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Abstract: Loop Closure Detection (LCD) is an important technique to improve the accuracy of
Simultaneous Localization and Mapping (SLAM). In this paper, we propose an LCD algorithm based
on binary classification for feature matching between similar images with deep learning, which
greatly improves the accuracy of LCD algorithm. Meanwhile, a novel lightweight convolutional
neural network (CNN) is proposed and applied to the target detection task of key frames. On this
basis, the key frames are binary classified according to their labels. Finally, similar frames are input
into the improved lightweight feature matching network based on Transformer to judge whether the
current position is loop closure. The experimental results show that, compared with the traditional
method, LFM-LCD has higher accuracy and recall rate in the LCD task of indoor SLAM while
ensuring the number of parameters and calculation amount. The research in this paper provides a
new direction for LCD of robotic SLAM, which will be further improved with the development of
deep learning.

Keywords: SLAM; LCD; deep learning; object detection; feature matching; lightweight CNN;
transformer

1. Introduction

Nowadays, considerable research contributions have been made toward the evolution
of visual Simultaneous Localization and Mapping (SLAM) [1–3]. SLAM plays an essential
role in robot applications, intelligent cars, and unmanned aerial vehicles. As for robot
applications, SLAM helps mobile robots solve two key problems: “Where am I?” and “How
am I going?”. SLAM is also helpful for augmented reality and virtual reality applications [4].
Considering the high cost of laser SLAM, based on the laser range finder, and the limitations
of its application scenarios, researchers have begun to focus on low-cost and information-
rich visual SLAM in recent years. Among them, visual place recognition of pre-visited areas,
widely known as Loop Closure Detection (LCD), constitutes one of the most important
SLAM components [5]. Accurate closed-loop detection technology can eliminate pose drift
and reduce cumulative errors to obtain globally consistent trajectories and maps. When
working outdoors, GPS can be used to provide global location information [6]. However,
indoors, we need to do something different.

Initially, the researchers used the similarity between images and maps to determine
the consistency between image points and map points. However, this method is only
suitable for the closed-loop detection of global maps in a small range of environments
due to high computational complexity. Hahnel et al. proposed a method based on the
odometer to determine whether the camera moved to a previous position by using the
geometric relationship of the odometer [7]. This approach is ideal, but because of the
existence of cumulative error, we cannot correctly know whether the robot moved to a
certain position before.

The other method is based on appearance, which only carries out loop detection
according to the similarity of two images. By detecting the similarity between the current
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frame image obtained by the robot and the historical key frame image, it can judge whether
the robot has passed the current position. Appearance-based methods mainly include local
LCD and global LCD. A system based on local appearance searches for the best image
match to a set of adjacent images and uses similar comparison techniques [5]. Milford
et al. proposed a sequence-based approach that calculates the best candidate matching
positions in each local navigation sequence and then achieves localization by identifying
the coherent sequences of these matches [8]. Another system based on global appearance
finds the most similar images in the database in an exhaustive way. For instance, the Bag of
Words (BoW) method proposed by Mur-Artal et al. is a global detection system [9]. In this
method, a visual dictionary is constructed by clustering the data composed of the image
features of the training set. Then, the image of the current frame is mapped to the visual
dictionary and calculate the similarity of the feature description vector between the image
of the current frame and the image of the historical frame. However, the limitation of this
method is that the period of image feature extraction is several times that of other methods.
However, this method is limited by the speed of image feature extraction, and the feature
extraction cycle is several times longer than other steps. For low-texture features, Joan
P. et al. proposed the LiPo-LCD method based on the combination of lines and points,
which adopt the idea of incremental Bag-of-Binary-Words schemes, and build separate
BoW models for each feature, and use them to retrieve previously seen images using a late
fusion strategy [10].

In other words, an appearance-based LCD problem can be transformed into an image
retrieval task. In this case, the current input image is treated as a query image, while the
previous image is treated as a database image [11]. Therefore, the core factors affecting
the performance of the appearance-based LCD method are image feature extraction and
candidate frame selection. In most cases, existing methods work well. However, in some
complex scenarios, such as changing lighting, dynamic object occlusion, and repetitive en-
vironments, these methods still face significant challenges. In this case, we need to consider
the repeatability and discriminability of features. Secondly, the traditional BoW framework
displaces the spatial information between visual words, resulting in quantization errors [12].
Sparse feature matching used to be solved with hand-crafted descriptors [13–15]. Recently,
Convolutional Neural Networks (CNN) has had great success in pattern recognition and
computer vision tasks [16,17]. Many researchers use the depth features extracted by CNN
to improve the LCD algorithm and achieve fine results [12,18,19]. However, the calculation
amount of LCD based on CNN is quite enormous.

