
Predicting Response to Preoperative Chemotherapy
Agents by Identifying Drug Action on Modeled
MicroRNA Regulation Networks
Lida Zhu1, Juan Liu1*, Fengji Liang2, Simon Rayner3*, Jianghui Xiong2,4*

1 School of Computer Science, Wuhan University, Wuhan, P. R. China, 2 State Key Lab of Space Medicine Fundamentals and Application (SMFA), China Astronaut Research

and Training Center (ACC), Beijing, P. R. China, 3 Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Wuhan, China, 4 The CUHK-

ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China

Abstract

Identifying patients most responsive to specific chemotherapy agents in neoadjuvant settings can help to maximize the
benefits of treatment and minimize unnecessary side effects. Metagene approaches that predict response based on gene
expression signatures derived from an associative analysis of clinical data can identify chance associations caused by the
heterogeneity of a tumor, leading to reproducibility issues in independent validations. In this study, to incorporate
information from drug mechanisms of action, we explore the potential of microRNA regulation networks as a new feature
space for identifying predictive markers. We introduce a measure we term the CoMi (Context-specific-miRNA-regulation)
pattern to represent a descriptive feature of the miRNA regulation network in the transcriptome. We examine whether the
modifications to the CoMi pattern on specific biological processes are a useful representation of drug action by predicting
the response to neoadjuvant Paclitaxel treatment in breast cancer and show that the drug counteracts the CoMi network
dysregulation induced by tumorigenesis. We then generate a quantitative testbed to investigate the ability of the CoMi
pattern to distinguish FDA approved breast cancer drugs from other FDA approved drugs not related to breast cancer. We
also compare the ability of the CoMi and metagene methods to predict response to neoadjuvant Paclitaxel treatment in
clinical cohorts. We find the CoMi method outperforms the metagene method, achieving area under curve (AUC) values of
0.78 and 0.66 respectively. Furthermore, several of the predicted CoMi features highlight the network-based mechanism of
drug resistance. Thus, our study suggests that explicitly modeling the drug action using network biology provides a
promising approach for predictive marker discovery.
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Introduction

Discovering predictive markers in cancer treatment remains a

priority as identifying patients most responsive to specific

chemotherapy agents helps to maximize the benefit of treatment

and to minimize unnecessary side effects. Several predictive

biomarkers have been identified based on gene expression data

using associative learning strategies which are primarily derived by

using independent gene expression values as predictive features

[1,2,3]. The genomic study of larger collections represents a novel

approach for predictive marker discovery by identifying such

markers in the preclinical setting and then validating them in a

clinical trial [4,5]. Furthermore, determining drug resistance

mechanisms can aid the development of treatment strategies to

overcome existing limitations in therapeutic efficacy. However, the

effectiveness of such approaches can be limited by the biological

heterogeneity that exists within tumors which can produce

predictive gene expression signatures that are simply a conse-

quence of chance associations, leading to impaired reproducibility

in independent validations [6,7]. There is accumulating evidence

that identifying drug response pathways can help to predict

treatment sensitivity [8,9]. In such approaches, rather than

performing a gene-by-gene associative analysis, distinct pathways

within gene expression datasets are quantified based on mRNA

values or by defining metagenes according to functional RNA

interference analysis of drug response pathways [3,6]. The

Connectivity Map [10] (CMAP) was one of the first attempts to

perform large-scale identification of novel drug indications and

investigated gene expression changes within a preclinical setting to

highlight how these signatures can reflect the complex interactions

between small molecules, genes and disease. The study identified

drug response profiles and searched for the negative correlations

between disease expression and treatment expression signatures to

construct an in silico drug screening tool.

However, faced with the underlying complexity of drug induced

perturbations in heterogeneous tumor tissues, we hypothesis that

the development of ideal predictive markers should also incorpo-
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rate information from the drug action mechanisms. MiRNAs have

been identified to play a major role in a wide range of key cellular

processes such as growth, development and apoptosis [11,12,13]

and they are predicted to regulate up to one third of all protein-

coding genes [14]. There is widespread evidence that microRNAs

can act as tumor suppressors or oncogenes and their dysregulation

is broadly associated with cancer initiation and progression

[15,16]. There is now multiple evidence that microRNAs are

key regulators in highly connected multi-level transcriptome

regulation networks (e.g. [17,18]) as well as data highlighting the

role of microRNAs in defining cancer related phenotypes such as

prognosis [19,20,21,22,23,24,25] and their role as key mediators

of drug actions [17,18,26,27,28]. However, compared to gene

expression data, there are still limited numbers of comprehensive

miRNA expression data available. Therefore, as an alternative, we

consider here the microRNA regulation network an alternative

feature space to interrogate drug action.

We propose that investigating miRNA regulation on specific

regions of the transcriptome might provide a novel perspective for

relating disease state to drug treatment action. The framework of

our study is shown in Fig 1 (See Methods for details). Consistent

with experimental evidence, we assume that a microRNA

regulates a functional gene set by targeting its target gene within

the gene set and consequently impacting their expression. To this

end, we introduce the concept of the Context-specific MiRNA (or

CoMi) to provide a measure of the effect of miRNA regulation on

a specific gene set. We achieve this by calculating the statistical

difference between the distributions of target and non-target gene

expression for a specific miRNA, where the gene set is determined

from ‘‘specific context’’ data. This ‘‘specific context’’ can be

defined from different perspectives, such as signaling pathway

data, protein-protein-interaction (PPI) networks [29,30] and Gene

Ontology [31]. Thus, a set of genes with a ‘‘specific context’’ can

be tagged with a specific biological function background, for

example, sharing a common regulatory mechanism. Using this

approach, we systematically evaluate the potential of the CoMi

feature space for representing the drug mechanism of action and

then demonstrate how the CoMi features can be used to predict

patient response to Paclitaxel in three clinical trials.

