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Neurological disorders represent one of the leading causes of disability

and mortality in the world. Parkinson’s Disease (PD), for example, a�ecting

millions of people worldwide is often manifested as impaired posture and gait.

These impairments have been used as a clinical sign for the early detection

of PD, as well as an objective index for pervasive monitoring of the PD

patients in daily life. This review presents the evidence that demonstrates the

relationship between human gait and PD, and illustrates the role of di�erent

gait analysis systems based on vision or wearable sensors. It also provides

a comprehensive overview of the available automatic recognition systems

for the detection and management of PD. The intervening measures for

improving gait performance are summarized, in which the smart devices for

gait intervention are emphasized. Finally, this review highlights some of the

new opportunities in detecting, monitoring, and treating of PD based on gait,

which could facilitate the development of objective gait-based biomarkers for

personalized support and treatment of PD.
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1. Introduction

Parkinson’s Disease (PD) is a chronic and progressive neuro-disorder that

affects movement (Poewe et al., 2017; Armstrong and Okun, 2020). Apart from

Alzheimer’s Disease, PD is ranked second-most common neurodegenerative

disorder that affects 2–3% of the population over 65 years (Dorsey et al., 2018).

In terms of pathophysiology, PD is characterized by the loss of dopaminergic

neurons in the substantia nigra, leading to a reduced amount of dapamine

in the brain. Hence, this will cause reduced capability of movement control,

manifesting as slowness and abnormalities in gait (Armstrong and Okun,

2020). The biomarker for PD is α-synuclein protein in the Lewy bodies. When

the function of α-synuclein protein is disrupted, Oligomer, i.e., the main

component of Lewy bodies, is generated and damages brain cells (Du et al., 2021).
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Although extensive research has been conducted to determine

the underlying mechanism, the explicit relationship between the

loss of neurons and PD is still not fully understood.

Thus far, it is believed that PD is an age-related disease

and could be raised by a combination of genetic changes and

environmental factors. Aging is one of the leading causes of

PD, and its prevalence increases with age. The average age of

PD patients is about 60 years old, and PD is rare in people

under 40 years old (Poewe et al., 2017). With the progression of

ages, the degradation of protein metabolisms or mitochondrial

functions will potentially lead to cell death of the dopaminergic

neurons in the substantia nigra. About 15% of PD patients

have a family history, and 5–10% of them have a monogenic

form of the disease with Mendelian inheritance. Till now, a

number of genetic risks and variants of PD have been found

in extensive studies (Deng et al., 2018). In addition, researchers

have conducted various studies to explore the relationships

between environmental factors and PD, where the incident rate

of PD was proven to be correlated to smoking, caffeine intake,

and other factors (Hernán et al., 2002). However, the influence

of environmental factors on PD has not been clearly identified

due to the long-term effect of compounding factors. Recently,

Klingelhoefer and Reichmann (2015) proposed a hypothesis that

PD starts in the enteric nervous system or the olfactory bulb,

spreads via rostrocranial transmission to the substantia nigra,

and further transmits into the central nervous system.

As no precise diagnostic biomarkers for PD have been

discovered, early symptoms and clinical examinations are

major diagnostic measures (Armstrong and Okun, 2020). For

early symptoms, PD patients are commonly encountering

with non-movement symptoms (e.g., sleep disorder and visual

deterioration), movement difficulties (e.g., slow movement,

tremor, rigidity, impaired posture and gait), and cognitive

problems (e.g., depression, anxiety, etc.). Physical examinations

assessed by clinical scales or imaging examinations viaMagnetic

Resonance Imaging (MRI) are frequently used (Armstrong and

Okun, 2020).

Gait represents a person’s walking and running patterns,

which can be mediated by complicated brain networks,

involving cortical regions that are responsible for motor and

cognitive functions. As mentioned above, gait impairments and

abnormalities are primary symptoms of PD. In the past decades,

gait analysis has become a quantitative tool for analyzing

different walking disorders and gait abnormalities caused by

musculoskeletal and neurological degradation (di Biase et al.,

2020). In terms of movement symptoms, there are three

main aspects leading to gait impairments and abnormalities

(Mirelman et al., 2019). 1) Tremor: shaking usually begins

in the hands or limbs, and happens more frequently when

resting. 2) Slowness of movement: patients demonstrate reduced

gait speed and step length compared to healthy counterparts.

3) Muscle stiffness: the high tension of muscles results in

the increased rigidity of patients’ posture, which can further

influence the stability during human walking. In addition, non-

movement symptoms (e.g., cognition impairment, depression,

anxiety) also contribute to abnormal gait patterns (Deligianni

et al., 2019). Supported by advanced sensing technologies, gait

analysis can be performed from the clinical lab studies to daily

living environments (Chen et al., 2016; Kour and Arora, 2019;

Sun et al., 2020), providing opportunities for gait-based PD

detection, monitoring, and intervention.

This review is to provide a comprehensive overview of

the currently available detection, monitoring, and intervention

schemes of PD through gait analysis. In Section 2, we first

address the brain networks involved in human gait, aiming

to clarify the underlying mechanism of gait impairments in

PD. Next, the gait cycle and commonly used gait parameters

are introduced. Besides, the typical gait impairments of PD

patients are summarized. In Section 3, the clinical scales that

can be used for PD assessment are introduced. We then

summarize the available vision-based and wearable systems

for gait analysis. Section 4 reviews the state-of-the-art gait-

based PD detection/staging and FOG detection/prediction,

including feature extraction, learning-based classification and

regression methods, and available benchmark datasets. The gait

intervention methods in PD are summarized in Section 5,

ranging from pharmacological treatment, electrical stimulation,

external cues, to interventions supported by smart devices. We

conclude several future trends in PD detection, monitoring, and

intervention based on gait in Section 6 followed by a conclusion.

2. Gait hypokinesia in PD

2.1. Brain networks involved in human
gait

In the past decades, research attention has been gained

on studying brain activity changes along with human walking

(Fukuyama et al., 1997). In this section, we briefly address the

brain networks related to gait planning and execution.

2.1.1. Cortical and subcortical brain regions

Figure 1 demonstrates the key cortical and subcortical

regions involved in human gait, which are implicated during

human gait. Studies in human neuroscience have proven that

the prefrontal cortex, primary/secondary somatosensory cortex,

primary motor cortex, supplementary motor area, and the

cingulate motor area are highly associated with human gait

planning, gait execution, and lower limbmovements (Fukuyama

et al., 1997; Wei et al., 2022). In addition to the cortical brain

regions, several subcortical regions, such as cerebellum, basal

ganglia, pontine nuclei, thalamus, form networks also play

significant role in regulating human gait and posture (Surgent

et al., 2019).
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FIGURE 1

Key cortical and subcortical brain regions that are involved in

human bipedal gait. PFC, Prefrontal cortex; M1, Primary motor

cortex; S1/S2, Primary/Secondary somatosensory cortex; SMA,

Supplementary motor area; BG, Basal ganglia; PN, Pontine

nuclei.

2.1.2. Brain networks for movement

Extensive evidence in human neuroscience supports that

basal ganglia is connected to the cerebellum via the thalamus

and pontine nuclei, where the cerebellum is responsible

for maintaining the precision of movement and forms a

feedback loop between different cortices (Caligiore et al.,

2017). Except for the brain networks related to motor

functions, studies have shown that simultaneous cognitive tasks

during walking can also affect gait characteristics, which are

more pronounced in the elderly and those with neurological

conditions (Amboni et al., 2013). Such observations reveal that

human gait is influenced by both motor control and human

cognition (Lord et al., 2014).

2.1.3. Gait and emotion in PD

There is strong evidence of brain connections between the

amygdala and the basal ganglia as well as between the amygdala

and the motor cortex (Lagravinese et al., 2018; Deligianni

et al., 2019), indicating that there exists a bidirectional

interaction between the brain networks of movement and

emotion. Especially for PD patients with freezing of gait, brain

connectivity between the basal ganglia and the limbic system

increased and the connectivity between the basal ganglia and

cortical areas decreased (Avanzino et al., 2018). Besides, PD

patients also usually show difficulty in recognizing emotions

from other people’s facial expressions (Lagravinese et al., 2018).

2.2. Gait impairments of PD patients

As PD affects both motor and cognition functions of the

brain, the gait patterns of PD patients will demonstrate various

impairments and abnormalities, as shown in Figure 2B. We

will discuss the gait changes during three different stages,

i.e., early, mild-to-moderate, and advanced stages (Mirelman

et al., 2019). As shown in Table 1, we summarize several

obvious changes in gait parameters that can be used for PD

diagnosis. The gait parameters are grouped into three categories,

indicating bradykinesia, timing control, and postural stability

and gait planning.

2.2.1. Early stage

At the early stage of PD, slow gait speed and short step

length are first observed (Galna et al., 2015; Pistacchi et al., 2017).

However, these gait impairments are not PD-specific signs, as

they are age-related and can be induced by many other diseases.

Reduced arm swing and movement smoothness, and increased

interlimb asymmetry are more specific to PD, which are often

unilateral at the early stage (Mirelman et al., 2016; Pistacchi

et al., 2017). It is also found that the Range of Motion (ROM)

of lower limb joints (i.e., ankle, knee, and hip) becomes smaller,

which is more evident during the stance phase (Vallabhajosula

et al., 2013). Studies have revealed that the impaired gait patterns

become more apparent when PD patients performing dual tasks

(Baron et al., 2018).

2.2.2. Mild-to-moderate stage

With the progression of PD, patients will exhibit more severe

gait impairments at the mild-to-moderate stage (Mirelman

et al., 2019). The risk of falling is increased due to the further

instability of posture and gait planning. In specific, shuffling

steps, increased dual support and cadence, and reduced arm

swing are commonly observed gait changes during this stage

(Demonceau et al., 2015; Mirelman et al., 2016). Some patients

will demonstrate stooped posture during walking (Mellone et al.,

2016) and decompose turning into several fragments (Son et al.,

2017).

2.2.3. Advanced stage

For PD patients at the advanced stage, the impairments

and abnormalities of gait patterns become even worse. The

blocked movement, i.e., Freezing of Gait (FOG), is an episodic

yet obvious sign that occurs in most PD patients, which brings

a severe burden on patients in daily life (Heremans et al., 2013;

Gilat et al., 2021). FOG can be triggered when the patient turns

his/her body, traverse narrow corridors, avoid obstacles, and

so on. The underlying mechanism for triggering FOG involves

a complicated combination of motor, sensory, cognition, and

Frontiers in AgingNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.916971
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnagi.2022.916971

FIGURE 2

(A) Illustration a gait cycle consisting of the swing phase and stance phase; (B) Some typical gait and postural symptoms of PD patients.

TABLE 1 Typical gait parameters and impairments for PD.

Gait parameters Indications Changes with PD

Gait speed Bradykinesia Reduced

Step/Stride length Bradykinesia Reduced

ROM of lower limb

joints

Bradykinesia Reduced

Cadence Timing control Increased

Dual support duration Timing control Increased

Initiation Postural stability and Gait

planning

Freezing

Turning Postural stability and Gait

planning

Fragmentation

Gait variability and

asymmetry

Postural stability and Gait

planning

Increased

Limb coordination Postural stability and Gait

planning

Reduced

emotion (Nutt et al., 2011; Heremans et al., 2013; Weiss et al.,

2020). However, the objective measures and precise biomarkers

for FOG still need to be studied. Besides, the balancing, gait

planning, and postural stability are gradually reduced, leading

to a higher risk of falling (Mirelman et al., 2019). At this stage,

some patients will continuously lose motor functions due to the

further decline of muscle control, where additional care using

wheelchairs or other assistant devices is needed (Creaby and

Cole, 2018).

