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Image processing is widely used in intelligent robots, significantly improving the

surveillance capabilities of smart buildings, industrial parks, and border ports. However,

relying on the camera installed in a single robot is not enough since it only provides

a narrow field of view as well as limited processing performance. Specially, a target

person such as the suspect may appear anywhere and tracking the suspect in

such a large-scale scene requires cooperation between fixed cameras and patrol

robots. This induces a significant surge in demand for data, computing resources, as

well as networking infrastructures. In this work, we develop a scalable architecture

to optimize image processing efficacy and response rate for visual ability. In this

architecture, the lightweight pre-process and object detection functions are deployed on

the gateway-side to minimize the bandwidth consumption. Cloud-side servers receive

solely the recognized data rather than entire image or video streams to identify specific

suspect. Then the cloud-side sends the information to the robot, and the robot completes

the corresponding tracking task. All these functions are implemented and orchestrated

based on micro-service architecture to improve the flexibility. We implement a prototype

system, called Rinegan, and evaluate it in an in-lab testing environment. The result shows

that Rinegan is able to improve the effectiveness and efficacy of image processing.

Keywords: smart gateway, large scale, image processing, intelligent security robot, microservice

1. INTRODUCTION

Image process has been widely implemented in intelligent robots, which significantly improve the
visual ability of smart buildings, industrial parks, border ports and so forth. For example, patrol
robots, a critical partner of police officers or area administrators for security surveillance, are usually
equipped with cameras that can track suspicious persons by collecting and processing images or
video streaming. However, such track task solely relying on individual and narrow view of a single
robot is no longer effectiveness in large scale environment. Specifically, the suspect may appear
anywhere, and the coverage of a single robot is limited, which is not enough to deal with this
situation. Hence, the patrol robots have to cooperate with surveillance cameras distributed in such
monitored area. When a suspect appears somewhere, once the surveillance camera captures him,
it will send the information to a nearby patrol robot through a communication channel, and the
robot will come and track the target person in time.

Such a large scale cooperation of robots and cameras induces a significant surge in demand for
image or video data collection, computing resources for object detection and suspect recognition,
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as well as communication bandwidth of networking
infrastructures. A number of researches (Li et al., 2015; Cai
et al., 2016; Redmon et al., 2016; Shi et al., 2018; Tan et al.,
2020) have dedicated to improve the ability in object detection
by employing supervised learning or reinforcement learning
method. These works consider only the visual information
collected from the camera implemented inside robot, which are
confined in a small surveillance area. Hence, some researchers,
e.g., Dolberg et al. (2016), Meng et al. (2017), Chen et al.
(2018), Lee et al. (2018), Bevi et al. (2019), Bistritz and Bambos
(2019), Chang et al. (2019), and Li et al. (2019), focus on
designing edge computing architecture to achieve a high level
of scalability and fast response rate, comparing with the widely
deployed centralized cloud-based(IoT) solutions. Some others,
e.g., Kovatsch et al. (2012), Morabito and Beijar (2016), Morabito
et al. (2016, 2017), Morabito (2017), Rufino et al. (2017), Cheng
et al. (2018), Dolui and Király (2018), Mendki (2018), and
Ogawa et al. (2019), also works on the virtualization of edge-side
gateways to enhance the flexibility of above edge computing
architecture. All these works either improve the communication
and computation efficacy at infrastructure level or design an
edge-cloud cooperation training mechanism in which training
task runs on cloud side while detection and recognition tasks
are executed on the edge. However, they neglect the advantage
of the decoupling between the object detection and suspect
recognition. Specifically, a patrol robot requires only the location
and suspect information rather than the entire image or video
stream. Therefore, only the required data are transferred to save
the bandwidth. A camera with limited resources can only run
an object detection process and send result to cloud side for
recognition, and the robots receive only the location and suspect
information for tracking process. In this case, both the resource
consumption and the risk of data leakage caused by network
communication are minimized.