To solve the above problems, this paper proposes LFM: a lightweight feature matching
algorithm based on candidate similar frames. The framework (shown in Figure 1) includes
the following steps:

1. Object detection of images form key frames based lightweight CNN;
2. Classify the images based on the salient features of the target detection results;
3. Classify the new input key frame images by a binary classified tree according to their

labels, and then conduct lightweight feature matching for this image and the others
from the same category, which could help the robots judge whether they have passed
the current position before.

At the same time, considering the problem of computation and precision, we improve
an ultra-lightweight CNN network to extract features. Experimental results show that
LFM is especially superior in the LCD task. Summarized, our core contributions in this
paper are:

• Based on the Residual Inverted Block proposed by MobileNetV2 [20], we designed a
Residual Depth-wise Convolution Block (also called fish-scale block)to obtain more
abundant depth information with less computation.

• We applied the new lightweight CNN (FishScaleNet) to the object detection algorithm,
which has a high mAP value while improving the speed and creates a binary classified
tree for the key images according to their labels.
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• We applied the new lightweight CNN to the feature matching algorithm based on
depth features, which can efficiently complete the matching task in the similar image
categories. Compared with other feature matching algorithms, our lightweight feature
matching algorithm has faster matching speed and less mismatching. Moreover, the
LCD algorithm based on LFM can still guarantee better accuracy in the case of a high
recall rate.

Figure 1. This is an overview of the proposed LFM framework; dashed lines indicate the category of the input key frame
image. The database image consists of the key frames image entered previously.

2. Related Works
2.1. Lightweight CNN

In recent years, many researchers have devoted themselves to optimizing the memory
storage of convolutional neural networks and accelerating computation. The methods can
be divided into the following directions: network pruning [21], low quantization [22,23],
knowledge distillation [22], and compact network design [20,24–26]. The compact network
design minimizes the loss of precision and reduces the total number of parameters and
operations, so it is widely used. The commonly used compact method is to use group
convolution to reduce the amount of computation, which can be reduced to 1/G (where G
represents the number of groups). Particularly, when G is equal to the number of channels,
this is called depth-wise convolution. Collet et al. proposed, for the first time, to use the
combination of depth-wise (DW) convolution and pointwise (PW) convolution to obtain
depth information [27]. The MobileNet series [20,28,29] proposed by Andrew et al. is the
most successful lightweight CNN model based on depth-wise separable convolution so
far. It emphasizes that the first PW convolution is responsible for channel spread. The
second PW convolution is responsible for learning new features from different channels
in the reverse residuals block, which greatly reduces the computational complexity. The
GhostNet [25] proposed by Han et al. reduces the number of output channels of PW
convolution and reduces the memory occupied by external features. In order to maintain
the consistency of the output dimension, a series of linear transformations, such as DW
convolution, are used to generate the internal features, which are fused with the output of
PW convolution into the final feature vector. Yang et al. proposed an asymmetric bottleneck
network based on MobileNet and adjusted the first PW convolution dimension. Moreover,



Sensors 2021, 21, 4499 4 of 18

the flow of information is enriched through feature reuse and the computational savings
are migrated to the second point-by-point convolution [26].

2.2. Object Detection

Before deep learning, traditional object detection algorithms are mainly divided into
two stages of feature extraction and classification, but the correlation between extracted
features and classifier is quite weak. The RCNN [30] proposed by Girshick et al. is a
pioneering CNN-based target detection algorithm network. Subsequently, the proposed
Fast R-CNN replaces SVM classifier with SoftmaxLoss and adopts Region of Interest
(ROI) pooling. These improvements combine classification and regression to improve the
accuracy of the algorithm. Based on the Fast R-CNN, researchers then proposed Faster
R-CNN [16] with Region Proposal Network (RPN): the suggestion box can be obtained by
sliding to find the accurate position of the target object. Considering that the performance
of the detector is often limited by the imbalance in the process of training, Pang et al.
proposed LIBRA R-CNN. This is a balanced training method that includes IoU balanced
sampling, balanced FPN and balanced L1 loss. However, in general, these two-stage
methods are not perfect in terms of detection speed.