3. Gait analysis methodology

3.1. Clinical assessment

As shown in the upper part of Table 2, we summarize

several common-used observation-based clinical scales and

performance-based tests that can be utilized for gait assessment

in PD. Some of these scales/tests are PD-specific, including

Unified Parkinson’s Disease Rating Scale (UPDRS), Hoehn and

Yahr (H&Y) Scale, Freezing Of Gait Questionnaire (FOG-Q),

and Parkinson’s Disease Quality of Life Questionnaire-39 (PDQ-

39) (Ebersbach et al., 2006).

Particularly, UPDRS and H&Y scales are popular in the PD

staging tasks, where classification algorithms are developed to

predict the severity levels/scales of PD patients from their gait

patterns.

The lower part of Table 2 lists several general scales/tests

for evaluating gait impairments, which typically measure the

gait metrics related to transition, gait, and risk of fall (Toro

et al., 2003). These tests/scales can be used as powerful tools for

quantifying the gait performance of PD patients after specific

gait intervention.

In addition to clinical assessment, as summarized in Table 3,

increasing studies leveraged vision-based or wearable sensor

based systems to estimate different spatiotemporal, kinematic,

and kinetic gait parameters.

3.2. Gait parameters

Human bipedal gait involves posture control, balancing, and

limb coordination so that the body can move forward in a

rhythm (Deligianni et al., 2019; Zanardi et al., 2021). Gait cycle is

the critical feature that can bemarked by detecting two repetitive

gait events, e.g., heel-strike or toe-off, of the same foot. As

shown in Figure 2A, a gait cycle can be divided into two phases:

stance and swing. Specifically, the gait phase when two feet are

contacted to the floor is marked as dual support. Through the

use of different gait analysis systems, diverse parameters can be

calculated from gait data.

3.2.1. Spatiotemporal parameters

Spatiotemporal parameters refer to the quantitative gait

characteristics, which are typically associated with distance

(spatial) or time (temporal). These parameters can be calculated
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TABLE 2 Clinical scales and tests for assessing the gait performance in PD.

Scales/Tests Scope Descriptions

UPDRS Specific Unified Parkinson’s Disease Rating Scale. The most commonly used rating scale for symptoms of Parkinson’s disease, covering

different aspects of gait

MDS-UPDRS Specific A new version of UPDRS modified by Movement Disorder Society

H&Y Scale Specific Hoehn and Yahr Scale. Measure how Parkinson’s symptoms progress and the level of disability

SAS Specific Simpson-Angus Scale. Assess the severity of rigidity and bradykinesia

FOG-Q Specific Freezing Of Gait Questionnaire. A widely used tool to quantify FOG severity

PDQ-39 Specific Parkinson’s Disease Quality of Life Questionnaire-39. A self-administered questionnaire containing both motor and non-motor

symptoms

10 MWT General 10 Meter Walking Test. Assess gait speed in a short distance

6-min Walk General Assess distance walked over 6 min

TUG General Timed Up and Go test. Assess a person’s mobility and requires both static and dynamic balance

BBS General Berg Balance scale. Assess a person’s static and dynamic balance abilities

DGI General Dynamic Gait Index. Assess a person’s capability of maintain walking balance while performing other tasks

based on the extracted gait cycles, such as gait speed,

step/stride length, cadence, progression line, walking base width,

stance/swing duration, and so on Deligianni et al. (2019) and

Zanardi et al. (2021). Among them, stride length is the walking

distance of two consensus steps, cadence indicates the steps

per minute, and walking base width represents the side-to-side

distance between the line of the two heels.

Spatiotemporal parameters are typically be extracted by

using vision-based systems and inertial sensors, which have

been extensively used for clinical gait analysis as the indication

of intrinsic information of the gait patterns (Kour and Arora,

2019). Moreover, these parameters are simple to calculate,

allowing analysts to focus on gait analysis rather than

parameter extraction.

Previous studies have demonstrated that slow gait speed,

short step length, increased cadence and dual support are

significant spatiotemporal gait parameters in PD detection and

staging (Galna et al., 2015; Caramia et al., 2018; Rehman et al.,

2019), which can also be used for validating the effectiveness of

gait intervention methods (Schlick et al., 2016; Gómez-Jordana

et al., 2018) .

3.2.2. Kinematic gait parameters

In addition to spatiotemporal parameters, the anatomical

joints of the human body during walking can be estimated

by vision-based systems or multiple IMUs. Along this line,

joint positions, joint angles, joint velocities as well as the

ROM of each joint, can be derived, which are typically

denoted as kinematic gait parameters (Chen et al., 2016;

Deligianni et al., 2019). Among different systems, multi-camera

Mocap system achieves the highest precision in capturing

the human body joints, which is regarded as the golden

standard in clnical gait analysis (Moore et al., 2007). Recent

advancement in computer vision enables the markerless human

pose estimation directly from RGB/RGBD images (Kour and

Arora, 2019).

In terms of kinematic gait parameters, studies have shown

that PD patients demonstrated decreased ROM of lower limb

joints (Vallabhajosula et al., 2013). Human skeletons encodes the

walking patterns in a more complicated manner, hence, most of

recent studies investigated the use of deep learning models to

extract informative features for PD detection and staging (Gu

et al., 2020; Lu et al., 2021; Sabo et al., 2022).

3.2.3. Kinetic gait parameters

Kinetic parameters indicate the biomechanics of the human

body during walking (Dorschky et al., 2019). The important

yet commonly-used kinetic parameters can be measured by

force plate or pressure insoles, including foot pressure, Ground

Reaction Force (GRF), Center of Pressure (COP), Center

of Mass (COM), and joint force/torque. The data collected

by surface Electromyography (EMG) reflects muscle activities

during walking, which is an alternative way for modeling

gait kinetics.

Extensive studies on the PhysioNet dataset has proven that

vertical GRF is a critical and discriminative kinetic parameter in

the PD detection and staging tasks.

3.3. Vision-based gait analysis systems

One of the main methodologies for gait data acquisition

is using visual information. As shown in Table 3, we divide

vision-based systems into two categories, i.e., marker-based

systems for clinical use and markerless systems for

home-based environment.
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TABLE 3 Illustration of di�erent gait analysis systems and their characteristics.

System Category Pros Cons Selected study Techniques Parameters

Vision
based

Marker
based
(Mocap)

3D information
High accuracy;

High freq.;

Golden standard

Limited scenario;
Cumbersome;
Expensive;

Tedious setup

Moore et al., 2007 OptiTrack (Mocap) 3D kinematics

Dillmann et al., 2014 CMS-HS (Mocap) 3D kinematics

Zhang et al., 2018 Vicon (Mocap) 3D kinematics

Park et al., 2021 Vicon (Mocap) Spatiotemporal

Markerless
(camera)

3D Estimation
Easy setup;
Low cost;
Less constraints

Less accurate;
Light-sensitive;
Data storage;
Privacy

Guo et al., 2019 RGBD (Reasense) 2D/3D kinematics

Eltoukhy et al., 2017 RGBD (Kinect) 3D kinematics

Ortells et al., 2018 RGB camera Silhouettes and GEI

Kidziński et al., 2020 RGB camera 2D kinematics

Lu et al., 2021 RGB camera 3D kinematics

Sabo et al., 2022 RGB/RGBD camera 2D/3D kinematics

Wearable
sensor
based

Pressure
insole

Wireless
Less constraints;
Easy acquisition;
Low cost

Uncomfortable;
Noisy data;

Synchronization

Tedious setup

Power supply

Alharthi et al., 2020 Force sensors vertical GRF

El et al., 2020 Force sensors vertical GRF

Marcante et al., 2020 Capacitive pressure Pressure distribution

Hu et al., 2021 Capacitive pressure Pressure distribution

Inertial
ACC
IMU

Jarchi et al., 2014 ear-worn IMU spatiotemporal

Gonçalves et al., 2021 multiple IMUs 3D kinematics

Sigcha et al., 2020 waist-worn ACC 3D kinematics

El-Attar et al., 2021 multiple ACCs 3D kinematics

EMG
Nieuwboer et al., 2004 surface EMG Muscle activity

Volpe et al., 2020 surface EMG Muscle activity

Platform
based

Force High accuracy;

High freq.;
Force measurement

Limited scenario;
Expensive;

Cumbersome

Dyer and Bamberg, 2011 AMTI (Force plate) COP and GRF

Optical
Ambrus et al., 2019b OptoGait Spatiotemporal

Ambrus et al., 2019a OptoGait Spatiotemporal

Multi
modal
fusion

Mocap and

force
plates

Multi-modal gait
parameters;

Clinical use

Expensive;

Cumbersome;
Tedious setup

Pereira et al., 2021 Mocap+force plate Spatiotemporal and 3D kinematics and GRF

Celik et al., 2022 Mocap+force plate Spatiotemporal and 3D kinematics and GRF

Wearable
sensor
fusion

Same as wearable;
Multi-modal gait
parameters

Same as wearable;
Tedious setup;

Low generalization

Negi et al., 2021 IMU+EMG+Insole

Muscle activity

and COP, GRF
and Spatiotemporal

Celik et al., 2022 IMU+EMG

Muscle activity

and Spatiotemporal

Vision and
Wearable

Multi-modal gait
parameters;

Robust and accurate

Tedious setup;

Low generalization
Gu et al., 2020 Mocap+EMG/ RGBD+EMG

Muscle activity

3D kinematics

Stack et al., 2018 RGB+IMU

Spatiotemporal

and Kinematics

Mocap, Motion Capture System; IMU, Inertial Measurement Unit; EMG, Electromyography; ACC, Accelerometer; GEI, Gait Energy Image; COP, Center of Pressure; GRF, Ground

Reaction Force.

3.3.1. Marker-based system

Multi-camera motion capture (Mocap) is the most common

marker-based system, which requires patients to attach reflective

markers to their bodies (e.g., the positions related to anatomical

joints), then collects the infrared light reflected from the

markers passively or actively, and further determines the

3D positions of corresponding markers. Meanwhile, the pre-

built model of the human body is constructed maturely to

fit the extracted related marker positions. Nowadays, Mocap

systems have become the golden standard in clinical gait

analysis owing to the high tracking accuracy and sampling

frequency (Moore et al., 2007; Zhang et al., 2018; Park

et al., 2021). However, such systems consisting of multiple

pre-deployed cameras are expensive and cumbersome, limiting

the applications to hospitals and labs. Moreover, guidance from

specialists and tedious system setup are required. Zhang et al.

(2018) utilized Vicon (Vicon, Oxford, UK) Mocap to study the

gait performance of PD patients with a motorized walker and

proved the effectiveness of the marker-based system in clinical

gait analysis.

3.3.2. Markerless system

With the great demands on gait analysis in the household,

markerless systems are free from the constraints of tedious setup

and wearable markers. Especially with recent advancements of

computer vision technologies, 2D/3D human pose (i.e., key joint

positions that are similar toMocap) can be directly inferred from
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either color or depth images (Shotton et al., 2011; Cao et al.,

2017), without the need for pre-build human models. Vision-

based markerless systems are more flexible and convenient for

pervasive gait monitoring in daily life. However, they can not

achieve the accuracy and sampling frequency as the marker-

based systems. To overcome the limited sensing area provided

by fixed camera, Guo et al. (2019) integrated a single RGBD

camera with the mobile robot, and leveraged SLAM to enable

the long-term and pervasive 3D gait analysis in a canonical

coordinate system. Several studies utilized the 3D skeleton and

gait parameters extracted from marker-based systems as the

prior to improve the performance of markerless systems. Along

this line, Gu et al. (2018) proposed a simple yet effective 3D

gait analysis method based on dictionary learning, and Kidziński

et al. (2020) developed a deep learningmethod for enhancing the

gait analysis performance.