In this work, we present a scalable edge-cloud cooperation
architecture, which harmonizes the object detection and
recognition applications to facilitate the image processing ability
of intelligent robots. In our architecture, the image processing
is separate into four phases, i.e., pre-process, object detection,
representation, and recognition. The pre-process and object
detection tasks are deployed on the edge-side gateway to
minimize the response delay and the bandwidth consumption.
The cloud-side obtains and processes solely the detected objects
from the edge-side smart gateways. All these functions are
orchestrated using micro-service techniques, which provide a
high level of modularity and interoperability, to optimize the
resource allocation. As a result, a robot receives only the location
and suspect information for tracking process. Facilitated by the
proposed architecture, the robots are able to effectively surveil
the entire environment and therefore canmake accurate response
than that rely on their inside cameras. We implement a prototype
system, called Rinegan, and evaluate it in an in-lab testing
environment. The result shows the efficacy and effectiveness.

In summary, the contributions of our work are as follows.

1. We propose a hierarchical architecture to enhance the efficacy
of object recognition applications. The lightweight object

detection functions are assigned distributively on gateways
to minimize bandwidth consumption between edge and
cloud. Therefore, the cloud-side servers receive only structural
objects and the recognition result is send to the nearby
robots. This architecture greatly reduces the load pressure
and computation resources and improves the tracking ability
of robots.

2. We develop a prototype system, i.e.,Rinegan, by implementing
the object functions into micro-service instances. Therefore,
Rinegan can reasonably and deftly orchestrate the tasks like
object detection and recognition. In addition, the isolated
property in this system can also helps to protect the sensitive
information reserved in video data (Wang et al., 2020), i.e.,
only the required data is transferred through network.

3. We deploy Rinegan in a in-lab environment to evaluate
its performance. The result shows that Rinegan achieves
outstanding data processing efficacy and excellent scalability
comparing to traditional centralized mode. We have reason
to believe that Rinegan can also be applied to large-scale
scenarios like smart building (Qiu et al., 2019).

1.1. Organization
The rest of the paper is organized as follows. In section 2, we
illustrate the background and motivation, as well as the related
work. In section 3, we provide the designation of our proposed
gateway system. In section 4, we conduct experiments in a in-
lab environment and make comparative analysis and evaluation
of its performance. In section 5, we discuss the shortcomings of
this work and looked forward to the follow-up work. At last, in
section 6, we conclude our work.

2. BACKGROUND AND MOTIVATION

When human beings build the world around us, we often
expect to make copies like ours, which can better adapt to the
environment and habits in human life. Studies have found that a
certain area of the human brain is specifically used to recognize
things andmake cognitive responses. As a result, people also hope
to implement a function such as face recognition on a intelligent
security robot to help humans work. In this section, we briefly
introduce the background of intelligent security robot, image
processing, gateway virtualization andmicro-service architecture
to illustrate the motivation of our work.

2.1. Related Work
Regarding target detection and recognition, many people are
committed to using cloud computing to achieve it. Yaseen
et al. (2018) proposed a video analysis system based on cloud
computing to realize automatic analysis of video stream data.
The experimental results show that the system can be expanded
to a certain extent according to the number and size of video
streams. However, the author did not consider the load capacity
of the cloud in large-scale scenarios. When the amount of data
that the system needs to process is particularly large, the cloud
may be overloaded, and we can use edge computing to solve
this problem. Qi et al. (2017) combined smart phones and cloud
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computing to implement a DNN-based target detection system,
which is mainly used in vehicle detection and recognition. We
noticed that in their work, the authors use smartphones as a
video stream acquisition tool. Tasks such as image processing and
object detection are processed in the cloud. Such a distributed
system may not be suitable for processing a large number
of images and videos on congested roads. Our system is
implemented through microservices, which can schedule edge-
side gateways to process images, taking into account both
distributed and large-scale scalability.

Using cloud computing alone is not enough to deal with large-
scale scenarios. Some people consider reducing the pressure on
the cloud at the edge. Sun et al. (Tian et al., 2019) points out
that edge computing can share the load of the cloud center
and provide a service environment and computing capabilities
at the edge of the network. Moreover, edge computing has low
latency and higher bandwidth. Ren et al. (2018) combined edge
computing, but they use servers on the edge side, which is
difficult to deploy. Moreover, the cloud is only responsible for
training the model, and does not use microservice technology
to schedule image processing tasks. And Tian et al. (2020) and
Luo et al. (2020) mentioned that although cloud computing
and cloud storage have brought great convenience, the security
issues cannot be ignored. The distributed attack detection system
deployed on edge devices in this article also supplements the
deficiencies of cloud-only.