The YOLO series [31–33] proposed by Redmon et al. is a one-stage target detection
method. It divides the image into grids and generates a category and two target boxes
in each grid. Then the classification and regression of the boxes are unified into a loss
function for learning. Because the entire detection pipeline is a single network, the de-
tection performance can be directly optimized end-to-end, so it is also extremely fast.
YOLO—different from sliding window and RPN—implicitly encodes contextual informa-
tion during training, so that it can better understand the global information of pictures.
Bochkovskiy et al. proposed YOLOv4 [34], a version with lots of improvement of Yolov3,
which modifies state-of-the-art methods and makes them more efficient and suitable for
single GPU training.

Recently, the Transformer network, which makes a lot of sense in Natural Language
Processing (NLP), has been used in Computer Vision to great effect. Carion et al. proposed
DETR [35]: an end-to-end Transformer target detection algorithm. The main component is
a set based global loss function that enforces a unique prediction through binary matching
and the Transformer encoder-decoder architecture. The DETR is the most efficient way
to consider the relationship between the target object and the global image context, but it
takes up too much of the GPU.

2.3. Feature Extraction and Matching

Feature points usually consist of key points and descriptors. Traditional feature
matching methods, such as Lowe’s Scale-Invariant Feature Transform (SIFT) [14] algorithm,
require a huge amount of computation and cannot be used for real-time feature matching.
Then, Bay et al. improved SIFT and proposed the Speeded Up Robust Features (SURF) [13]
algorithm, which uses detector metrics based on the Hessian matrix and descriptors based
on distribution. Rublee et al. proposed a very fast binary descriptor based on BRIEF, called
ORB [15], which is rotation invariant and resistant to noise.

However, most descriptors are still sensitive to large affine transformations, such as
changes in scale and orientation. Consequently, modern feature matchers use multi-scale
detection and orientation estimation [36].

In recent years, many researchers have proposed feature extraction and matching
algorithms based on CNN. Tian et al. proposed a progressive sampling method, L2-
Net [37], which uses CNN to learn high-performance descriptors in Euclidean space, and
emphasizing the relative distance between descriptors for local patch matching. To learn
consistent descriptors, Keller et al. proposed a novel mixed-context loss and scale-aware
sampling method, which takes advantage of the scale consistency of Siamese Loss and the
faster learning ability of Triplet Loss [38]. Cieslewski et al. proposed a method of matching
points of interest without descriptor (different from the traditional work of matching
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points according to description) [36]. This network has multiple output channels and can
implicitly match the corresponding points of two images.

Notably, LF Net [39] and SuperPoint [40] both consider traditional feature detection
as separate units. The LF NET proposed by Yuki et al. is a network that can learn local
features from scratch and is constrained in a self-monitoring manner, requiring only image
sequences with the ground true depths and poses. LF NET uses single CNNs for multi-
scale interest point detection, feature direction estimation and feature description. The
difference is that the SuperPoint proposed by Daniel et al. consists of only one interest
point detector and one network of feature descriptors, and the two networks share multiple
encoder layers. The authors of SuperPoint then propose SuperGlue [41]: an attention-based
graph neural network for local feature matching algorithms. It includes self-attention and
cross-attention, which can simultaneously enhance the receptivity field of local descriptors
and realize cross-image communication.

Recently, Vision Transformer (ViT) has been used more and more in the field of
computer vision, such as object detection [35,42], image classification [43] and semantic seg-
mentation [44]. Inspired by SuperGlue, Sun et al. proposed the LoFTR [45] algorithm. It is a
local feature matching algorithm based on Transformer without the feature detector, which
performs well in terms of speed and accuracy as well as in the case of repeated texture.

3. Methods

In this section, we introduce the framework of LFM-LCD in detail. These include: a
lightweight CNN based on Fish Convolution Block; object detection based on YOLOv4
with our lightweight CNN instead of CSPDarkNet [46]; a classification tree with a structure
that is similar to the BoW dictionary; an improved feature matching network of LOFTR [45].