3.4. Wearable sensor-based gait analysis
systems

The development of wireless and miniaturized sensors has

prospered pervasive sensors-based gait analysis (Chen et al.,

2016). Most wearable sensors are inexpensive and portable,

which have been widely used in both clinical and home-based

scenarios. However, wearable sensing systems are still facing

with several inherent challenges, such as uncomfortable to wear,

power supply requirements, data synchronization, and noise

contamination. In PD studies, research effort has been gained

on using different types of wearable sensors to collect real-time

spatiotemporal, kinematic, and kinetic parameters.

3.4.1. Pressure/force sensors

Pressure/force sensors are commonly placed in shoes or

insoles (e.g., pressure insole), measuringGRF or plantar pressure

distribution of the feet when contacting the ground (Marcante

et al., 2020; Tahir et al., 2020). GRF can be used to infer the joint

force and torque of lower limbs, and the distribution of the foot

pressure can also be used to estimate the relevant kinetic gait

parameters (e.g., COP and GRF). It should be pointed out that

insoles consisting of pressure/force sensors need to be tailored

for each individual, avoiding misalignment during walking.

3.4.2. Inertial sensors

The inertial measurement unit (IMU) is one of the most

important wearable sensors in gait analysis, which consists of

accelerometer, gyroscope, and sometimes magnetometer. By

attaching IMUs on the human body, the linear and angular

velocity, acceleration, as well as heading reference during gait

can be derived, which can be further used for gait event detection

and gait stability evaluation (Chen et al., 2016). Previous studies

investigated different places for the attachment of IMUs for gait

analysis. The most common way is to attach IMU sensors to

shoes, ankle joints, knee joints, or the human waist (Mazilu et al.,

2013; Caramia et al., 2018; Lee et al., 2018). Jarchi et al. (2014)

explored the use of a single ear-worn IMU for gait analysis,

and they demonstrated promising results in gait event detection.

Recent studies leveraged multiple IMUs, such as Xsens Dot

(XSens, Enschede, The Netherlands), attached to lower limbs to

recover the 3D skeleton during walking (Gonçalves et al., 2021).

3.4.3. Electromyography sensors

Electromyography (EMG) sensors attached to the skin

measure the electrical signals introduced by muscle activities,

which can be contaminated by noise originating from cross-

talk and motion artifacts (Guo et al., 2021a). Traditional surface

EMG systems are inconvenient to set up and constrained

in specific scenarios. Recent wireless EMG sensors offer

new opportunities for free-living gait analysis and long-term

monitoring (Bailey et al., 2018; Steele et al., 2019).

3.5. Platform-based gait analysis systems

In terms of platform-based systems for evaluating the

gait performance, there are force-based and optical-based

platforms according to the sensing mechanism. Force plates

are mechanical sensing systems that measure the GRF (both

magnitude and direction) during humanwalking (Halliday et al.,

1998). Commonly, force plates are pre-deployed on the floor

and the patient will be asked to walk over them. OptoGait

(Microgait, Bolzano, Italy) is an optical-based system that using

high-resolution technology. By detecting the interruption of

infrared beams between transmitter and receiver, OptoGait can

acquire accurate gait data of participants (Ambrus et al., 2019a).

3.6. Gait analysis via multi-modal sensing
fusion

To overcome the inherent challenges of each individual

system, the combination of multiple gait analysis systems can

help obtain more robust and accurate gait parameters. In this

review, several popular fusion methodologies are introduced.

3.6.1. Mocap systems and force plates

Recall that marker-based Mocap systems are advantageous

in capturing high precision spatiotemporal and kinematic

gait parameters, while force plate can measure the kinetic

parameters, e.g., GRF. Therefore, the concurrent use of Mocap

and force plates becomes popular in clinical gait analysis (Zelik

and Honert, 2018). In recent studies, the balance and gait of PD
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patients were investigated by using the fused systems (Pereira

et al., 2021; Ujjan et al., 2022).

3.6.2. Multi-modal wearable sensors

Considering wearable sensors are convenient and portable, a

straightforward way is to simultaneously use different wearable

sensor systems for gait analysis. With sufficient synchronization,

the sensor fusion can overcome the shortcomings of each

single modality. For instance, Mazilu et al. (2013) construted

the CuPiD dataset by collecting gait data of PD patients with

multiple wearable sensors, including IMU sensors attached to

different body parts, a smartphone in the pocket, pressure

insoles, chest-mounted ECG and head-mounted fNIR. Negi

et al. (2021) implemented the fusion of pressure insole, IMU

and EMG signals for analyzing different terrain walk. Using

IMU and EMG, Celik et al. (2022) introduced a novel data

fusion algorithm for enabling gait analysis for both clinical and

free-living assessments.

3.6.3. Vision-based and sensor-based wearable
sensors

The combination of vision-based and sensor-based systems

provides more applicable scenarios by acquiring both the visual

and kinematic data. This category can be divided into two

aspects according to the way of fusion. One line of research

leveraged theMocap system to evaluate the effectiveness of other

wearable sensor-based systems. The others aimed to improve

the performance via multi-modal fusion against implementing

only one system. For instance, Gu et al. (2020) proposed a cross-

modal learning method for knowledge transferring between

EMG and Mocap (or RGBD and Mocap), thus improving the

performance of abnormal gait detection. Stack et al. (2018)

exploited both RGB cameras and wearable sensors to enhance

the detection of balance impairments in PD.

4. Toward automatic recognition in
PD based on gait data

This section mainly reviews the recent development of gait-

based automatic recognition in PD. As illustrated in the lower

part of Figure 3, gait analysis has been applied to different tasks,

i.e., the detection and staging of PD patients, as well as FOG

episodes detection and prediction.

4.1. Pipeline overview

An overview of the pipeline of the automatic recognition

based on gait data is demonstrated in Figure 3, which typically

includes the following steps. 1) Gait data capture: Human

gait can be captured via different vision-based and/or wearable

sensor-based gait analysis systems as mentioned in Section

3. Meanwhile, clinical scales for assessing the movement and

posture stability of PD patients are simultaneously recorded.

2) Data preprocessing: Given the raw gait data, various

preprocessing steps can be first taken. For instance, smoothing

and denoising are standard steps to improve the quality of

data containing noises and drifts. Another important step

is segmenting the time sequence into small fractions, which

involves either the gait cycle extraction or the sliding window

techniques. Meanwhile, min-max and z-score normalization

methods are frequently utilized to remove the bias across

segments or trials. 3) Feature extraction: In order to improve

the performance in automatic PD recognition, informative

features are additionally extracted from raw gait data. As

introduced in Section 3.2, spatiotemporal, kinematic, and

kinetic gait parameters are significant features for characterizing

walking patterns. To apply these parameters with machine

learning models, statistical features and frequency domain

features are commonly calculated. Specifically, for the visual

input, a number of image-based (e.g., silhouette) and skeleton-

based (e.g, key body joints) feature extraction strategies were

developed for clinical gait analysis and gait recognition.

Recently, advanced deep learning algorithms have gained

increasing popularity in gait-based PD detection, providing

a unified framework for automatic feature extraction and

recognition. 4) Automatic recognition: Subsequently, the

extracted gait features are fed into the dedicated classification

models to either recognize PD patients or the occurrence

of FOG events (detection) or predict the severity level of

PD patients (staging). Intuitively, the detection problem can

be treated as a binary classification (i.e., discriminate PD or

healthy), while the staging is modeled by regression or multi-

class classification. Some early studies designed dedicated rules

(e.g., peak detection or thresholding) for classification. However,

these rule-based methods are with low generalization capability

to new trials and subjects. Lately, extensive Machine Learning

(ML) classifiers have been utilized in previous PD detection and

staging studies (Mei et al., 2021). Amongwhich themost popular

ML models include Support Vector Machine (SVM), Linear

Discriminant Analysis (LDA), Random Forest (RF), Decision

Tree (DT), K-Nearest Neighbour (KNN), Logistic Regression

(LR), AdaBoost, and so on. Recently, with the prosperity

of deep learning (DL), deep models have been explored to

automatically learn discriminative gait features from different

data modalities. 5) Evaluation: In terms of the evaluation

of classification/recognition algorithms, the reported results

are validated under either K-fold cross-validation or leave-

one-subject-out (LOSO) validation protocols, and the reported

metrics include accuracy, precision, recall, F1-score, sensitivity,

specificity, and Area Under Curve (AUC).
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FIGURE 3

Illustration of the pipeline for automatic recognition in PD based on Gait Data. ROM, Range of Motion; GRF, Ground Reaction Force; COP,

Center of Pressure; COM, Center of Mass; trans., transformation; PD, Parkinson’s Disease; HC, Healthy Control; FOG, Freeze of Gait.
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4.2. Gait feature extraction

With the development of wearable sensors and vision-based

systems, we have witnessed the flourish of gait analysis in

both clinical and healthcare scenarios. However, automatically

identifying and staging PD could be more challenging due to the

blossom of data modality and capacity (Deligianni et al., 2019;

Kour andArora, 2019). Therefore, the calculation of quantitative

gait parameters and the extraction of informative gait features

are of paramount importance. In this review, we categorize

the existing feature extraction methods into three aspects: 1)

quantitative gait parameters used in clinical gait analysis, 2)

feature extraction from visual inputs, 3) as well as common

features related to wearable sensors.

4.2.1. Quantitative gait parameters

As introduced in Section 3.2, spatiotemporal, kinematics,

and kinetics parameters are significant characteristics in

describing human walking patterns. The choice of these

parameters mainly depends on the data modalities. During

the automatic recognition of PD, these parameters can

serve as representative features. However, gait abnormalities

of PD patients are always coupled with subject-specific

characteristics, so conventional gait parameters may be difficult

for discriminating subtle gait changes. To extract discriminative

gait features and boost the recognition performance in PD,

recent effort has been gained on learning-based method for

automatic feature extraction.

4.2.2. Feature extraction from vision data

By using the golden-standard Mocap systems, the gait

kinematics (e.g., joint positions, velocities, and angles, etc.) as

well as spatiotemporal gait parameters (e.g., step length, cadence,

gait speed, etc.) can be derived with high precision. Similar

to Mocap systems, recent advanced human pose estimation

algorithms enable the markerless estimation of 2D/3D key joints

of the human body from either RGB or depth images, then the

informative gait parameters can be calculated subsequently (Guo

et al., 2019; Sabo et al., 2022).

In addition, the key joints of the human body can

be modeled as the 2D/3D skeletons connected with links,

characterizing both spatial and temporal information of the

gait patterns. Previous studies explored extensive methods to

extract hand-crafted features from skeletons by distance-based

(Guo et al., 2017) and trajectory-based (Guo et al., 2018)

mechanisms. For deep learning methods, Recurrent Neural

Networks (RNN), showing advantages in processing temporal

sequences of diverse length, was first investigated for skeleton-

based human motion analysis (Liu et al., 2017). More recently,

due to the consideration of spatiotemporal relationship among

key joints, Graph Convolutional Networks (GCN) has become

the most popular deep models for skeleton-based gait analysis

and action recognition (Hu et al., 2019).

In terms of RGB images, the silhouette of the target

subject can be extracted and cropped. Conventional methods

first reshaped the silhouette images into high-dimensionality

silhouette vectors, then aggregated these vectors for PD

detection by using statistic methods or spectral transformation

(Chen et al., 2012). Gait Energy Image (GEI) extracted from the

silhouette is another popular feature for gait-based recognition

(Ortells et al., 2018). Similarly, deep learning techniques can

extract spatiotemporal features from the RGB video (Guayacán

and Martínez, 2021).