About the architecture of edge computing, Cha et al. (2018)
designed a blockchain-based smart gateway solution, which uses
a digital signature mechanism to effectively protect privacy, and
at the same time, it can adaptively maintain user privacy of
devices in the network. Mouradian et al. (2018), referred to the
ideas of network function virtualization and SDN, and propose
a distributed and dynamic configuration gateway structure to
solve large-scale disaster management applications. Constant
et al. (2017), developed an intelligent gateway system based on
fog computing. This architecture can use a knowledge-based
model to enhance the quality of interaction between wearable
IoT devices and the cloud. Rahmani et al. (2018), used the
key position of the gateway at the edge to provide higher-level
services, and propose a smart electronic health gateway for smart
medical care. We use the concept of fog computing to propose a
fog-assisted system architecture that can cope with many of the
medical systems challenge. Li et al. (2016), proposed an SDN-
based architecture for solving development-level IoT solutions,
making devices and gateways programmable for developers,
which can quickly reuse ready-made programs and data to create
IoT applications. However, none of the above articles takes into
account the scalability of the architecture. We use microservice
technology to deploy and schedule tasks for edge devices more
flexibly to adapt to large-scale scenarios.

2.2. Layout of Intelligent Security Robot
Applications
Figure 1 plots the common architecture of intelligent security
robot applications. Devices, e.g., security cameras, connect to
gateway. Such a gateway provides Internet accessibility for a

set of devices. In general, the robot involves functionalities like
authentication, data analysis and user interface.

Basically, the gateway should have capability of discovering
devices when user makes a “Discover” request. Then, polling
of discovered devices should be initiated once the manage
platform makes a “Approve” request. The gateway should
also make a necessary control action and return “Success” or
“Failure” response whenever it receives a control request from the
intelligent security robot.

However, the ever-increasing large scale data streams
significantly challenge the bandwidth and computation resources
of the centralized intelligent security robot infrastructure. For
instance, image data collected by the cameras in a smart
city application will exhaust the communication bandwidth
between gateway and intelligent security robot and disrupt the
computation ability of robot-side.

2.3. Image Processing
In the object recognition function of nowadays intelligent
security robot, image processing is one of the most important
functionality. It enables visibility for these things and
applications. Figure 2 briefly illustrates the workflow of it,
which consists of four phases, i.e., pre-process, object detection,
representation, and recognition.

In pre-process phase, the raw image data will be transformed,
compressed, enhanced, restored and so forth to improve its
quality and facilitate the following process. In detection phase,
specific objects involved in will be detected and extracted by using
corresponding models such as face, vehicle, animal, and building
models. In representation phase, these objects will be described as
a set of features. Finally, in recognition phase, these objects will
be classified as specific person, car, animal, or building.

In general, above four phases are treated as a whole
when deploying into intelligent security robot system.
Specifically, all of them are either deployed on the edge-
side devices or on the cloud-side servers. Both scenarios
are not scalable enough to large scale environment.
On one hand, most of edge-side devices, even the
gateways, are resource-constraint, which are not capable
of executing all these tasks. On the other hand, cloud-
side deployment significantly increase the stress of such
centralized architecture.

2.4. Gateway Virtualization
The possibility of introducing lightweight virtualization
technologies, and in particular container-based virtualization,
in this kind of environments allows having a system that
benefits of the main features introduced by containers, if
compared to alternative solutions such as hypervisor-based
virtualization or hybrid solutions (Chang et al., 2019): (i) Fast
building process, instantiation and initialization of containers.
(ii) High density of application/services due to the small
container images.

Container-based virtualization (Figure 3) provides a different
level of abstraction in terms of virtualization and isolation
compared to hypervisors. Hypervisors virtualize hardware and
device drivers, which generates overhead. On the contrary,
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FIGURE 1 | Layout of intelligent security robot applications.