3.1. FishScaleNet

Deep separable convolution decomposes the standard convolution process into two
operations. The first operator, called depth-wise convolution, uses a single-channel filter
to learn the spatial correlation between positions in each channel separately. The second
operator is a 1 × 1 convolution, which is used to learn new features by computing linear
combinations of all input channels.

Standard convolution takes an input tensor Li(hi ×wi × ci), and applies convolutional
kernel K ∈ Rk×k×ci×cj to produce an output tensor Lj(hi ×wi × cj). Standard convolutional
layers have the computational cost: hi × wi × ci × cj × k× k. Depth-wise separable convo-
lutions are a drop-in replacement for standard convolutional layers. Empirically they work
almost as well as regular convolutions, but only cost:hi × wi × ci × (k2 + cj).

When the size of the convolution kernel is 3× 3, the computational effort of the deep
separable convolution will be reduced by nearly 9 times.

Inspired by MobileNet [20,28], a novel convolution block was proposed based on
the inverted residual block, which depth-wise convolution is related to each other and
transmitted in turn. Its structure is like a fish scale (it can be seen in Figure 2); therefore, we
call it a fish-scale convolution block.

Fish-scale convolution works almost as well as inverted residual convolutions but
costs just hi × wi × (cj − 2) more than the latter: hi × wi × [(cj − 2) + ci × (k2 + cj)].

Reference [47] proposed that the success of FPN is due to its divide-and-conquer
solution to the object detection optimization problem, where dilated convolution plays an
indispensable role. Dilated convolution mainly solves the problem of data structure loss in
the space of standard convolution.

We adopted the Dilated Convolution [48], which is different from other convolution
blocks of different lightweight CNNs; it increases the receptive field without sacrificing the
size of the feature map. The receptive field of the dilated convolution can be calculated as:

RFi = RFi−1 + (K− 1)× s (1)

K = k + (k− 1)(r− 1) (2)
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where RFi−1 represents the size of the receptive field at the upper layer, K denotes the size
of the new dilated convolution kernel, and k denotes the size of the standard convolution
kernel; s indicates the stride of the dilated convolution, and r denotes the dilated rate.

Figure 2. Skeleton of the fish-scale convolution block; H, W, and C denote the height, width, and channel dimension. The
number of channels expand six times after point-wise convolution. After the depth dilated convolution, each layer feature
is added into the next layer, and then dilated convolution of the next layer is conduct.

As for k = 3, r = 2i, it is easy to get that size of the receptive field of each element in
RFi+1 is (2i+2− 1)× (2i+2− 1); therefore, the receptive field is a square of an exponentially
increasing size.

Based on the design of the fish-scale block structure, we further designed a lightweight
CNN framework with strong practicability, named FishScaleNet. It follows the design
rules of MolieNetv3, as shown in Table 1.

As shown in Table 2, we compared the computational complexity of MobileNetV1-v3
and FishScaleNet, and pointwise convolution accounted for most of the computational
amount. However, FishScaleNet relatively increases the proportion of deep convolution
and obtains richer spatial correlation between features. It is of great help to the downstream
work (target detection and feature matching) of our LCD task, and the accurate results
are obtained.

Table 1. Specification for FishScaleNet using MobileNetV3 base.

Input Operator t c s r n

224 × 224 × 3 Conv2d - 16 2 - 1
112 × 112 × 16 Fish-Scale-Block 1 24 2 2 2
56 × 56 × 24 Fish-Scale-Block 6 40 2 4 2
28 × 28 × 40 Fish-Scale-Block 6 48 2 2 3
14 × 14 × 48 Fish-Scale-Block 6 96 1 2 4
14 × 14 × 96 Fish-Scale-Block 6 96 2 2 2
7 × 7 × 96 Fish-Scale-Block 6 96 1 1 2
7 × 7 × 96 conv2d 1 × 1 - 576 1 - 1

7 × 7 × 576 avgpool 7 × 7 - - 1 - 1
1 × 1 × 576 conv2d 1 × 1 - 1024 1 - 1

1 × 1 × 1024 conv2d 1 × 1 - 1000 1 - 1

Each row shows a conv2d layer or a fish-scale block, repeated n times. t denotes the expansion factor in first pointwise convolution.
s indicates the stride number of the convolution layer, and r denotes the dilation rate in the depth-wise convolution. c denotes the output
channel size, and s denotes the stride number of the convolution layer. “Input” and “Operator” indicate the shape of the input tensor and
the operator type.
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Table 2. Computational complexity distribution of MobileNetV1-V3 and FishScaleNet.