4.2.3. Feature extraction from wearable sensing
data

The raw temporal sequences collected from wearable

inertial, force, pressures, or EMG sensors are first segmented

into fractions according to gait cycle detection or pre-defined

sliding window, thus the essential gait characteristics can be

calculated from each individual segment.

Early works extracted the statistical features from segmented

data in the time domain, especially prevalent for EMG

data (Guo et al., 2020), including minimum, maximum,

mean, median, variance, entropy, etc. Furthermore, the

statistical methods, e.g., Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA), were

the most frequently used dimension reduction techniques

due to their simplicity and applicability (Demrozi et al.,

2019).

Another group of exertions lies in the frequency-domain

features. The common-used techniques for transforming

original temporal sequences into the frequency domain

include Fast Fourier Transformation (FFT), Discrete

Wavelet Transformation (DWT), and Continuous Wavelet

Transformation (CWT). For instance, the main frequencies and

the wavelet coefficients can be regarded as the features (El-Attar

et al., 2021). Moreover, the power spectrum, which shows a

relationship of decreasing power as a function of frequency,

was extensively studied in PD-related research (Capecci et al.,

2016). In specific, Freeze Index (FI) is one of the most frequently

used acceleration-based features for FOG detection (Moore

et al., 2013), which is defined as the ratio of power in the freeze

(3–8 Hz) and locomotor (0–3 Hz) bands. It should be noted

that FI is specifically designed for detecting the trembling type

of FOG.

Nowadays, deep models have become the powerful tools for

automatic feature extraction from multi-dimensional sensing

data (Rehman et al., 2019). In previous studies, Long Short-

Term Memory (LSTM) (Xia et al., 2019) and 1D Convolution

Neural Network (CNN) (El et al., 2020) were the most

prevalent models due to their advantages in processing

temporal sequences.
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TABLE 4 Summary of recent studies on automatic detection and staging of Parkinson’s Disease.

Selected study Subjects Data capture Gait

parameters

and features

Detection

algorithm

Result Val.

Rehman et al.

(2019)

119PD and 184HC GAITRite Spatiotemporal RF ACC: 97.1% 10-fold

Ricciardi et al.

(2019)

39PD and 7PSP Mocap system Spatiotemporal and

kinematics

RF ACC: 86.4% 10-fold

Park et al. (2021) 77PD and 34HC Mocap system Spatiotemporal and

kinematics

RF ACC: 98.1% 5-fold

Ajay et al. (2018) 16PD and 13HC Vision-RGB Spatiotemporal and

kinematics

DT ACC: 93.8% 10-fold

P
D
D
et
ec
ti
o
n

Guayacán and

Martínez (2021)

11PD and 11HC Vision-RGB Spatiotemporal

saliency maps

3D-CNN ACC: 94.9% LOSO

Caramia et al.

(2018)

25PD and 25HC IMUs×8 Spatiotemporal and

kinematics

Ensemble of 6 ML

clfs.

ACC: 96.0% 5-fold

Zhang et al. (2020a) 656PD and 2148HC IMU (smartphone) Raw data

augmentation

Ensemble of 5

CNNs

AUC: 0.86 5-fold

Abdulhay et al.

(2018)

93PD and 73HC

Force
sensors×16
(two feet)

Kinetics: vertical GRF

SVM ACC: 92.7% -

Zhao et al. (2018) LSTM+CNN ACC: 98.6% 10-fold

Xia et al. (2019) CNN+Attn-

BiLSTM

ACC: 99.1% 5-fold

El et al. (2020) 1D-CNN ACC: 98.7% 10-fold

Zeng et al. (2019) RBF-NN ACC: 98.8% LOSO

Selected study Subjects Data capture Gait

parameters

and features

Detection

algorithm

Stages Result Val.

Sabo et al. (2020) 14PD Vision-RGBD Spatiotemporal LR UPDRS ACC: 62.1% NA

Lu et al. (2021) 55PD Vision-RGB 3D human pose CNN MDS-UPDRS ACC: 84.0% LOSO

Cao et al. (2021) 18PD Vision-RGB Silhouettes CNN UPDRS ACC: 84.2% 3-fold

Sabo et al. (2022) 53PD Vision-RGB 2D human pose GCN
UPDRS
SAS

F1: 0.53
F1: 0.40 LOSO

Caramia et al.

(2018)

25PD 8 IMUs Spatiotemporal

and kinematics

SVM-RBF H&Y scale ACC: 75.6% 5-fold

P
D
S
ta
g
in
g

Mirelman et al.

(2021)

332PD 3-5 IMUs RUSBoost H&Y scale AUC: 0.82 10-fold

Balaji et al. (2020)

93PD

Force
sensors×16
(two feet)

vertical GRF

DT UPDRS ACC: 99.4% 10-fold

Veeraragavan et al.

(2020)

ANN H&Y scale ACC: 87.1% LOSO

Alharthi et al.

(2020)

CNN H&Y scale ACC: 95.5% Hold out

El et al. (2020) 1D-CNN UPDRS ACC: 85.3% 10-fold

Balaji et al. (2021) LSTM UPDRS+H&Y ACC: 96.6% Hold out

PD, Parkinson’s Disease; HC, Healthy Control; PSP, Progressive Supranuclear Palsy; GRF, Ground Reaction Force; clfs., Classifiers; RF, Random Forest; CNN, Convolution Neural Network;

ML,Machine Learning; RBF, Radial Basis Function; Attn, Attention-enhanced; (Bi)-LSTM, (Bidirectional) Long Short-TermMemory; ANN, Artificial Neural Networks; DT, Decision Tree;

(MDS)-UDPRS, (Movement Disorder Society)-Unified Parkinson’s Disease Rating Scale; SAS, Simpson-Angus Scale; H&Y, Hoehn and Yahr; ACC, Accuracy; AUC, Area Under Curve;

F1, F1-score; LOSO, Leave-one-subject-out; Hold out, Random spilit.
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4.3. PD detection and staging based on
gait features

Extensive research interests were paid on the development

of automatic recognition algorithms based on discriminative

gait features, which focused on either recognizing PD patients

or estimating the severity level of PD patients from their gait

patterns. In Table 4, we conclude several recent works and list

them based on the gait capture methodologies.

4.3.1. PD detection

The PD detection task can be formulated as a binary

classification of PD patients and the age-matched healthy

controls (HC). Previous works investigated the effectiveness

and accuracy of different gait analysis systems and classification

algorithms in gait-based PD detection. In addition to this

binary detection task, the capability of classifying multiple

neurodegenerative diseases was also explored in Wang et al.

(2020) and Zhao et al. (2021).

For vision-based systems, Guayacán and Martínez (2021)

recently proposed a 3DCNNmodel that took the spatiotemporal

saliency maps of RGB images as input, which achieved 94.1%

accuracy (11 PD and 11 HC) under the LOSO validation. In

Park et al. (2021), 98.1% detection rate (77 PD and 34 HC)

was achieved by using the high precision spatiotemporal and

kinematic gait parameters collected by the Mocap system. It

can be seen that marker-based systems can provide superior

performance in PD detection due the high precision in human

skeleton capture, while markerless systems can be deployed in

free-living environments.

Inertial sensors were also extensively studied for PD

detection. Zhang et al. (2020a) constructed a large-scale dataset

(656 PD and 2148 HC) by collecting gait data with a smartphone

(i.e., 3-axis accelerometer). Caramia et al. (2018) extracted

both spatiotemporal and kinematic gait parameters from 8

IMUs and assembled 6 ML classifier to get a classification

accuracy of 96.0%.

For force sensors, the PhysioNet dataset is one of the most

popular datasets for PD detection and staging (Goldberger et al.,

2000), which contains the vertical GRF data of 93 PD and 73

HC collected by 16 force sensors in insoles. To deal with 16

channels of vertical GRF data, El et al. (2020) directly used

1D-CNN for classification, and Xia et al. (2019) proposed a

method by concatenating CNN with an Attention-enhanced

Bidirectional LSTM. These methods achieved around 99%

recognition accuracy under 10-fold cross-validation. In terms

of the more challenging LOSO validation, Zeng et al. (2019)

developed the phase space reconstruction and empirical mode

decomposition for extracting features from GRF data, where the

detection rate was 98% on the PhysioNet dataset.

It can be observed that the PD gait can be well detected

from vertical GRF data collected by force sensors. However, it

is unfair to directly compare the detection accuracy of different

works, as the algorithms were developed based on different

datasets/patients, data modalities, and evaluation methods. The

inherent challenges in PD detection is that the dataset sizes are

usually small-scale, which may impede the development of data-

driven deep models. In practice, we may easily collect data from

healthy volunteers but having difficulties in PD gait collection,

which may introduce the imbalanced data distribution. Such

challenges should be tackled in the future research to build

accurate and generalized detection models.

4.3.2. PD staging

In addition to the detection of PD from human’s gait

performance, another line of research aims to predict the

severity level of PD patients, which can be formulated as a multi-

class recognition problem. As listed in the lower part of Table 4,

MDS-UPDRS, SAS, and H&Y are the mostly used clinical scales

for rating severity levels of PD patients, which are served as

either the labels of training gait data or the ground truths for final

validation. To achieve the PD staging task, different machine

learning and deep learning models were investigated in previous

studies, where gait data could come from wearable sensor-based

systems (e.g., force and inertial sensors) or vision-based systems.

In terms of inertial sensors, Caramia et al. (2018) collected

gait data from 25 PD patients with 8 IMUs, and extracted

spatiotemporal gait features as the input to the different

classifiers, where SVM with Radial Basis Function (SVM-RBF)

kernel performed best with the accuracy of 75.6%. For staging

the patients with H&Y scores, Mirelman et al. (2021) applied a

RUSBoost classifier to achieve the accuracy of 82% in PD staging.

Due to sensor drift and noise contamination, the classification

rates in PD staging with inertial sensors are not satisfactory.

With the recent advancements of computer vision,

predicting the severity level from markerless RGB/RGBD

cameras has gained increasing attention. In practice, the 2D/3D

pose (i.e., key joints) of the target PD patient is first extracted

from videos (Sabo et al., 2020, 2022), and then the staging can

be performed through dedicated machine learning or deep

learning models. In specific, Sabo et al. (2020) extracted both

2D and 3D skeletons of PD patients and then used multivariate

ordinal Logistic Regression (LR) models for PD staging. The

UPDRS-gait regression models achieved accuracies of 61.4

and 62.1% for 2D and 3D features, respectively. Sabo et al.

(2022) leveraged the state-of-the-art SpatioTemporal Graph

Convolutional Network (ST-GCN) to predict the PD severity

from joint trajectories, which achieved the F1-score of 0.53 and

0.40 for UPDRS and SAS scales, respectively. The significant

decrease in model performance compared to Sabo et al. (2020)

is due to the individual differences introduced by the LOSO

validation, which is more close to the practical scenario. Lu et al.

(2020) proposed a model for RGB videos, namely OF-DDNet.

The target individuals were first identified and tracked from
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the recorded RGB videos through time, then an advanced

algorithm was applied to extract the corresponding 3D skeleton

and body mesh. The proposed OF-DDNet was then used to

predict the MDS-UPDRS scores and achieved 84.0% accuracy.

Although diverse advanced deep models have been developed

for processing visual input, there is still improvement of

predicting the severity levels of PD patients.

For the popular PhysioNet dataset, Balaji et al. (2020)

utilized four machine learning classifiers to stage PD based on

force sensing data, in which DT achieved an accuracy of 99.4%

in predicting UPDRS scores. El et al. (2020) and Veeraragavan

et al. (2020) took advantage of 1D-CNN and ANN for PD

staging, respectively, and achieved similar performance. In order

to completely utilize the long-term temporal dependencies in

the gait data, Balaji et al. (2021) employed the LSTM model for

PD staging, which reached an accuracy of 96.6% on UPDRS and

H&Y scores. Similar to the PD prediction task, it can be seen that

vertical GRF estimated by force sensors achieved the superior

performance in PD staging, compared to other gait parameters

and sensing modalities.

