth (proving the confidence of good segmentation ability) for the following image sets: 2D
(synthetic, Berkeley, 2D MRI) and 3D (3D MRI).

As a first step of our analysis, two aspects have been considered: the influence of the number
of neighbours sampled from a remote band (the k parameter) and the band’s width over the
segmentation process.

In order to pick a value for the k parameter, we ran an experiment where we evaluated the
performance of different k values across all four different remote bands and three datasets (we considered
only 2D images: synthetic, Berkeley, 2D MRI). Table 6 shows the average DICE values for k values of
5 neighbours, 20 neighbours, and 1.5% of the number of neighbours in the remote band.

Table 6. Average DICE coefficient for different k values, across different datasets.

k Synthetic Berkeley 2D MRI

5 0.870 0.687 0.595
20 0.858 0.684 0.589

1.5% of remote
neighbour band 0.854 0.683 0.592

In the latter scenario (1.5% of neighbours), the k parameter changes with the size of the employed
neighbour band. The results suggest that there is no significant difference in performance between the
three k values. For this reason and for a reduced computational effort, we chose to fix k = 5.

With k parameter fixed, we were interested in validating the performance of Band-Based GrowCut
in segmenting various images (2D and 3D, synthetic or real). Next figures show the DICE, Precision,
Recall, Mutual Information, Uniformity and Discrepancy results obtained on the Synthetic (Figure 4),



Entropy 2020, 22, 1028 12 of 24

Berkeley (Figure 5), 2D MRI (Figure 6) and 3D MRI datasets (Figures 7 and 8). Figures 9–11 show
sample images from 2D datasets along with the segmentations obtained using the different algorithms.

(a) Dice coefficient (b) Precision

(c) Recall (d) Mutual Information

(e) Uniformity (f) Discrepancy
Figure 4. Performance of the evaluated algorithms on the Synthetic images. Median, 1st quartile and
3rd quartile values are shown in black.
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(a) Dice coefficient (b) Precision

(c) Recall (d) Mutual Information

(e) Uniformity (f) Discrepancy
Figure 5. Performance of the evaluated algorithms on the Berkeley images. Median, 1st quartile and
3rd quartile values are shown in black.
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(a) Dice coefficient (b) Precision

(c) Recall (d) Mutual Information

(e) Uniformity (f) Discrepancy
Figure 6. Performance of the evaluated algorithms on the MMWHS 2D MRI images. Median,
1st quartile and 3rd quartile values are shown in black.
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(a) Dice coefficient (b) Precision

(c) Recall (d) Mutual Information

(e) Uniformity (f) Discrepancy
Figure 7. Performance of the evaluated algorithms on the MMWHS 3D MRI images (using a Stitch
neighbourhood, i.e., each slice was segmented individually). Median, 1st quartile and 3rd quartile
values are shown in black.
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(a) Dice coefficient (b) Precision

(c) Recall (d) Mutual Information

(e) Uniformity (f) Discrepancy
Figure 8. Performance of the evaluated algorithms on the MMWHS 3D MRI images (using a Full
neighbourhood, i.e., full 3D extensions of the neighbourhoods systems). Median, 1st quartile and 3rd
quartile values are shown in black.
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Figure 9. Sample images from the synthetic dataset along with the segmentation results for different
algorithms. Legend: (a) input image along with the foreground seed (magenta) and background seed
(green); (b) ground truth; (c) Classical GrowCut; (d) BBG-5 (2, 5); (e) BBG-5 (5, 10); (f) BBG-5 (10, 30);
(g) BBG-5 (30, 45).

Figure 10. Sample images from the Berkeley dataset along with the segmentation results for different
algorithms. Legend: (a) input image along with the foreground seed (magenta) and background seed
(green); (b) ground truth; (c) Classical GrowCut result; (d) BBG-5 (2, 5) (e) BBG-5 (5, 10); (f) BBG-5 (10,
30); (g) BBG-5 (30, 45).