Network Depth-Wise Point-Wise Others

MobileNetV1 3.1% 95% 1.9%
MobileNetV2 6.2% 84.4% 9.4%
MobileNetV3 8.9% 88.5% 2.6%
FishScaleNet 16.6% 81.1% 2.3%

3.2. Lightweight YOLOv4

An ordinary object detector is composed of the backbone, neck, and head. The
backbone network is used to extract the preliminary features, while the second part is used
to extract the enhanced features. The final head is to get the predicted result. The backbone
network of YOLOv4 is CSPDarknet [46], the neck is SPP [49] and PANet [50], and the head
is Yolo Head [33].

As shown in Figure 3, we replaced its backbone, CSPDarkNet, with a lightweight
FishScaleNet, and kept the other main structures, such as Bag of Freebies (BoF) and Bag
of Specials (BoS) for detector: CIoU-loss, CmBN, DropBlock regularization, mosaic data
augmentation, self-adversarial training, eliminate grid sensitivity, using multiple anchors
for a single ground truth, cosine annealing scheduler, optimal hyper-parameters, random
training shapes, Mish activation, SPP-block, SAM-block, PAN path-aggregation block,
DIoU-NMS [34].

Figure 3. Pipeline of the lightweight YOLOv4. The size of the input image is 224 × 224 × 3, and
three effective feature layers with different initial sizes are obtained through FishScaleNet, which are,
respectively, introduced into the enhanced feature extraction network: SPP and PANet. The three
preliminary effective features were fused to obtain a more effective feature layer, and input to the
predictive convolution head, YOLO Head, to obtain the detection results.

3.3. Binary Classified Tree

K-ary tree classifier is a fast graph classification algorithm, especially for large-scale
graphs. The main idea of k-ary tree is to project the whole graph onto a set of optimized
features in the common feature space without any prior knowledge of the subtree pattern.
Then, a traversal table is constructed to track similar patterns in the optimization data [51].

The k-ary tree in BoW [9] is a hierarchical K-means clustering, which obtains a tree
with the depth of D and the branch of K, which can store KD words. It can be seen in
Figure 4.
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Figure 4. This is the structure of the k-ary tree of BoW. Different colors represent different clusters.
The cluster number of each node is k, and d denotes the depth of the tree.

In LFM-LCD, we can directly use the result of object detection in the previous step.
Sort the labels of the class detected by the target by the actual space size. Then the image
is classified according to its detection label (predictions with rejection probability less
than 0.5) in this order, and the binary sequence of each image is obtained. The classification
results are represented by vectors. The structure can be seen in Figure 5.

c(i) =
{

1, i f li exist
0, otherwise

i = 1, 2, 3, . . . , N (3)

c = ( c(1) , c(2) , . . . , c(N) ) (4)

where c denotes the vector quantity of the binary classification. The li represents the
category labels.

We eliminated the labels with a predicted probability of less than 0.5, and we also
had to remove the non-influential labels in this scenario to expand the classification. We
randomly extracted the classification vectors of M images,c1, c2, . . . , cM. Then, the number
of repeated appearances of each label in the M pictures, p(i) was calculated. Finally, we
can calculate the influence E(i) = p(i)/M of the label and remove the labels whose E(i)
was less than the threshold value.

p(i) =
M

∑
j=1

cj(li) (5)

We can get the category of each key frame through the binary classification tree.
Then, we can carry out feature matching between images of the same category. In order to
eliminate the error caused by the different detection results of the target detection algorithm
for small objects, the order of binary classification is carried out from large objects to small
objects. Set the number of images of the same category for feature matching to be at least m.
When the current frame image enters the classification tree, if there is no image of the same
category or the number is less than m, the upper binary classification can be traced to
improve the accuracy of LCD.
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Figure 5. This is the structure of the Binary Classified Tree. Schemes follow the same formatting.
Different colors represent the binary classification results of different labels; 1 indicates this label is
present, 0 indicates this label is not present. The depth of the tree is the total number N of categories
of object detection.