FIGURE 2 | Workflow of image processing.

containers implement isolation of processes at the operating
system level, thus, avoiding such overhead (Chang et al.,
2019). Due to the shared kernel (as well as operating system
libraries), an advantage of container-based solutions is that
they can achieve a higher density of virtualized instances,
and disk images are smaller compared to hypervisor-based
solutions. Moreover, an application can be designed to work
in multiple containers, which can interact each other by
mean of linking system, with a guarantee of no conflicts
with other application containers running on the same
machine. It is exactly these features that make possible the
integration of the functionality of containers in a wide range
of contexts: smart devices, the intelligent security robot, and
embedded systems.

2.5. Micro-Service Architecture
Micro-services are an architectural and organizational approach
to software development where software is composed of small
independent services that communicate over well-defined APIs.
These services are owned by small, self-contained teams. Micro-
services architectures make applications easier to scale and faster
to develop, enabling innovation and accelerating time-to-market
for new features.

As shown in Figure 4, each component service in a micro-
services architecture can be developed, deployed, operated,
and scaled without affecting the functioning of other services.
Services do not need to share any of their code or implementation
with other services. Any communication between individual
components happens via well-defined APIs. Each service is
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FIGURE 3 | Architecture of containerized gateway.

FIGURE 4 | Micro-service architecture.

designed for a set of capabilities and focuses on solving a specific
problem. If developers contribute more code to a service over
time and the service becomes complex, it can be broken into
smaller services.

Micro-services allow each service to be independently scaled
to meet demand for the application feature it supports. This
enables teams to right-size infrastructure needs, accurately
measure the cost of a feature, andmaintain availability if a service
experiences a spike in demand.Micro-services enable continuous
integration and continuous delivery, making it easy to try out
new ideas and to roll back if something doesn’t work. The low
cost of failure enables experimentation, makes it easier to update
code, and accelerates time-to-market for new features. Service

independence increases an application’s resistance to failure. In
a monolithic architecture, if a single component fails, it can cause
the entire application to fail. With micro-services, applications
handle total service failure by degrading functionality, and not
crashing the entire application.

3. SYSTEM DESIGN

The image processing architecture we proposed can optimize the
object recognition capabilities of the intelligent security robot
and improve the efficiency of image processing. We developed
a system Rinegan based on this architecture. In this section, we
will introduce this system in detail.

3.1. System Overview
The Rinegan system can effectively improve the image processing
performance of the intelligent security robot in a large-scale
environment. It allocates part of the image processing task flow
to the gateway on the edge-side, allowing the gateway and the
cloud to work together to complete the entire image processing
flow. The system relieves the pressure of data transmission in the
cloud, while also solving the problem of insufficient computing
on the edge side. In order to achieve these effects, we have used
micro-service technology to develop Rinegan, which has good
flexibility and scalability. The reason why we use micro-services
is because micro-services have a high degree of modularity
and interoperability, which can improve the flexibility of the
system and optimize the resource allocation of the system. In
this section, we will introduce two aspects of system architecture
and workflow.

3.1.1. System Architecture
As presented in Figure 5, inspired by the structure of the IoT
system, Rinegan can also be divided into the following three
layers: perception layer, network layer, and application layer. Each
layer corresponds to a kind of entity, and each layer has its own
functions and services. Below we introduce the specific situation
of these three layers, respectively.

1. Perception layer takes the terminal devices as the core, themost
common ones are various sensors, in this work, specifically the
cameras. The perception layer is the data foundation of the
whole system, and it’s also a key part of information collection.
The cameras collect raw data including images and videos, then
upload these data to the next layer—the smart gateway.

2. Network layer is also called the transport layer, in this
work, since we are studying a scalable architecture for image
processing, it can be interpreted as “gateway layer” in a narrow
sense here. In this layer, the gateway is responsible for simple
processing of images and video streams uploaded by the
perception layer to reduce the amount of data transmission.
Specifically, simple processing refers to prepocess images and
the process of object detection, such as image enhancement,
image restoration, We deployed micro-services in the gateways
and made reasonable orchestration components for these
micro-service. The orchestrator component contains functions
like service registry, service detector, load balancer and
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FIGURE 5 | Architecture of Rinegan.

resource manager to ensure the normal and orderly operation
of micro-services.