Entropy 2020, 22, 1028 18 of 24

Figure 11. Sample images from the 2D MRI dataset along with the segmentation results for different
algorithms. Legend: (a) input image along with the foreground seed (magenta) and background seed
(green); (b) ground truth; (c) Classical GrowCut result; (d) BBG-5 (2, 5) (e) BBG-5 (5, 10); (f) BBG-5 (10,
30); (g) BBG-5 (30, 45).

These results suggest a generally good segmentation performance of GrowCut when using
a hybrid, band-based neighbourhood (BBG). The segmentation quality obtained by various
neighbourhoods (classic or band-based) are somehow similar, validating that the proposed approach
can solve the considered problem. If we take into account the segmentation quality, two bands are
better (5–10 and 30–45) for the majority of experiments, while if we consider the algorithm complexity
5–10 band induces the best results. The obtained segmentations emphasize a special ability of the
proposed extended neighbourhood to grow regions that bring together local and global information.
In addition to the main region of interest, the proposed algorithm can identify small or particular
segments of the image to be segmented (e.g., in Figure 9 BBG identifies the small foreground elements,
while in Figure 10 the mark on the plane was also segmented). Furthermore, in the case of MMWHS
2D MRI dataset (see Figure 11), we can see qualitatively that the various hybrid neighbourhood
approaches tend to better delimit contours of the heart structures of interest.

4.3.2. Experiment 2

The second experiment is aimed to compare BBG with classical GrowCut in terms of segmentation
quality and temporal complexity (running time or number of iterations) for considered image datasets:
2D (synthetic, Berkeley, 2D MRI) and 3D (3D MRI).

In some scenarios, we can observe an improvement in terms of segmentation quality generated
by the extended neighbourhood. The remote cells included in the proposed neighbourhood increase
the computational complexity of GrowCut in terms of number of operations. To this end, we have
analysed several metrics related to the computational effort: the number of iterations performed by
GrowCut until it converges (Iteration count) and the required time for performing these iterations
(Segmentation time). The obtained values are presented in Tables 7–10.

We can observe that segmentation time for different neighbourhood varies with dataset.
For example, in the 2D MRI dataset, information is evenly spread in close neighbourhood to pixels.
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In other words, for small neighbourhoods such as N(2,5), the nature of label propagations is, on average,
the same as for the standard neighbourhoods. This is due to the nature of the images, which contain
large areas of heart structures, with even intensity. Thus, the CA is much more prone to propagate
labels from multiple neighbours (both remote and local). This increases the total segmentation time for
small neighbourhoods. Conversely, in these situations, the CA converges in less iterations due to the
uniformity of the information in small neighbourhoods around pixels.

Similarly, for further neighbourhoods (such as N(5,10), N(10,30)), information available in these
neighbours is not as uniform, determining a larger number of iterations to convergence, but with faster
overall segmentation times (please refer to Table 9 for value). In the N(30,45) case, we can see a fast
segmentation time along with small number of iterations to convergence, which is explained by the
sparsity of label propagations from these neighbours. Similar computational performance patterns can
be observed for the Synthetic and Berkeley datasets (Tables 7 and 8).

In the 2D case, most runs converge within 2000 iterations. This is not the case, though, for the
3D dataset. We observe that the increase in dimension determines much larger segmentation times
(please refer to Table 10 for value). We attribute this to both the increase in available information along
all dimensions, and to the large increase in neighbour count (both local and remote).

In order to directly compare the performance of BBG configurations with GrowCut’s performance,
we also analyzed the image-level difference in performance for these algorithms (i.e., increase/decrease
in performance of each image when processed using a BBG configuration relative to GrowCut).
These results are consistent with our other results, yet they show a smaller variance in the measured
performance metrics, since they factor out the influence of individual images. This set of results is
available in the Supplementary Material (Supplementary Figures S1–S5).

Table 7. Results for Synthetic dataset (average computational complexity metrics).