3.4. Feature Matching Based on LoFTR

Compared with other feature matching algorithms, such as ORB [15] and Super-
Point [40], LoFTR [45] can solve the repeatability problem of feature detector. This is critical
for the LCD task in SLAM. It is similar to LOFTR, i.e., our feature matching task performed
fine-level feature matching after coarse-level feature matching. The difference is that we
did not use standard CNN to extract features. Instead, we used FishScaleNet proposed in
Section 3.1. Meanwhile, we chose a feature map with a smaller size to further reduce the
calculation amount of feature matching. The overview of the lightweight LoFTR can be
seen in Figure 6.

Figure 6. This is the overview of the lightweight LoFTR for feature matching. IA and IB denotes the input image. FA, FB, F̂A

and F̂B are the feature map extracted by FishScaleNet. Coarse LoFTR module is based on vision Transformer.Mc represents
the confidence matrix between features of IA and IB. M̂c indicates theMc after removing the outliers. M̂F denotes the
fine-level matching.
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3.4.1. Lightweight Feature Extraction

For two similar images IA and IB in the same category, we used FishScaleNet to extract
the multi-level features of the two images. LoFTR uses features extracted at 1/8 and 1/2.
For lightweight FishScaleNet, FA and FB are used to represent coarse features extracted at
1/16 of the original image size, F̂A and F̂B are used to represent fine features extracted at
1/4 of the original image size.

3.4.2. Coarse LoFTR Module

LOFTR converts FA and FB into easier features, represented by TA
F and TB

F . In the
self-attention layer, the input vectors are Q (query), K (key), and V(value). The query vector
Q obtains attention weight information according to its dot product with the K vector and
the corresponding with V. It is expressed as follows:

Attention(Q, K, V) = so f tmax (QKT)V (6)

We used the same position encoding approach as DETR [34]. In the self-attention
layer, the two groups of the encoded features are the same, while in the cross-attention
layer, the cross direction determines the change of features. After the self-attentional layer
and the cross-attentional layer, we get two new groups of features TA

F and TB
F . The scoring

matrix between the new features is S:

S (i, j) =
1
Γ
·
〈

TA
(i) , TB

(j)
〉

(7)

After the new feature passes through the matching layer, the confidence matrixMc

of the coarse level feature is obtained, and its size is HAWA
162 × HBWB

162 . Where, the matching
probability inMc is obtained by softmax on both dimension:

MC(i, j) = so f tmax(S(i , · ))j · so f tmax(S( · , j))i (8)

Then Mutual Nearest Neighbor (MNN) is used to eliminate outliers in the confidence
matrix to obtain M̂c.

M̂C =
{
(i, j)

∣∣ ∀ (i, j) ∈ MNN(MC)
}

(9)

3.4.3. Coarse-to-Fine Module

For arbitrary coarse matching (i, j) ∈ M̂C, it is projected into 1/4 fine feature to obtain
a small matching window. Since the proportion of coarse-to-fine is 4:1, the cropped feature
F̂ ∈ R4×4. Two local fine features A and B are generated through LOFTR. By calculating the
expected value of the probability distribution, the subpixel accuracy of the final position ĵ′

is obtained. All marches are collect {( î, ĵ′)} to generate the final fine-level match M̂F .

4. Experiments
4.1. Experimental Setup

This work uses an RGB-D camera as the vision sensor to carry out the SLAM experi-
ment on a mobile vehicle. As shown in Figure 7, the camera type is “LETV Pro Xtion”. The
specific parameters are shown in Table 3.
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Figure 7. The vehicle with the RGB-D camera.

Table 3. The specific parameters of the “LETV Pro Xtion” camera.

No. Information Descriptions

1 Max Power Dissipation 2.5 W
2 Working Distance 0.8 m–3.5 m
3 Field of View 58 H,45 V,70 D
4 Sensor Depth Sensor
5 Depth Image Size VGA(640 × 480):30 FPS

We utilized the deep learning framework PyTorch to implement the FishScaleNet
models for object detection and feature matching. We used the standard SGD optimizer
for training, with the momentum and weight decay, respectively, set at 0.9 and 0.0005. We
used the step decay learning rate scheduling strategy with the initial learning rate 0.01. All
architecture used a single GPU to execute multi-scale training in the batch size of 64. Other
experiments used default settings.