4.4. FOG event detection and prediction

FOG refers to the sudden and brief episode of inability to

produce effective forward stepping (Sun et al., 2020), which is

one of the most disabling symptoms of PD patients at advanced

stage (Mirelman et al., 2019). Therefore, PD patients with FOG

are easily suffered from falling and fall-related injuries (Creaby

and Cole, 2018). In recent years, the detection and prediction of

FOG events/episodes based on gait data has attracted increasing

attention, which can not only facilitate fall prevention but also

enable external stimulation for improving FOG.

4.4.1. FOG event detection

In the upper part of Table 5, we summarize recent studies

on FOG event detection, i.e., the classification of segmented

gait data as FOG or non-FOG episodes. It can be seen that

existing works mainly focused on vision-based and inertial

sensors (i.e., accelerometer and IMU) for gait data capturing.

Previous studies investigated the use of a single inertial sensor.

By using the CuPiD database, Mazilu et al. (2016) first explored

the effectiveness of using a single wrist-worn IMU for FOG

detection, and they found that the wrist-worn setup achieved

similar performance as the ankle-worn sensors, achieving

the accuracy of 90%. Sigcha et al. (2020) demonstrated the

effectiveness of using a single waist-mounted inertial sensor,

with 0.923 AUC in FOG event detection. The deployment of

multiple inertial sensors was also considered (San-Segundo et al.,

2019; Shi et al., 2022), where multiple sensors can be attached to

different parts of the lower limb. However, the performance with

multiple sensors in FOG event cannot be significantly boosted

against the studies using a single inertial sensor.

Recent vision-based worksmainly focused on the use of RGB

(Cao et al., 2021) or RGBD (Soltaninejad et al., 2019) cameras

to detect FOG events in home-based environments. Similarly,

most works first extracted 2D/3D key joints directly from visual

inputs. Hu et al. (2019) leveraged GCN that takes the human

pose sequences as input to predict FOG events during walking.

For the video captured from a side view, Cao et al. (2021)

extracted the silhouettes of target patients and utilized CNN

for classification, achieving 90.4% detection accuracy. With the

high-precision human pose collected by the Mocap system,

Filtjens et al. (2021) formulated the FOG events detection

as a temporal segmentation task from untrimmed skeleton

sequences and proposed aMulti-Stage GCN (MS-GCN)method

to capture spatial and temporal dependencies. Their method

achieved 82.7% accuracy in detecting FOG episodes.

4.4.2. FOG event prediction

In practice, it would be valuable to predict the forthcoming

FOG events from the streaming gait data, which can help

prevent patients from the potential falling risk or design specific

gait intervention techniques. To achieve this goal, most of

current studies formulated the prediction as a pre-FOG event

detection task (Zhang et al., 2020b), where the time segments

before FOG events need to be carefully labeled. Similarly, many

previous works investigated FOG prediction based on wearable

inertial sensors (Naghavi and Wade, 2019), as listed in the

middle part of Table 5. With respect to acceleration data, Zhang

et al. (2020b) extracted both spatiotemporal gait parameters and

frequency domain features, showing 77% prediction accuracy

with the AdaBoost classifier. Demrozi et al. (2019) directly

leveraged PCA to select informative raw data segments and

reached the accuracy of 94.1% with the conventional KNN

classifier. Using pressure insoles, Shalin et al. (2021) extracted

COP and GRF and fed them into LSTM to predict pre-FOG

events with a successful rate of 72.5%, which is inferior to

those using inertial sensors. With the high-precision kinematic

features captured by a Mocap system, Filtjens et al. (2021) used

a CNN model to precede the FOG episodes, and they proposed

layer-wise relevance propagation to enhance the explainability of

the deep model, where the pre-FOG events can be successfully

detected with a rate of 98.7%. Except for conventional gait

parameters, Handojoseno et al. (2014) explored the FOG

prediction from EEG signals. They found both power spectral

density and wavelet energy could act as biomarkers during FOG.

4.4.3. Freezer detection

In addition to the detection of FOG/pre-FOG events, some

other studies aimed to recognize whether a PD patient is a

freezer from the gait data. This is similar to the FOG event
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TABLE 5 Summary of recent studies on detection of FOG event, prediction of FOG event, and discrimination of PD with/without FOG.

Selected study Subjects Data

collection

Gait parameters and

features

Detection

algorithm

Result

Filtjens et al. (2021) 14nF and 14FOG Mocap Kinematics: 3D human pose MS-GCN MCC: 82.7%

Soltaninejad et al.

(2019)

5 PD Vision-RGBD Kinematics: foot joint trajectory Rule-based ACC: 88.0%

Hu et al. (2019) 45 PD Vision-RGB Kinematics: 2D human pose GCN AUC: 0.887

Cao et al. (2021) 18PD Vision-RGB Silhouettes CNN ACC: 90.8%

Hu et al. (2021) 20 PD Pressure insole Pressure heatmap and optical flow GFN AUC: 0.882

Mazilu et al. (2016) 11 PD IMU (wrist) Time and freq. domain features C4.5 ACC: 90%

Ahlrichs et al.

(2016)

20 PD Accelerometer

(waist)

Statistical and freq. domain

features

SVM ACC: 95.4%

FO
G
ev
en
td

et
ec
ti
on Pepa et al. (2020) 44PD Accelerometer

(waist)

Spatiotemporal and freq. domain

features

Fuzzy logic ACC: 93.4%

Sigcha et al. (2020) 21 PD Accelerometer

(waist)

Freq. domain features Conv-LSTM AUC: 0.923

Camps et al. (2018) 21 PD IMU (waist) Freq. domain features 1D-CNN ACC: 89.0%

Bikias et al. (2021) 11 PD IMU (wrist) Time domain features CNN SEN: 83%

Pham et al. (2017) 31 PD Accelerometer×3

(ankle, knee, hip)

Statistical and freq. domain

features

Rule-based F1: 0.84

Prateek et al. (2017) 16 PD IMUs×2 (heel) Statistical and freq. domain

features

PPF ACC: 81.0%

San-Segundo et al.

(2019)

10 PD Accelerometer×3
(back, thigh, shank)

Freq. domain features CNN+MLP AUC: 0.931

El-Attar et al.

(2021)

10 PD Freq. domain features ANN ACC: 93.8%

Shi et al. (2022) 67 PD IMU×2 (ankle) Freq. domain features and entropy CNN F1: 0.92

Zhang et al. (2020b) 12 PD Accelerometer

(back)

Spatiotemporal and freq. domain

features

AdaBoost ACC: 77.9%

Palmerini et al.

(2017)

11 PD Accelerometer×3

(waist and legs)

Spatiotemporal and freq. domain

features

LDA AUC: 0.76

FO
G
pr
ed
ic
ti
on Mazilu et al. (2016) 10 PD

Accelerometer×3
(back, thigh, shank)

Time and freq. domain features RF F1: 0.99

Naghavi and Wade

(2019)

10 PD Freq. domain features Rule-based SPE > 85%

Demrozi et al.

(2019)

10 PD PCA + raw segmented data KNN ACC: 94.1%

(Shalin et al., 2021) 11 PD Pressure insoles Kinetics: COP and GRF LSTM ACC: 72.5%

Filtjens et al. (2021) 28 PD Mocap Kinematics: 3D human pose CNN ACC: 98.7%

FO
G

vs
.n

F

Aich et al. (2018) 15nF and 36FOG Accelerometers×2

(knees)

PCA + spatiotemporal 4 ML clfs. ACC: 89.1% (SVM)

Park et al. (2021) 46nF and 31FOG Mocap system Kinematics: 3D human pose 7 ML clfs. ACC: 98.0% (RF)

PD, Parkinson’s Patients; FOG, Freezing of Gait; nF, non-Freezer; Freq., Frequency; GRF, Ground Reaction Force; GCN, Graph Convolution Neural Network; MS-GCN, Multi-stage GCN;

GFN, Graph Fusion Network; SVM, Support Vector Machine; CNN, Convolution Neural Network; LSTM, Long Short-Term Memory; PCA, Principal Component Analysis; PPF, Point

Process Filter; MLP,Multi-Layer Perception; LDA, Linear Discriminant Analysis; KNN, K-Nearest Neighbour; RF, Random Forest; clfs., Classifiers; ML,Machine Learning; ACC, Accuracy;

AUC, Area Under Curve; SPE, Specificity; SEN, Sensitivity; MCC, Matthews Correlation Coefficient.

detection but slightly different, as the freezer detection can be

formed as a sequence-level classification, i.e., the PD patient will

be marked as the freezer once a single FOG event occurs. In

previous works, different ML classifiers were used for achieving

this task, as listed in the lower part of Table 5. In specific, Park

et al. (2021) achieved 98% accuracy on a dataset with 31 freezers

and 46 PD patients without FOG, where high precision 3D gait

kinematics were captured by the Mocap system.

It should be noted that current works mainly rely on

the accurate annotation of FOG/pre-FOG events of the
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TABLE 6 Summary of publicly available datasets for gait-based PD research.

Dataset Subjects Sensors Scales

Neurodegenerative Gait†

Hausdorff et al. (1997)
15 PD, 20 HD,
13 ALS, 16 HC Force sensor×4 (insole) H&Y

PhysioNet (GPD)†

Goldberger et al. (2000) 93 PD, 73 HC Force sensor×16 (insole) MDS-UPDRS, H&Y

Smart-Insole‡

Chatzaki et al. (2021)
8 PD, 13 HC,
9 Elderly

IMU (feet),
Force sensor×16 (insole) MDS-UPDRS

CuPiD
Mazilu et al. (2013) 18 PD

IMUs×9, Smartphone

pressure insole, ECG(chest)

head-mounted fNIR -

Daphnet FOG§

Bachlin et al. (2009) 10 PD
Acceleromenters×3
(leg, shank, lower back) H&Y

mPower††

Bot et al. (2016)
1087 PD,
5581 non-PD IMU (smartphone)

PDQ-8,
MDS-UPDRS

Ribeiro De Souza et al. (2022)‡‡ 35 PD+FOG Video, IMU
H&Y, FOG-Q,
MDS-UPDRS

Kour et al. (2022)§§ 16 PD
Video (side view),
6 reflective markers H&Y

† https://physionet.org/content/gaitndd/1.0.0/.
‡ https://bmi.hmu.gr/the-smart-insole-dataset/.
§ https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait/.
†† https://www.synapse.org/mPower.
‡‡ https://doi.org/10.6084/m9.figshare.14984667.
§§ https://data.mendeley.com/datasets/44pfnysy89/1.

PD, Parkinson Disease; HD, Huntington’s disease; ALS, Amyotrophic Lateral Sclerosis; HC, Healthy Control; FOG, Freezing of Gait; IMU, Inertial Measurement Units; ECG,

Electrocardiogram; fNIR, functional near infrared.

training gait data, which is a labor-intensive task. Future

effort could be gained on the development of unsupervised

or semi-supervised methods that can ease the requirements

of tedious annotations and facilitate the development of more

robust models.

4.5. Available datasets

The large-scale dataset is scarce due to not only the

complicated collection procedure of conventional gait analysis

systems and but also the privacy and ethical issues related to PD

patients. Several publicly available datasets raised in recent years

are summarized in Table 6.

Hausdorff et al. (1997) andGoldberger et al. (2000) proposed

several wearable sensor-based PD gait datasets in the late

1990s, in which data were collected through multiple force

sensors in insoles. Among these datasets, the PhysioNet (GPD)

dataset collected from 93 PD patients and 73 healthy control

subjects is most commonly used (Kour and Arora, 2019).