3. Application layer can be understood as cloud server in
the intelligent security robot, in this work, this layer
contains four parts, including user interface, applications,
orchestrator, micro-service. User interface is divided into
two modules:Authentication and Access control. The
authentication module is based on the identity of each
user, adopts a standardized identity authentication format,
and follows a certain security mechanism to ensure that
the access user is a safe user. The access control module
authorizes the authenticated user through the control strategy
to ensure the legal use of the information resources by the user
within the authorized scope. Applications are user-oriented
tasks, when the cloud receives the image processed by the
gateway, this module is responsible for object description and
recognition, such as human tracking, traffic flow detection,
traffic violation identification and so on. Orchestrator module
is responsible for the orderly organization of micro-services
deployed in the huamnoid robot cloud. The orchestration
process is mainly implemented in the cloud server, and there
a few scheduling processes in the gateway, as mentioned in
the gateway layer. Micro-service is a small granular service
that can be independently developed and deployed. Micro-
services generally perform specific functions according to the

orchestration of the Orchestrator, such as face recognition, face
description, vehicle recognition, and vehicle description.

3.1.2. System Workflow
Above we introduced the three-layer architecture of the system
we designed, as well as the composition and function of each
layer. In this part, we introduce how Rinegan works.

As shown in the Figure 6, we assume an application scenario
to make the workflow more specific. Imaging a scenario where a
criminal is driving a car to escape in the city.We need tomake the
intelligent security robot recognize the vehicle color and license
plate number of the vehicle to lock its position.

The terminal camera at the perception layer can collect and
store large-scale image data, which we call original images, and
the camera transmits the collected data to the gateway layer.
After the gateway on the edge-side receives these raw images,
the image processing micro-services deployed in them start to
work. The first step is image pre-processing. Specifically, image
transformation includes grayscale and geometric transformation
to reduce the amount of data that needs to be processed. Image
enhancement means to enhance the useful information in the
image. It can be a distorted process. Its purpose is to improve the
visual effect of the image. For the application of a given image,
it purposefully emphasizes the overall or local characteristics of
the image. Image compression refers to the process of reducing
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FIGURE 6 | Workflow of Rinegan.

image storage or reducing image bandwidth. Image restoration is
an objective process that attempts to restore the original content
or quality of images with reduced or distorted quality.

The gateway can perform object detection on the pre-
processed image. The object detection is roughly divided into
three steps. For this scenario, the first is the classification
operation. In a given image or a video, the gateway must
determine what type of target is in it, that is, the target vehicle.
Then there is the positioning operation, to locate the location of
the target vehicle. Finally, the detection operation is to detect the
color and license plate of the targeted vehicle.

The gateway uploads the processed image to the cloud of the
intelligent security robot, and executes the feature representation
in the cloud. Through the feature extraction algorithm, the
micro-service describes the license plate number and color
of the target vehicle for identification. After the cloud recognizes
the color and license plate number, compares and matches with
all vehicle feature information in the database, and then the target
vehicle is identified.

3.2. System Description
In this part, we give a detailed description of each module in the
three-layer architecture of the system.

3.2.1. User Interface
For a system, security is the primary consideration in the design
process. To ensure the security of the system, it is necessary
to ensure that the users interacting with the system are not

malicious. There are two aspects of user security that need to be
considered. One is the authentication of the user’s identity, and
the other is the acquisition of the user’s operating authority to the
system. In response to these two problems, we have developed
two functions in the User interface, identity authentication and
access control.

We have realized the authentication of the user’s identity
through the digital certificate. The digital certificate contains
the user’s identity information and digital signature, which
can prove their identity to the entities in the system. The
signature certificate in the digital certificate is used to sign user
information. To ensure the non-repudiation of information, the
encryption certificate is mainly used to encrypt information
transmitted by users to ensure the authenticity and integrity
of the information. Access control means that after the system
completes the identification of the user, it determines the access
request authority to the information resource according to the
user’s identity. We use the discretionary access control strategy to
allow legitimate users to access the objects allowed by the policy
as users or user groups, and at the same time prevent illegal users
from accessing.