4.2. Object Detection for Key Frames

In order to verify the practicability and accuracy of FishScaleNet in LFM-LCD, since
the lightweight network focuses on ensuring the necessary accuracy while reducing the nu-
merous parameters and calculation, we only compare the image classification performance
of FishScaleNet with other lightweight networks (MobileNetV2 [20] and GhostNet [25]) on
ImageNet and the experimental results of object detection on COCO dataset. The one-stage
YOLOv4 [34] and the two-stage Faster RCNN [16] were tested for the object detection
framework. The result of performance on ImageNet is shown in Table 4, and the test result
of object detection on COCO datasets can be seen in Table 5.

Table 4. Performance on ImageNet of different lightweight CNN.

Network Top 1-Acc Parameters MAdds CPU

MobileNetV2 [20] 70.4% 3.4 M 300 M 92 ms
GhostNet [25] 71.2% 5.6 M 164 M 89 ms
FishScaleNet 70.6% 2.9 M 157 M 86 ms

In the image classification task of ImageNet, our FishScaleNet achieved Top1 accuracy,
which is similar with MobileNet and GhostNet in the minimum number of parameters and
computation. We can finish the task faster on the same computer.
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Table 5. Results on MS COCO dataset.

Backbone Detector mAP CPU

MobileNetV2 [20]
Faster RCNN [16]

26.4% 213 ms
GhostNet [25] 27.4% 187 ms
FishScaleNet 26.7% 178 ms

MobileNetV2 [20]
YOLOv4 [34]

27.1% 197 ms
GhostNet [25] 26.8% 172 ms
FishScaleNet 27.3% 166 ms

For target detection on COCO dataset—Faster RCNN in two-stage and YOLOv4 in
one-stage were our target detection frameworks. Experiments show that our FishScaleNet
can achieve higher mAP value and faster speed on the YOLOv4 framework. At the same
time, our lightweight target detection network has a certain feasibility in the LCD task.
The current frame image was transmitted to the network for the object detection task, and
object labels (as shown in Figure 8); cups (0.77), chairs (0.66), laptops (0.51), and books
(0.34) were obtained. Labels with predictive probability less than 0.5 (such as books) were
eliminated, and then binary classification was carried out on the images. Finally, the binary
vector results of classification were passed into the key frame database of the same category
for the feature matching task.

Of course, in similar environments, objects of the same kind happen to be present in
the images, such as the different tables in our lab (Figure 8), and are classified into the same
category. However, it did not affect the LCD task of our robot in SLAM because the feature
matching task will continue to help us eliminate these possibilities.

Figure 8. Object detection for the current frame and finding similar key frames by the binary
classified tree.

4.3. Feature Matching between Similar Key Frames

A mass of experimental data in [45] demonstrates the accuracy and superiority of
LOFTR for feature matching in low-texture regions as well as symmetric and repeated
regions, and the performance of relative pose estimation and visual positioning on multiple
data sets reaches the most advanced level. Here, we only compare the feature matching
results of the lightweight LOFTR with the standard LoFTR. As shown in Figure 9a, standard
LoFTR will notice a large amount of deep feature data, and abundant calculations are
not suitable for our real-time LCD task. For non-loop-closure frames, there will also be
nearly 9% false matches, as shown in Figure 9b. For our lightweight LOFTR, as shown
in Figure 9c, feature matching can be performed quickly for only 1/4 calculations of the
former, providing real-time data support for our LCD. In addition, for non-loop-closure
frames, as shown in Figure 9d, our mismatching rate is about 6%, which improves the
accuracy and recall rate of LCD tasks. In summary, the lightweight LOFTR can quickly
identify the relationship between the current frame and similar key frames, which greatly
helps the robot to determine whether the current position is loop or not.
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Figure 9. Feature matching between the current frame and similar images in the database. (a) Loop
closure frames with standard LoFTR. (b) Non-loop closure frames with standard LoFTR. (c) Loop
closure frames with lightweight LoFTR. (d) Non-loop closure frames with standard LoFTR.
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4.4. Comparative Experiments of LCD

The proposed LFM-LCD algorithm was evaluated on indoor and outdoor open
datasets, respectively, as shown in Table 6. It is compared with other LCD methods
proposed recently, such as DOSeqSLAM [5], DXSLAM [10], and LiPo-LCD [52].

4.4.1. Datasets

Given the complexity of the LFM-LCD algorithm, real-time results may not be
achieved for high FPS inputs. Therefore, we verified the feasibility of our LFM-LCD
algorithm on the KITTI 05 and the indoor ICL-NUIM, respectively; the datasets were
obtained by the hand-held sensor. Therefore, we can set the input of the key frame as less
per second.