Method Iteration Count Segmentation Time
(seconds)

GrowCut 493.67 6.00
BBG-5 (2, 5) 249.42 7.11
BBG-5 (5, 10) 302.75 5.65
BBG-5 (10, 30) 371.33 5.96
BBG-5 (30, 45) 303.00 6.27

Table 8. Results for Berkeley dataset (average computational complexity metrics).

Method Iteration Count Segmentation Time
(seconds)

GrowCut 515.68 6.12
BBG-5 (2, 5) 611.34 8.64
BBG-5 (5, 10) 765.47 7.04
BBG-5 (10, 30) 731.98 7.27
BBG-5 (30, 45) 614.77 7.35

Table 9. Results for 2D MRI dataset (average computational complexity metrics).

Method Iteration Count Segmentation Time
(seconds)

GrowCut 684.70 6.69
BBG-5 (2, 5) 388.15 7.74
BBG-5 (5, 10) 485.40 6.18
BBG-5 (10, 30) 471.45 6.15
BBG-5 (30, 45) 381.45 6.31
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Table 10. Results for 3D MRI dataset (average computational complexity metrics). Stitch: each slice
of the image was segmented individually as a 2D image; Full: a 3D neighborhood was used (further
detailed in Section 4.2).

Method Iteration Count Segmentation Time
(seconds)

Stitch GrowCut 1031.60 265.42
Stitch BBG-5 (2, 5) 1568.85 285.29
Stitch BBG-5 (5, 10) 1996.95 350.20
Stitch BBG-5 (10, 30) 2000.00 345.02
Stitch BBG-5 (30, 45) 1987.65 365.08
Full GrowCut 1031.60 267.07
Full BBG-5 (2, 5) 2000.00 520.46
Full BBG-5 (5, 10) 2000.00 473.96
Full BBG-5 (10, 30) 1850.05 484.71
Full BBG-5 (30, 45) 1151.55 4399.69

4.3.3. Experiment 3

In this experiment we investigated the presence of a butterfly effect by assessing whether by
changing the initial conditions of the system (i.e., the neighbourhood) we can determine a change in
image segmentation properties. In other words, we were interested in whether the small change in
neighbourhood system can propagate to the high-level output semantics. To this end, we performed
two sets of measurements, one at the image segmentation properties level, where we analyze the
characteristics of the output, and one at the cellular automata level, where we assess whether the
change in neighbourhood system determines a change in low-level automata behavior. The latter
measurement was performed to determine whether the observed macro behavior is concurrent with
a change in low-level behavior, that can be more easily linked to the change in initial conditions.
We performed these analyses on synthetic images, since these show the least annotation ambiguity
with respect to the segmentation property measured.

At image segmentation level, we investigated the segmentation granularity as the representative
property. Specifically, we measured over- and under-segmentation as quantified by Over Segmentation
Entropy (OSE) and Under Segmentation Entropy (USE) [44] averaged across the dataset. OSE is defined
as conditional entropy of the segmentation given the ground truth:

OSE = −∑
S,T

P(T, S)logP(S|T) (6)

where S is the segmentation and T is the respective ground truth. Similarly, USE is defined as the
conditional entropy of the ground truth given the segmentation [44]:

USE = −∑
S,T

P(T, S)logP(T|S) (7)

Our results on synthetic images are presented in Table 11. We chose this dataset, since we had a
properly labeled ground truth only for these in order to measure over- and under-segmentation. On the
macro level, the results of our experiments indicate that BBG shows a dominant oversegmentation
behavior—the ratio between the OSE and the USE varies between 202% and 348% for BBG, while the
same ratio is 22% for the Classical GrowCut. Moreover, we observe that the under segmentation
behavior is less pronounced as the distance to the band-based neighbourhood increases, reaching USE
values that are below those obtained by Classical GrowCut.
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Table 11. Over and Under Segmentation Entropy measured on our synthetic dataset.