Along with vertical GRF data, all patients were well annotated

based on MDS-UPDRS and H&Y scales, making it easier

to benchmark in staging algorithms. Another type of dataset

utilized inertial sensors (e.g., accelerometer and IMU) to collect

gait data.

The CuPiD database (Mazilu et al., 2013) is a pioneer dataset

containing multi-modal sensing data of 18 PD patients, where

11 of them exhibited FOG events during the experiments. The

multi-modal data in the CuPiD dataset were collected by 9

IMU sensors attached to different body parts, a smartphone

in the pocket, pressure insoles, chest-mounted ECG and

head-mounted fNIR. It should be emphasized that many

follow-up studies took one or more data modalities to achieve

PD detection. The Daphnet FOG dataset (Bachlin et al.,

2009) contains data from 10 PD patients collected by three

accelerometers, while the mPower dataset (Bot et al., 2016)

took advantage of the IMU module in the smartphone and

collected data from thousands of participants. Besides, Chatzaki

et al. (2021) used both IMU and insole-based force sensors to

construct a Smart-Insole dataset.

In addition, the construction of vision-based datasets has

attracted increasing attention in recent years. Kour et al. (2022)

presented a database recorded side view of 16 PD patients

with 6 passive reflective markers attached to the human body.

The patients involved are scored with H&Y scale. Ribeiro

De Souza et al. (2022), on the contrary, chose to merge the

vision-based system with IMU sensors. Walking and turning

videos along with the lower limb movements of 35 PD patients

were recorded by an RGB camera and a shank-mounted IMU.

The H&Y, FOG-Q, and MDS-UPDRS scales were assessed for

PD severity levels.

A solid and well-annotated gait database could flourish

the development of PD classification and staging algorithms,

which should contain a large number of PD patients with clear

diagnosis or staging based on clinical scales, as well as the high

quality data concentrating on human gait.
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5. Gait intervention and
rehabilitation

This section concludes the currently available gait

intervention and rehabilitation methodologies in previous

PD-related studies, as illustrated in Figure 4, which can be

categorized into four groups: pharmacological treatment,

neuromodulation, external cues, and interventions supported

by intelligent devices.

5.1. Pharmacological treatment

In the clinical scenario, the most frequently used treatment

for gait impairments in PD is dopamine-based treatment,

which can help alleviate the motor symptoms (Mirelman et al.,

2019; Armstrong and Okun, 2020). In specific, dopamine-based

treatments, including Levodopa preparations and dopamine

agonists, have been proven to be effective for rigidity, tremor,

and disturbance. In specific, gait speed and step length can

be improved by using Levodopa, and dopamine agonists can

improve the gait initiation and turning movement. It should

be pointed out that the pharmacological treatments for non-

motor symptoms (e.g., cognitive impairment, depression, and

anxiety) can improve gait performance (Connolly and Lang,

2014). More importantly, rehabilitation training and exercise are

indispensable complementary to pharmacological treatments.

5.2. Neuromodulation

Neuromodulation is the physiological process by using

invasive or non-invasive stimulation to regulate diverse

populations of neurons.

5.2.1. Deep brain stimulation

DBS is enabled by implanting electrodes into specific areas

of the brain, which is considered as an effective invasive

intervention for PD. The electrodes can generate electrical pulses

to regulate specific cells and chemicals in the brain. Previous

studies have demonstrated the efficacy of DBS for alleviating

tremors and gait impairments by stimulating the subthalamic

nucleus, internal globus pallidus, ventral intermediate nucleus,

and pedunculopontine nucleus (Mao et al., 2019). In particular,

the high-frequency DBS of the subthalamic nucleus (STN-

DBS) is widely used in PD, showing the capability to reduce

gait impairments and balance instabilities (Szlufik et al., 2018).

Another line of research focuses on the long-term low-frequency

STN-DBS, in which the persistent positive effects on FOG and

gait variability were observed (Conway et al., 2021). It has been

shown that STN-DBS could improve motor functions for up to

10 years, yet the magnitude of improvement tends to decline

FIGURE 4

Four categories of gait intervention methodologies in previous

studies.

over time (Limousin and Foltynie, 2019). Studies also suggested

that long-term globus pallidus internus (GPi)-DBS had a similar

impact on gait impairments as STN-DBS (Mei et al., 2020).

Although DBS demonstrated effectiveness in the treatment of

PD, it has some disadvantages that makes it less applicable. For

instance, the use of invasive electrodes may raise the risk of

infection, and some of the patients feel uncomfortable during

the treatment.

5.2.2. Repetitive transcranial magnetic
stimulation

Compared to the invasive DBS, rTMS is a non-invasive

treatment that uses magnetic fields to stimulate neurons in the

brain ofmajor depression. In recent years, the capability of rTMS

in the treatment of PD has been investigated (Xie et al., 2020).

Through the daily rTMS over the primary motor cortex (e.g.,

foot area), the improvement in walking time was found (Maruo

et al., 2013). However, there is no significant improvement on

FOG (Dagan et al., 2017) and TUG test (Cohen et al., 2018)

found by using rTMS. However, there still lacks evidence-based

conversions of rTMS for PD treatment.

5.2.3. Galvanic vestibular stimulation

GVS is a non-invasive brain stimulation method targeting

the vestibular system, which aims to improve the balancing and

postural instability of PD patients as well as change their gait

patterns (Kataoka et al., 2016; Liu et al., 2021b). Liu et al. (2021a)

examined the efficacy of GVS for PD patients through the
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evaluation of network-level connectivity changes. Khoshnam

et al. (2018) explored GVS on motor symptoms of upper and

lower extremities in PD and found that the variation of the step

duration in a TUG test can be improved. Currently, the research

on GVS is aimed at various neurorehabilitation applications,

while its impact on treating PD patients and improving gait

impairment still needs to be studied.

5.3. External cues

The use of visual, auditory, and tactile cues has demonstrated

effectiveness in improving the gait performance of PD patients,

including spatiotemporal gait parameters, FOG, as well as their

daily activities.

5.3.1. Visual cues

In past decades, visual cues played an important role in gait

intervention for PD patients. The assumptions of the underlying

mechanism of visual cueing mainly come from two parts: 1)

visual cues, such as the indication of steps, can shift patients’

attention to lower limbs, thus compensating the proprioceptive

deficit to some extent (Lebold and Almeida, 2011); 2) the

synchronization of human gaze behavior and gait patterns

(Reed-Jones and Powell, 2017). Stuart et al. (2018) also found

that the saccade frequency of PD patients was reduced when

walking compared to healthy controls. Their results showed that

visual cues could significantly increase the saccade frequency,

thus improving PD patients’ gait performance. More recently,

Stuart et al. (2021) explored the brain activity changes using

EEG to demonstrate the effectiveness of visual cues. They found

that visual cues could improve the gait performance of PD

patients with FOG and simultaneously lead to a larger activity

of parietal regions. Table 7 summarizes different types of visual

cues explored in previous studies.

The parallel line attached to the floor was widely used

as a visual cue in previous studies, which can regulate the

walking patterns of PD patients. Lebold and Almeida (2011)

used parallel lines with an interval of 65 cm, in the form of

optical flow with both normal and reverse directions. They

found that the step length of PD patients could be improved

regardless of the direction of optical flow. While in the dark

environment, the improvement was not significant due to

the invisible of lower limbs. Differently, Vitório et al. (2014)

observed the improvement of step length under visual step

length cues without exproprioception (invisible of lower limbs).

They reported that visual cues are critical to the precision of foot

placement on targets. Besides, Lee et al. (2012) conducted amore

detailed investigation of parallel line visual cues on PD patients

w/ and w/o FOG. The results showed that the visual cues had

a positive effect, especially for PD with FOG, improving their

kinematic gait parameters significantly.

In addition to parallel lines, the virtual footprint display is

another critical visual cue, aiming to guide the next steps of

the patient. Schlick et al. (2016) used a RehaWalk system to

validate the footprint visual cues with treadmill training. After

2 months of training, the gait speed and stride length of PD

patients, as well as their performance on the TUG test, were

clearly improved. Gómez-Jordana et al. (2018) leveraged Virtual

Reality (VR) to display virtual footprint cues in an immersive

manner, and found that the variation of step length, cadence, and

gait speed were significantly reduced in PD.

Noted that parallel lines and footprints are typically fixed

on the floor, limiting the gait intervention to a small area.

To overcome this, recent works explored the increase of

flexibility by introducing wearable laser cues. Barthel et al. (2018)

developed wearable laser shoes, which could automatically

project laser cues by detecting heel-strike events. After the

study on PD patients with both “off” and “on” medication, the

number and lasting time of FOG were significantly reduced.

Besides, Amini and Banitsas (2019) used real-time human pose

tracking to control a pan/tilt platform to project the laser

lines in front of the patients. Tang et al. (2019) conducted a

study of laser cues intervention for PD with FOG, providing a

comprehensive analysis of the gait spatiotemporal, kinematic,

and kinetic changes. The authors reported that spatiotemporal

gait parameters, the ROM of the ankle and hip joints, and the

power generation of ankle/hip joints were improved via the laser

cues intervention.

Although studies have been conducted in demonstrating

the effectiveness of visual cues, the development of automatic

intervention system can be improved by incorporating accurate

FOG event detection/prediction modules.

5.3.2. Auditory stimulation

Evidence also reveals that Rhythmic Auditory Stimulation

(RAS) can contribute to the improvement of gait and mobility

in PD by evoking the brain regions involved in the control of

walking (Forte et al., 2021).

Thaut et al. (1996) conducted a pilot study on the effect

of RAS on regulating gait patterns of PD patients. After 3-

week home-based gait training with rhythmically accentuated

music at three tempos, the RAS group demonstrated significant

improvement in gait performance and EMG patterns. To deal

with different characteristics of PD patients, Hausdorff et al.

(2007) set the RAS beat as 100 and 110% of the normal walking

rate of each patient, and observed the improvement of gait speed,

stride length, and swing time during 100-meter walking. Mazilu

et al. (2015) developed a wearable gait training system by giving

8–10 s of audio feedback when the FOG events were detected.

They found that four of five PD patients showed decreased FOG

duration and FOG number. Pau et al. (2016) leveraged 3D gait

analysis to evaluate the effectiveness of RAS on PD patients, and
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TABLE 7 Common-used visual cues and auditory stimulation for PD gait intervention.