Table 6. Description of datasets.

Dataset Description Input of Key Frame/s

KITTI 05 Outdoor, dynamic, 10 Hz 1
ICL-NUIM Indoor, static, 30 Hz 1

4.4.2. Comparative Results

The ground truth (GT) is the information data of the actual loop closure event that
occurrs in the dataset. GT is structured as a binary matrix with image-to-image correspon-
dences, where the ones (GTij = 1) denote the existence of a loop closure event.

It can be seen from Table 7 that, compared to other methods, LFM-LCD has a higher
precision and recall rate in indoor scenes with the ICL-NUIM dataset. Although DOSeqS-
LAM has a 100% precision rate, its recall rate is only around 50%. However, in outdoor
scenes, the precision and recall rate of LFM-LCD decreased.

Table 7. Comparative Results.

Methods Datasets True Positives False Positive GT Precision Recall

DOSeqSLAM KITTI 05 188 0 379 100% 50%
DXSLAM KITTI 05 197 5 379 97.5% 53%
LiPo-LCD KITTI 05 226 8 379 97% 61%
LFM-LCD KITTI 05 236 13 379 95% 64.5%

DOSeqSLAM ICL-NUIM 72 0 176 100% 41%
DXSLAM ICL-NUIM 102 7 176 94% 60%
LiPo-LCD ICL-NUIM 127 5 176 96% 74%
LFM-LCD ICL-NUIM 143 2 176 99% 82%

Precision = TP/(TP + FP), Recall = TP/(TP + FN). In this equation, true positive (TP)
means loop closure for both GT and detected results. False negative (FN) means that GT is
loop closure, but detection is not. A false positive (FP) indicates that the detected result is
loop closure, but in fact it is not. We used Precision–Recall Metrics to evaluate our system.
Precision is defined as the ratio between true-positive identifications and the total detections
of algorithm. Recall is defined by the number of detected loop closure events over the actual
events appearing in the ground true. The RP-Curve can be seen in Figure 10.
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Figure 10. The RP-Curves of different LCD methods in different datasets. IN denotes the ICL-NUIM datasets and KITTI
denotes the KITTI 05 datasets; (a) shows the RP-Curves of DOSeqSLAM; (b) shows the RP-Curves of DXSLAM; (c) shows
the RP-Curves of LiPo-LCD; (d) shows the RP-Curves of LFM-LCD.

5. Discussions

As with the RP-Curve shown in Figure 10, compared with other methods, LFM-LCD
has higher reliability in regards to indoor data sets of specific objects, which is quite
conducive to SLAM of indoor robots. However, when we attempt to increase the key frame
input frequency, our approach may not be able to achieve real-time results. Therefore, we
still have a lot of room for improvement in speed and application for outdoor scenes needs
to be improved too.

In addition, the area where the object features are not obvious will lead to a single
classification, which will increase the burden of LFM. Therefore, we need to further op-
timize the label results of target detection in the future to solve this problem, e.g., by
using semantic segmentation or instance segmentation instead of simple target detection
networks. Of course, there are other problems, such as the complex scaling of the fish-scale
block, which makes it less efficient. We still have a lot of work to do in the future, such as
redesigning a more efficient lightweight backbone, or simplifying our methods to adapt to
more real-time scenarios as much as possible.

6. Conclusions

This paper describes a deep-learning based SLAM loop detection algorithm. In view
of the problems caused by cumulative errors in visual SLAM and the inaccuracy of existing
loop detection algorithms, a new direction was proposed. Simple, divided into three steps:
object detection for key frames, binary classification, feature matching. In consideration of
the large number of parameters and computation amounts generated when the commonly
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used backbone extracted the preliminary features, we proposed another deep separable
lightweight convolutional neural network inspired by MobileNetV2. The high receptive
field was obtained by dilated convolution combined with the self-attention mechanism
of Transformer, which can better complete the feature matching task between similar key
frames. We used binary classification to obtain the classification vector of the key frame
and add the dynamic weight of the label according to the category proportion in the
binary classification tree. Compared with several advanced LCD algorithms, our proposed
LFM-LCD has high advantages for low-speed SLAM for robots in indoor scenes.
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