Algorithm OSE USE OSE/USE
Ratio

Classical GrowCut 0.038 0.175 22%
BBG-5 (2, 5) 0.389 0.205 190%
BBG-5 (5, 10) 0.420 0.208 202%
BBG-5 (10, 30) 0.445 0.146 305%
BBG-5 (30, 45) 0.466 0.134 348%

In order to inspect the micro-level behavior, we ran an experiment where we registered the
total number of propagated levels (wins) across a run of the algorithm and the nature of this label
propagations. Specifically, we investigated whether the label propagation had at its source a neighbour
in the standard neighbourhood, or one in a remote band. Moreover, we also registered the number of
label propagations that were overridden by a neighbour in the far band, i.e., a local neighbour would
have propagated the label in absence of remote neighbours.

These metrics quantify the behavior of the algorithm in terms of its most basic operation: the label
propagation. We can thus extract information about the preference towards certain neighbours in the
label propagation decision process.

Our results are presented in Table 12 and show that the number of total wins decreases with the
distance of the remote neighbours to their respective cell. Another insight is that, when employed,
the remote neighbours are responsible for 48% of the total wins (on average); these numbers do not
seem to depend on the employed remote band. The expected number of remote neighbour wins in a
uniformly random scenario would be close to 38%, equal to the fraction of remote neighbours to local
ones. Our results show values above this reference, suggesting the existence of a preference towards
propagating labels through remote neighbours.

Table 12. Number of label propagations classified by their source (local, remote, or overridden by
remote)—Synthetic dataset.

Method GrowCut BBG-5
(2, 5)

BBG-5
(5, 10)

BBG-5
(10, 30)

BBG-5
(30, 45)

Local Wins 100% 42% 47% 63% 58%
Remote Wins 0% 30% 26% 18% 18%
Remote Overrides 0% 28% 27% 19% 24%
Total Wins (106) 44.76 15.93 33.31 26.10 16.69

These results show that, by inducing a small change in the initial conditions of the system
(i.e., the neighbourhood), we achieve a change in high-level output semantics, implying the existence
of a butterfly effect. Moreover, this effect on output segmentation granularity can also be observed at
the level of label propagations, the most fundamental operation of the system.

These results suggest that, by having small changes in the initial conditions of the performed
task, we can induce major changes in the final outcome of the segmentation. This behaviour translates
into the appearance of a butterfly effect, due to the enhancement of a cellular automaton with chaotic
features, that brings it closer to the edge of chaos.

5. Conclusions

In this work we introduced Band-Based GrowCut, an extension to GrowCut—an interactive,
image segmentation algorithm based on cellular automata. The topology and neighbourhood represent
important initial conditions of a CA. In the context of image segmentation, we show how small changes
in these initial conditions have a significant impact on the final outcome. These changes are realized
by adding new distanced cells to the classical neighbourhood in order to collect extra information,
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which afterwards propagates itself through the entire system. The effect of this propagation can be seen
in the regions that the enhanced cellular automata can detect, in addition to the main object of interest.
We leveraged developments in cellular automata to endow the algorithm with global information at
each step in the segmentation process.

Furthermore, we analyzed the proposed GrowCut extension at different levels. We measured
the oversegmentation effect the inclusion of remote neighbours has on the segmentation, as well as
the effect on the CA’s dynamics. We evaluated the algorithm on a series of 2D and 3D heterogeneous
segmentation tasks and compared it against classical GrowCut, showing that our proposed extension
outperforms it on synthetic and natural images. Finally, our results suggest that, by having small
changes in the initial conditions of the performed task, we can induce major changes in the final
outcome of the segmentation.

The current work is part of a more complex one, dedicated to the analysis of how each component
of a CA affects its performance in solving a particular task. While the proposed approach is focusing
on analysing the role of the neighbourhood’s topology, as future work we plan to investigate the
other aspects that could influence the performance of our Band-Based GrowCut algorithm: the label
propagation principles and the CA’s initial state governed by the seeds in the case of our Band-Based
GrowCut algorithm.

Supplementary Materials: The following are available at http://www.mdpi.com/1099-4300/22/9/1028/s1.
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