3.2.2. Application
This module is user-oriented. After the system completes the
user’s identity authentication and grants the user certain access
rights, the user initiates the corresponding function request to the
system according to his needs, so the function of this module is
specific. For example, the user may need our system to do face
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recognition, track a person, recognize a vehicle, etc., then this
module will send these specific function requests to the server,
and call the micro-service interface to complete these tasks.

3.2.3. Orchestration
When a system adopts the micro-service architecture, the
original business may not change, but the system has been split
into many new micro-services. Compared with the traditional
architecture, the micro-service architecture will rely more on the
collaboration between the micro-services to achieve a complete
business process. This collaboration is the service orchestration,
which requires a complete orchestration framework to support.

Orchestration is oriented toward executable processes, an
executable process is used to coordinate internal and external
service interactions, and the overall goal, involved operations,
and service call sequence are controlled through the process. The
advantage of the orchestrator is that the process control service
always knows where each business is going, and monitoring the
business has become a relatively simple matter.

3.2.4. Micro-Service
The reason why we use micro-services is because micro-services
have a high degree of modularity and interoperability, which
can improve the flexibility of the system and optimize the
resource allocation of the system. Whether it is the lightweight
image processing tasks that we deploy on the edge (e.g., image
preprocessing and target detection), or the subsequent image
processing tasks that we deploy in the cloud, they are all based
on the corresponding micro-service module.

We have used virtualization technology and built these micro-
services using Spring boot in the docker container. To ensure
that the micro-services in the container are running properly,
we set a module named monitor&protection, which has three
functions: link tracking, service fusing, and service monitor.
Service fusing provides a proxy for micro-services. It implements
fault tolerance and self-protection by setting timeout and circuit
breaker modes for network requests to prevent cascading failure
when the service is impossible, which leads to an avalanche
effect. Link tracking is used in the local area network to update
the connection information. This function can ensure the real-
time performance of the micro-service status. Service monitor is
used to monitor the running status of each micro-service. When
a micro-service has a problem, it will report to the server. It
works with link tracking to ensure the normal operation of the
micro-service in the container.

For the configuration management and service discovery
of micro-services, we also designed a module called
discovery&config. Discovery is RESTful-based service discovery
functions, which are mainly used for the discovery and
registration of micro-services. When a new micro-service
is deployed, this function is responsible for registering the
micro-service with the server, which ensures high availability,
flexibility, and scalability through heartbeat checking, client-side
caching, and other mechanisms. Config is used to uniformly
manage the configuration of micro-services. Unlike traditional
monolithic applications, in293the micro-service architecture,
an application system using the micro-service architecture may

contain294hundreds of micro-services. Therefore, centralized
management configuration is necessary.

As shown in the Figure 7, we not only deploy micro-services
in the cloud, but also the gateway on the edge side uses the
micro-services developed by us when processing images. The
entire working process of the system involves the participation
of micro-services from beginning to end. For example, at the
gateway layer, the gateway completes image restoration, image
enhancement and object detection by calling the RESTAPI of the
corresponding micro-service. After the cloud receives the data
processed by the gateway, themicro-services continue to perform
feature description and feature recognition operations on the
image, and the process of calling the micro-services is basically
the same as the gateway layer.

3.2.5. Gateway
In our proposed architecture and developed system, the gateway
is a device on the edge-side that cooperates with the cloud to
complete image processing tasks in a large-scale environment.

In addition to its own original functions, for the flexibility
of the system, and to reduce the consumption of the cloud
to improve the efficiency of the system, we deployed the first
two steps of the image processing process in the gateway for
execution, namely image pre-processing and object detection.

Similar to the cloud, we also use the docker container-based
virtualization technology to deploy the corresponding micro-
services, which greatly enhances the scalability of the entire
system, and the orchestration and details of the micro-services
are basically the same as those of the cloud.

3.2.6. Terminal Devices
In this work, the terminal device is the camera, the physical
device of the perception layer. These cameras collect or capture
images in specific places and store them in its memory, but
the cameras do not have the function of processing images, so
these images are transmitted to the gateway for further screening
and processing.