Selected study Visual cues Subjects Gait improvement

Lebold and Almeida (2011) Parallel lines (optical

flow)

22 PD patients Increased step length

Vitório et al. (2014) Parallel lines (white

stripes)

19 PD patients Increased step length

Lee et al. (2012) Parallel lines (white

stripes)

15 PD w/ FOG and 10

PD w/o FOG

Improve gait kinematics significantly of PD with FOG

Schlick et al. (2016) Footprint 12 PD w/ treadmill Improved gait speed and stride length

Gómez-Jordana et al. (2018) Footprint (VR) 12 PD patients Reduced variation of step length, cadence, and velocity

Barthel et al. (2018) Laser shoes 21 PD patients Reduced number and time of FOG

Tang et al. (2019) Laser cues 34 PD w/ FOG Improved spatiotemporal parameters and Improved ROM

and power generation of ankle/hip joints

Selected study Auditory Subjects Gait improvement

Thaut et al. (1996) RAS @3 rates 15 PD patients Improved gait velocity, stride length, cadence and timing of

EMG patterns

Hausdorff et al. (2007) RAS @2 rates 29 PD patients Increased gait speed, stride length, swing time; Reduced

variability

Mazilu et al. (2015) RAS when FOG 5 PD patients Decreased FoG duration and number

Bailey et al. (2018) RAS + PT 15 PD patients Reduced asymmetry of EMG patterns

Erra et al. (2019) RAS @3 rates 30 PD patients (on and

off medication)

Improved GPDI using RAS with 110% of the preferred

walking freq

Hove et al. (2012) Interactive RAS 12 PD patients Improved fractal scaling to healthy 1/f level against

fixed-tempo RAS

Pau et al. (2016) Personalized pace of RAS 26 PD patients Significant reduction of gait profile score and gait variable

score

Ginis et al. (2016) Verbal feedback 20 PD Gait and balance improved after 6-week training

Ginis et al. (2017) 4 RAS inputs 15 PD w/ FOG and 13

PD w/o FOG

Freezer showed stable gait under continuous cueing, but

preferred intelligent feedback

(Murgia et al., 2018) Personalized footstep

sound and metronome

32 PD patients Impovements on two RAS groups are equivalent

Marmelat et al. (2020) RAS w/ fractal

step-to-beat

15 PD patients Synchronize well with fractal RAS with a 1:1 step-to-beat

metronome

The number of subjects indicates the one with visual cues or auditory stimulation. VR, Virtual Reality; ROM, Range of Motion; RAS, Rhythmic Auditory Stimulation; GDPI, gait phases

quality index; freq, Frequency; FOG, Freezing of Gait; PT, Physical Therapy.

they reported that the gait profile score and gait variable score

were significantly reduced after a 3-month follow-up.

More specific, there are many studies that compared

different types of RAS in improving PD patients’ gait

performance. Compared to fixed-tempo RAS, Hove et al.

(2012) developed an interactive system using foot sensors to

synchronize RAS with human step timing. Results showed

that compared to fixed-tempo RAS, the interactive mechanism

could increase the fractal scaling to a healthy level. Ginis

et al. (2017) compared four input modalities for RAS, i.e.,

continuous cueing; intelligent cueing; intelligent feedback and

no input. In specific, intelligent cueing indicates the beats

matched to comfortable cadence, and intelligent feedback is

an instruction for users to adapt gait speed. They found that

freezers exhibited stable gait under continuous cueing, while

non-freezers showed no differences between conditions. The

comparison of ecological (personalized footstep sound) and

artificial (metronome) RAS were conducted in Murgia et al.

(2018), where no difference in gait improvement between the

two groups was found. Marmelat et al. (2020) investigated

the impact of RAS with different fractal melodic metronomes.

Patients with lower persistence benefited better from the fractal

‘metronome’ (1:1 step-to-beat ratio) than the 1:2 step-to-

beat ratio (‘music’), highlighting the importance of developing
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patient-specific tests and interventions. In addition to RAS,

Ginis et al. (2016) developed a smartphone-delivered gait

training system for PD patients performing gait training at

home. By detecting gait parameters with wearable inertial

sensors, the system provided either positive or corrected verbal

feedback while gait parameters remained within or fell outside

the therapeutic window. After 6-week training, PD patients

showed improved gait and balance compared to the control

group. By accurately detecting key gait parameters, it can be

concluded from previous studies that personalized RAS could

lead to a better improvement of gait performance in PD.

5.3.3. Fused stimulation

An intuitive compound stimulation is the fusion of visual

cues and auditory stimulation. Arias and Cudeiro (2008)

investigated the external cues in four levels: no cue, auditory

cue, visual cue, and auditory-visual cue, where the visual cue was

provided by two LEDs integrated into the glasses. They found

that auditory stimulation could increase the step length and

decrease the stride time, whereas visual stimuli had a negative

influence on gait performance. Hence, the fused auditory-

visual cue only achieved a similar performance as the auditory

stimulation. Lee et al. (2012) suggested that visual cues had

positive effects on PD with FOG, while auditory cues more

affected gait kinematics in the PD patients without FOG.

Recent research was devoted to exploring the potential

of using music and dance as an alternative therapy for PD,

where music is a special auditory stimulation (Zhou et al.,

2021). By encouraging patients with more exercise, the music

and dance therapy can improve cognition, motor control of

posture adjustment, and spatial memory, thus having a positive

impact on the gait of PD patients as well as their quality of life

(de Natale et al., 2017). In specific, Benoit et al. (2014) found that

dancing with rhythmic music can improve motor performance,

and Hackney and Earhart (2010) reported that the balancing

and gait speed were improved after 1-month partnered dance

therapy. Among different kinds of dances, Tango dance may

preferentially improve the motor and gait performance in PD

(McNeely et al., 2015).

5.4. Gait intervention by smart devices

5.4.1. Robot-assisted gait training

Research on rehabilitation robotics has gained increasing

attention over the last decades due to unmet medical needs

for people with neurological and musculoskeletal disorders.

Therapeutic robots showing superiority in long-lasting and

efficiency can automatically aid patients in providing specific

functional movements as well as provide a quantitative

assessment of rehabilitation performance. In specific, Robot-

Assisted Gait Training (RAGT) received wide attention for

helping patients recover from gait impairments induced by

stroke, spinal cord injury, cerebral palsy, PD, and Alzheimer’s

disease (Morone et al., 2017; Alwardat et al., 2018; Fang

et al., 2020). Existing therapeutic robots for RAGT can

be categorized into end-effector-based, grounded exoskeleton,

wearable exoskeleton, and overground gait trainer (or robotic

walker) (Hobbs and Artemiadis, 2020; Guo et al., 2021a).

Table 8 summarizes several popular RAGT studies

for PD patients. Lo et al. (2010) performed a pilot

study to evaluate the effectiveness of RAGT for PD

patients with FOG, where four subjects received 30-min

sessions of gait training in 10 days. Based on self-report

and clinical scales, the improvements in gait speed,

stride length, rhythmicity, and limb coordination were

observed after RAGT. Barbe et al. (2013) conducted

similar research and reported that the FOG of PD patients

was improved.

Researchers from the University of Verona conducted a

series of studies using the end-effector-based Gait-Trainer. In

Picelli et al. (2012a), the increased gait speed was observed in

the RAGT group compared to physical therapy. Besides, they

explored the influence of RAGT on PD patients at Hoehn and

Yahr stage 3-4, in which 34 subjects were randomly split into two

groups (Picelli et al., 2012b). After a 1-month of intervention,

the RAGT group showed increased postural stability compared

to those with traditional physiotherapy therapy. Furthermore,

they recruited 60 PD patients at Hoehn and Yahr stage 3 and

divided them into three groups: 20 with RAGT, 20 with treadmill

training, and 20 with conventional physical therapy (Picelli et al.,

2013). No statistically significant difference was found in gait

performance between the RAGT group and treadmill training

groups. Picelli et al. (2015) demonstrated that RAGT was not

superior to balance training for improving postural instability in

PD patients.

Lately, a number of studies also compared the RAGT with

treadmill training in PD. After several sessions of RAGT, Galli

et al. (2016) reported that the pelvic obliquity and hip abduction

of PD patients were significantly improved, Capecci et al. (2019)

found that the FOG could be improved after training with the

grounded exoskeleton, and Kang et al. (2019) and Yun et al.

(2021) reported the improved gait speed of PD patients.

Instead of the fixed robotic systems, Pilleri et al. (2015)

utilized the overground gait trainer to guide users to free walk

on the ground. After 15 30-min training sessions in 3 weeks, the

gait speed and postural stability of PD patients were significantly

increased during 10MWT, TUG and 360 NT tests. Interestingly,

Kishi et al. (2020) investigated the use of wearable robots

applying interactive rhythmic stimulation on the upper limbs

of PD patients, and reported the positive influence on patients’

gait performance, including the increased arm swing amplitude,

stride length, and gait speed.

Although robot-assisted gait training has demonstrated its

effectiveness in PD treatment, the use of grounded exoskeletons,
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TABLE 8 Summary of robot-assist gait training on PD patients.

Study Robots Subjects Sessions Gait improvements

Lo et al. (2010) Lokomat (GrExo) 4 PD patients w/ FOG 10×30min Improved gait speed, stride length and limb coordination

Barbe et al. (2013) Lokomat (GrExo) 3 PD patients w/ FOG 10×30min Improved FOG

Kang et al. (2019) Walkbot-STM (GrExo) 22 PD patients at H&Y 2.5-3 12×45min Increased gait speed

Yun et al. (2021) Walkbot-STM (GrExo) 11 PD patients at H&Y 2.5-3 12×45min Increased gait speed and balancing

Picelli et al. (2012a) Gait-Trainer (EndEf) 21 PD patients 12×45min Increased gait speed

Picelli et al. (2012b) Gait-Trainer (EndEf) 17 PD patients at H&Y 3-4 15×30min Increased postural stability

Picelli et al. (2013) Gait-Trainer (EndEf) 20 PD patients at H&Y 3 12×45min No statistical difference against treadmill training

Picelli et al. (2015) Gait-Trainer (EndEf) 33 PD patients at H&Y 3 12×45min No statistical difference against balance training

Galli et al. (2016) G-EO system (EndEf) 25 PD patients 20×45min Improved pelvic obliquity and hip abduction

Capecci et al. (2019) G-EO system (EndEf) 48 PD patients at H&Y ≥ 2 20×45min Improved FOG

Pilleri et al. (2015) Overground gait trainer 20 PD patients at H&Y 3-4 15×30min Increased gait speed and postural stability

Kishi et al. (2020) Wearable Upperlimb exoskeleton 30 PD patients at H&Y 1 Immediately Increased arm swing, stride length, and gait speed

The number of subjects indicates the one with robot-assisted gait training. GrExo, Grounded exoskeleton; EndEf, End-effector-based robot; H&Y, Hoehn and Yahr.

overground gait trainers, and end-effector-based robotic systems

are tedious in system setup and preparation, which are limited

in hospitals and laboratories. Currently, only a few works

investigate PD gait intervention based on lightweight wearable

exoskeletons, which have great potential to be used in home-

based environments.

5.4.2. VR/AR-assisted gait training

Virtual Reality (VR) and Augmented Reality (AR)

technologies are promising tools that can provide

immersive/augmented visual feedback to patients. By

modulating the visual perception under specific protocols, the

underlying mechanisms of gait rehabilitation and intervention

of PD patients can be investigated (Zhu et al., 2021). Meanwhile,

such intelligent device enhances the engagement of participants

while offering a safe and personalized virtual/augmented

environment for gait training.

Meanwhile, various paradigms combined with VR

technology were investigated. Ehgoetz Martens et al. (2014)

used VR to generate the virtual walkway with different heights,

which aims to investigate the fear-of-height mechanism.

They found that the anxiety during gait could increase the

FOG in PD. To overcome the limitation of the treadmill

in triggering FOG, Park et al. (2011) developed adaptive

treadmill-VR interfaces that could help identify the person-

specific FOG trigger. Gómez-Jordana et al. (2018) leveraged

VR to study the influence of visual cues (i.e., footprints) in

PD gait training. By designing a specific paradigm in VR,

Georgiades et al. (2016) investigated the motor initiation

and inhibition deficits in PD patients with FOG. Thanks

to its flexibility in visual display, VR was also used for

inducing visual perturbation during the balancing study

(Chiarovano et al., 2017). We refer the readers to Canning

et al. (2020) for more details on VR-based gait training

in PD.

AR can be viewed as a non-immersive version of VR,

enabling the users to see the augmented virtual display along

with the real environment. AR-assisted gait training in PD has

started for a few decades (Weghorst, 1997). In previous studies,

AR was mainly used for providing visual cues to PD patients

(Espay et al., 2010). By using wearable AR goggles, Janssen et al.