4. EVALUATION

In this section, we present our experiment to evaluate the
performance of Rinegan. We first introduce the implementation
detail and then analyze the result.

4.1. Implementation
In order to verify that the architecture we proposed can effectively
enhance the efficacy of object recognition, we implemented
the protype system based on our proposed image processing
architecture—Rinegan in our laboratory environment. According
to related research (Nefian and Hayes, 1998; Lal et al., 2018),
face recognition is currently one of the most commonly used
function, such as tracking suspects in cities. So we choose the face
recognition function to test the performance of our architecture.
Note that, Rinegan can not only facilitate the face recognition task
but also the other recognition applications such as car and animal
recognition. This because these applications are all based on the
image process ability just the same as face recognition.
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FIGURE 7 | Micro-services in image processing.

We select 1,000 pictures (7.8MB in total) collected from
“Large-scale CelebFaces Attributes (CelebA) Dataset”1 as our
experimental data. Our purpose is to find a random select
specific target person in these pictures. The face recognition and
detection algorithms used in this work are “Face-recognition”
project.2 This project provides convenient APIs, i.e., the
“face_location”2 and “face_distance”2 APIs, for face detection
and recognition, respectively. Moreover, we collect a MP4 video
file, named “hamilton_clip.mp4”(640*360, 29.97 fps, 4.9 MB,
78 s),3 for evaluation. Indeed, the process of video data is not
different from that of pictures except the loading task which
converts the video stream to a set of frames, i.e., pictures.

1Celeba. Available online at: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
2Face-Recognition. Available online at: https://face-recognition.readthedocs.io/en/

latest/face_recognition.html.
3Face Recognition Example. Available online at: https://github.com/ageitgey/

face_recognition/tree/master/examples.

In the process of image processing, we deploy the task of
object detection on the edge side in which the devices detect
the object in the input pictures or video, that is, the person.
Finally, the picture will be cropped, and other parts except the
face will be cropped off, and the edges will be sent to the cloud
to recognize the face. Therefore, the cloud server only needs
to do the recognition task. It is worth noting that we ignored
the process of sending information from the cloud to the robot
since it is a simple task which transfers only the location received
from corresponding gateways and the suspect information such
as name, passport ID and so forth. At the same time, we also
deployed object detection and face recognition tasks all in the
cloud (we call it centralized later), as a comparative experiment
of our architecture.

In the laboratory environment, we used one cloud server and
ten edge devices for experiments. In the Rinegan, these edge-side
devices receive the images or video collected by the camera, then
they execute the object detection and image cropping tasks. The
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FIGURE 8 | Gateway.

TABLE 1 | Detail of devices used in this experiment.

Device CPU Memory

Cloud Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz 64cores 251G

Device1 Intel I7-9700 (8 CPUs * 1 core) 2G

Device2 Intel I7-9700 (8 CPUs * 1 core) 4G

Device3 Intel I7-9700 (8 CPUs * 1 core) 8G

Device4 Intel I7-9700 (1 CPU * 8 cores) 4G

Device5 Intel I7-9700 (1 CPU * 4 cores) 8G

Device6 Intel I7-9700 (1 CPU * 1 core) 8G

Device7 RK 3309 2G

Device8 RK 3309 2G

Device9 RK 3309 4G

Device10 RK 3309 4G

configurations of the CPU, memory of these devices are shown
in the Table 1. Among these devices, device 1 to device 6 are
virtual machine with heterogenous configurations, devices 7 to
10 are the real gateway containers of our laboratory (as shown
in Figure 8). All these module on the devices are implemented
based on Spring microservice architecture4 which exchange data
through RESTFul api, i.e., the data is transferred based on HTTP.
Our purpose is to simulate the performance of different operation
systems with various configurations to reflect the adaptiveness of
heterogeneity of our proposed system.

4Spring Boot. Available online at: https://spring.io/projects/spring-boot.