(2017) compared the 3D and 2D visual cues in PD with FOG,

and they subsequently investigated the efficacy of AR-based

visual cues on turning in place (Janssen et al., 2020).

6. Discussions

Although extensive studies have been conducted to either

detect/assess PD based on gait analysis or evaluate the

effectiveness of different gait intervention methodologies, there

are still opportunities and challenges to explore the full capability

of these technologies.

6.1. Availability of large-scale and
multi-modal datasets

In terms of the development of automatic detection and

staging of PD/FOG, there are few databases containing a large

number of PD patients as summarized in Table 6, especially

the patients at different stages. As human gait also encodes

the biometric characteristics and gait abnormalities are quite

diverse (Gu et al., 2020; Guo et al., 2021b), the data in a

small-scale dataset will be inevitably biased in distribution and
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lack of diversity, impeding the development of robust and

powerful deep neural networks in a data-driven manner. Along

this line, the model learned from such datasets will have low

generalization to novel subjects or unseen abnormal gait styles.

In addition, current datasets commonly contain the gait data

captured from a single gait analysis system. We believe that the

construction of large-scale datasets with multi-modal gait data

will be beneficial for the community. However, it is challenging

task to complete such a task, as there are a lot of issues related

to ethics, privacy protection, data storage, etc. We believe that

the community can cooperate and facilitate the data collection

from multi-centers.

6.2. Pervasive and markerless gait analysis

At the current stage, motion capture system is the most

popular and act as the golden-standard methodology for clinical

gait analysis, but limiting the applications only in hospitals or

laboratories. To achieve pervasive gait analysis in home-based

environments, various wearable systems have been developed

(Chen et al., 2016), including inertial sensors, pressure insoles,

and EMG sensors. However, the setup of wearable sensors

typically needs instructions from specialists. In addition, the

wearing places would be divergence across subjects and trials, or

change during the experiment, leading to a significant challenge

in data processing and analysis. In recent years, 3D vision-

based ambient intelligence has gained increasing popularity in

healthcare (Haque et al., 2020), which can capture sufficient

geometry information as well as protect the privacy of the

patients. In specific, implicit neural representation based on

simultaneous human pose estimation and shape reconstruction

has emerged (Yang et al., 2021, 2022), enabling not only

the accurate capture of key joints as the Mocap system but

also the human garment and appearance information, which

can facilitate the development of pervasive and markerless

gait analysis.

6.3. From motor symptoms to cognitive
degradation

As PD is one of the neurological disorders, patients

commonly exhibit both degraded physical and cognitive

functions. Previous studies have revealed that the emotional

states and cognitive load (e.g., dual-task gait test) will also have

an immediate impact on gait performance (Deligianni et al.,

2019; Raffegeau et al., 2019). Hence, the postural control and

gait impairment during the test are influenced by both physical

and cognitive functions. However, existing work in this field

mainly focused on the detection and monitoring of movement

disorders, where the gait performance induced by patients’

cognitive states is overlooked. This would influence the accuracy

and robustness of the automatic detection algorithms, leading

to biases in the predicted results. Therefore, the simultaneous

consideration of behavior and cognition characteristics would

be valuable in gait-based PD detection and assessment. Through

the capture of physiological signals (e.g., brain signals or

eye movement), the cognitive load of the target subjects

could be estimated. Then, the dedicated models targeting

on the disentanglement of these confounding factors could

be established, bringing new insights into the detection and

assessment of gait impairment.

6.4. Subject heterogeneity and label
scarcity

Subject heterogeneity and label scarcity are inherent

challenges not only in PD gait detection and staging but also

in general healthcare scenarios. On the one hand, the abnormal

gait patterns are always entangled with subject-specific features,

bringing difficulties in discriminating subtle gait changes and

generalizing to novel subjects. Hence, to achieve more accurate

and generalized PD gait detection and staging, one possible

solution is that the subject differences can be regarded as domain

shifts Gu et al. (2020) and Guo et al. (2021b), where the gait

data of each subject indicates one domain. Thus, the multi-

source domain adaptation or domain generalization methods

can be utilized for either diminishing or disentangling the

subject characteristics from abnormal gait patterns. On the

other hand, label scarcity mainly originates from two aspects.

1) Only limited data of certain stages are available, leading to

the data distribution as a long-tailed distribution. Thus, the

model would be overfitting for those head (majority) classes.

2) Current annotations rely on the clinical scales provided by

clinicians, which means that the labels of abnormal gait are far

fewer than the normal groups. In order to solve such issues,

future work could focus on the loss design, data augmentation

or prototype learning strategies to tackle this challenging yet

practical problem (Zhang et al., 2021). Besides, unsupervised

or semi-supervised learning will bring opportunities to develop

robust models.

6.5. Gait analysis for treatment evaluation
and prediction

With the advanced sensing technologies and learning-

based methods, we have witnessed the prosperity of gait

analysis as a quantitative and powerful tool for assessing

the effectiveness of treatments/interventions in PD. In these

studies, well-designed healthy control groups were chosen

for comparison, then the statistical analysis was performed

to determine whether a specific treatment/intervention can
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have a positive impact on gait performance. However, such

methods only investigated the correlation between gait patterns

and specific treatment/intervention, which may learn the

spurious associations due to most patients will receive multiple

treatment/interventions during long-term rehabilitation. Hence,

it would be valuable to explore the effect of each individual

treatment/intervention. Within this field, We believe that the

combination of well-designed longitudinal studies and dedicated

casual inference models (VanderWeele and Hernan, 2013) will

promote the development of evaluating and predicting the gait

performance of a specific treatment.

6.6. Socially assistant robotics and
devices

In terms of robot-assisted gait intervention, current works

mainly focus on the rehabilitation or intervention of patients’

physical functions. As gait impairments of PD patients are also

affected by cognitive degradation, it is of paramount significance

to explore the techniques that can modulate PD patients’

cognitive profiles, thus improving their gait performance.

Recently, socially assistant robots or social robots (Breazeal et al.,

2016) have emerged in providing either cognitive training or

social assistance for patients with neurological disorders. We

believe that socially assistant robotics and devices will bring new

opportunities for future gait intervention in PD. For instance,

the motor symptoms or gait abnormalities could be alleviated

if socially assistant robotics and devices can reasonably reduce

the patients’ mental workload or modulate their cognition states

when the FOG event is detected.

6.7. Personalized intervention and
treatment

Due to the differences of PD patients in biometric

characteristics and motor symptoms, each individual

will exert diverse impairment in gait patterns; hence,

it is of paramount significance to develop effective and

personalized treatment plans (Cahan et al., 2019). Hence,

the personalized machine learning algorithms are the

prerequisite to achieving this goal. First of all, they are

desired to extract and model individual characteristics

from gait patterns, enabling more accurate detection and

assessment. Built upon this, the human-in-the-loop control

strategies (Walsh, 2018) can be then developed for wearable

robot-assisted or VR/AR-assisted gait training through the

bidirectional human-machine interaction. Accordingly,

these techniques can be tailored to deliver personalized

treatment according to individuals’ profile and special

rehabilitation needs.

7. Conclusion

Parkinson’s disease is one of the leading neurodegenerative

diseases worldwide. Hence, the detection and monitoring of

Parkinson’s disease patients are of paramount importance not

only in clinical centers but in their household. PD patients

with impaired motor function and cognition exhibit various

gait impairments in terms of bradykinesia, timing control, and

postural stability, leading to degraded quality of life. In recent

decades, gait analysis has become a powerful and effective tool

for the detection and assessment of PD patients. From vision-

based to wearable sensors, diverse gait analysis systems have

emerged with their own advantages and disadvantages. Based

on different data modalities, this review mainly concludes the

dedicated methods for automatic recognition in PD, ranging

from PD detection/staging to FOG event detection/prediction.

Gait intervention also plays a significant role in PD treatment, in

which the interventions supported by rehabilitation robots and

VR/AR have recently attracted increasing popularity.
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parkinsonâĂŹs disease. Neuro Rehabil. 40, 141–144. doi: 10.3233/NRE-161399

Deligianni, F., Guo, Y., and Yang, G.-Z. (2019). From emotions to mood
disorders: a survey on gait analysis methodology. IEEE J. Biomed. Health Inform.
23, 2302–2316. doi: 10.1109/JBHI.2019.2938111

Demonceau, M., Donneau, A.-F., Croisier, J.-L., Skawiniak, E., Boutaayamou,
M., Maquet, D., et al. (2015). Contribution of a trunk accelerometer system
to the characterization of gait in patients with mild-to-moderate parkinson’s
disease. IEEE J. Biomed. Health Inform. 19, 1803–1808. doi: 10.1109/JBHI.2015.24
69540

Demrozi, F., Bacchin, R., Tamburin, S., Cristani, M., and Pravadelli, G.
(2019). Toward a wearable system for predicting freezing of gait in people
affected by parkinson’s disease. IEEE J. Biomed. Health Inform. 24, 2444–2451.
doi: 10.1109/JBHI.2019.2952618

Deng, H., Wang, P., and Jankovic, J. (2018). The genetics of parkinson disease.
Ageing Res. Rev. 42, 72–85. doi: 10.1016/j.arr.2017.12.007

di Biase, L., Di Santo, A., Caminiti, M. L., De Liso, A., Shah, S. A., Ricci,
L., et al. (2020). Gait analysis in parkinson’s disease: an overview of the most
accurate markers for diagnosis and symptoms monitoring. Sensors 20, 3529.
doi: 10.3390/s20123529

Dillmann, U., Holzhoffer, C., Johann, Y., Bechtel, S., Gräber, S., Massing, C.,
et al. (2014). Principal component analysis of gait in parkinson’s disease: relevance
of gait velocity. Gait Posture 39, 882–887. doi: 10.1016/j.gaitpost.2013.11.021

Dorschky, E., Nitschke, M., Seifer, A.-K., van den Bogert, A. J., and Eskofier,
B. M. (2019). Estimation of gait kinematics and kinetics from inertial sensor
data using optimal control of musculoskeletal models. J. Biomech. 95, 109278.
doi: 10.1016/j.jbiomech.2019.07.022

Dorsey, E., Sherer, T., Okun, M. S., and Bloem, B. R. (2018). The
emerging evidence of the parkinson pandemic. J. Parkinsons Dis. 8, S3-S8.
doi: 10.3233/JPD-181474

Du, T., Wang, L., Liu, W., Zhu, G., Chen, Y., and Zhang, J. (2021). Biomarkers
and the role of α-synuclein in parkinson’s disease. Front. Aging Neurosci. 13, 137.
doi: 10.3389/fnagi.2021.645996

Dyer, P. S., and Bamberg, S. J. M. (2011). Instrumented insole vs. force plate:
a comparison of center of plantar pressure. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. 2011, 6805–6809. doi: 10.1109/IEMBS.2011.6091678

Ebersbach, G., Baas, H., Csoti, I., Müngersdorf, M., and Deuschl,
G. (2006). Scales in parkinson’s disease. J. Neurol. 253, iv32-iv35.
doi: 10.1007/s00415-006-4008-0

Ehgoetz Martens, K. A., Ellard, C. G., and Almeida, Q. J. (2014). Does
anxiety cause freezing of gait in parkinson’s disease? PLoS ONE 9, e106561.
doi: 10.1371/journal.pone.0106561

El, M.-I., Bilodeau, G.-A., and Bouachir, W. (2020). Deep 1d-convnet for
accurate parkinson disease detection and severity prediction from gait. Expert Syst.
Appl. 143, 113075. doi: 10.1016/j.eswa.2019.113075

El-Attar, A., Ashour, A. S., Dey, N., Abdelkader, H., Abd El-Naby, M. M.,
and Sherratt, R. S. (2021). Discrete wavelet transform-based freezing of gait
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