4.2. Performance Evaluation
We compared the running time of the two methods we
mentioned above. In the Rinegan, the running times for face
detection and image cropping on the edge devices (100 images
per device) are 62, 58, 56, 59, 64, 66, and 67 s in order,
respectively. The face recognition on the cloud is about 120
s. In total, the entire process consumes about 187 s. As for
the Centralized case, it takes 230 s to process all the images
in the cloud. Therefore, in our experimental environment, our
architecture can increase the processing speed by about 19% (43
s less). It should be noted that in the real environment, there
may be far more than 10 edge nodes. So it is foreseeable that the
processing speed of our architecture will be faster also.

We also measure the video processing ability of our
architecture. In this experiment, when running with 10 edge
side devices (we clipping the video into 10 pieces each with
7.8 s per device), we find a abnormal result that the detection
tasks takes about 3 s per frame, i.e., 3*30*7.8 = 700 s in
total, while the cloud spends only about 570 s to run both
recognition and detection. This result indicates that the entire
resource of edge side is less than the cloud server in Table 1.
Therefore, we implement 10 more edge devices with the same
configurations to reexamine the performance, each processes
about 3.9 s video. In total, the detection and recognition tasks
take about 340(edge)+125(cloud) = 465 s, which shows a 18%
improvement of efficacy. In real world, the edge side devices
may be much more than cloud side and can be equipped with
more computing resource if necessary. As we mentioned above,
since the video processing is essentially similar to process a
sequence of pictures, the increased efficacy depends on the entire
computation resources of edge side devices. Moreover, the low
rate of video process is caused by the higher resolution ratio
rather than the difference of video and picture format.We have to
notice that how to improve the efficacy of processing high quality
pictures is not concerned in this work. Our purpose is to present
a distributed architecture that achieves a better performance than
centralized mode.

The cropping process performed on the edge side significantly
reduces the size of the total pictures and video by about 45 and
90%, respectively, which therefore greatly reduces the amount
of data to be transferred as well as the bandwidth consumption.
Another advantage of cropping is that it can prevent the 45 and
90% data from being leaked when transferring through untrusted
network channel. Specifically, the surrounding environment
which may contains sensitive information can be cropped
before transmission.

In summary, the Rinegan system we developed effectively
reduces bandwidth consumption and significantly improves
the execution speed. Moreover, the data leakage risk can
be remarkably decreased by our cropping process. More
importantly, our system has flexibility and scalability compared
with the centralized image process architecture, and can be
deployed more flexibly at the edge. Additionally, though
the process of all frames (2,356 in total) in our video is
resource intensive one can select a part of them, e.g., 1
frame per second, or compress the pictures to improve the
detection efficacy.
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5. DISCUSSION

From the above experimental results and comparative analysis,
the Rinegan system we designed performed well, but we also
discussed and thought about this work, as shown below.

1. Limitation of this work.Our experiment is not large enough as
real world IoT scene. However, considering our heterogeneous
devices, one of which even configures 1 cpu core, we can
infer that our system can have good performance in large-
scale scenarios. In this work, we have not determined how
to allocate tasks on the edge and cloud to maximize the
performance of the system, but this does not affect the current
use of the system.

2. Prospect. In future work, we should conduct multiple
experiments to determine the optimal task volume ratio
between the edge and the cloud to optimize the performance
of the system. Moreover, our research found that the
architecture we proposed is not only suitable for intelligent
security robots, but also for the construction in the IoT large-
scale scenarios (Qiu et al., 2020; Shafiq et al., 2020). For
example, we can deploy this system on smart light poles to
achieve collaborative work between the edge and the cloud.
We have reason to believe that this will greatly improve the
efficiency of smart city construction.

6. CONCLUSION

In this work, we propose a scalable architecture that can improve
the image and video processing capabilities of the intelligent
security robot and facilitate the tracking task. We reduce the
bandwidth consumption of the cloud by deploying distributed
image processing functions on the edge. At the same time, by

cropping pictures, our architecture can also effectively protect
privacy. We developed a system Rinegan with this architecture
and tested the system in a laboratory environment. The result
shows that Rinegan consumes less resources and Executes in a
shorter time in cloud compared with centralized system. At the
same time, our system takes into account the scalability and
performs better in large-scale scenarios.
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