Results

Generation of CoMi pattern networks for Methotrexate
treatment in Breast Cancer

We first generated the CoMi network for breast cancer in the

absence of treatment (i.e. cancer vs. normal) from gene expressions

sets for 43 paired patients and extracted the most significant CoMi

patterns which represented the differential expressed disease

signature (P-value,0.05). The network is composed of a series

of edges connecting a miRNA node to a node representing a

specific GO term (Fig 2) which corresponds to the CoMi pattern.

Since a specific miRNA can regulate many mRNAs, which in turn

are associated with other GO terms, one miRNA can have

multiple edges. Conversely, a specific GO term can be affected by

several miRNAs. Thus, the final CoMi pattern is a network

constructed of interconnected GO terms and miRNAs.

To generate the differential disease network, we selected the

CoMi patterns which had significant changes between Cancer vs.

Normal, resulting in a differential disease network of 1527 edges.

Investigation of the topology of the complete CoMi network

reveals that both the in-degree (GO term) and the out-degree

(miRNA) nodes of the network fit a power law distribution,

suggesting that the network is a typical scale-free network as shown

in Fig 3. Table 1 lists several highly-connected GO term nodes

with a high in-degree within the network including ‘‘Signal

Transduction’’, ‘‘Transport’’, and ‘‘Apoptosis’’. The highly-con-

nected miRNA nodes (i.e. nodes connected to many GO terms)

also highlight several cancer related miRNAs, such as the

previously identified onco-miRNA hsa-miR-34a, and marker

miRNA hsa-miR-183-3p [32].

Fig 2 shows three examples of GO/miRNA sub-networks (i.e.

local networks formed by the nearest neighbor nodes for specific

nodes) for GO terms ‘‘response to drug’’, ‘‘metabolic process’’,

‘‘transport’’ and miRNAs ‘‘hsa-miR-499-3p’’, ‘‘hsa-miR-574-5p’’,

‘‘hsa-miR-224’’. These miRNAs have already been found to be

associated with breast cancer risk [33,34,35,36,37]. For the edges

around the GO term node ‘‘response to drug’’ the CoMi indexes

are all up-regulated, whereas most of the edges around the GO

term node ‘‘metabolic process’’ are down-regulated. Thus, the

CoMi network can highlight miRNAs and biological processes

associated with mechanisms of cancer progression.

We then considered the perturbation pattern induced by the

chemotherapy drug Methotrexate on the same CoMi sub-network

based on drug induced gene expression profiles from the

Connectivity Map (CMAP) dataset [10]. The sub-networks

corresponding to the cancer vs. normal networks for Fig 2a are

shown in Fig 2b and show striking perturbations in their regulation

patterns. In the GO term ‘‘response to drug’’ sub-network, all the

up-regulated edges in cancer vs. normal are down-regulated by

Methotrexate treatment. Similar modifications to regulation are

shown in the corresponding ‘‘metabolic process’’ and ‘‘negative

regulation of cell proliferation’’ sub-networks and were also found

in many other sub-networks within the generated CoMi network.

These network changes indicate there are several miRNAs that

may play pivotal roles both in breast cancer pathology and in drug

action. For example, for NBN (a breast cancer suppressor), one

target gene of the key regulator hsa-miR-499-3p has also been

reported to be associated with increased risk of breast cancer

[38,39,40]. However, the global impact of hsa-miR-499-3p on the

transcriptome is still unknown. In Fig 2c the CoMi network

associates hsa-miR-499-3p with regulation of ‘‘response to drug’’

and ‘‘oxidation reduction’’ as well as several other predicted

functions. These results suggest that the CoMi pattern network can

provide insight into the global impact and mechanism of drug

induced transcriptome remodeling in cancer.

Identifying successful drugs using CoMi signatures
We next investigated whether we could establish a more

quantitative measure of the relationship between disease (breast

cancer) and drug response (breast cancer treatments) using the

CoMi network. Using drug response pattern entries based on gene

expression data available from the CMAP database [10] we

defined a discriminatory measure according to the following three

steps. (1) Starting with a query profile (i.e., cancer vs. normal gene

expression profiles), the cancer-specific CoMi activities pattern is

represented as an ‘input CoMi signature’. (2) Within each query,

the drug-induced CoMi network generated from the CMAP data

is searched to identify drugs with signatures inversely correlated

with the ‘input CoMi signature’ based on the Spearman

Coefficient. (3) A ranked list of drugs is ordered according to the

Spearman Coefficient. By generating a list comprised of both

standard breast cancer drugs and other randomly selected drugs

associated with other treatments, we can evaluate the ability of this

method to identify real drugs by considering the ranking of each

candidate drug.

Since several of the drugs entries in CMAP are represented by

multiple instances (i.e., different concentrations and multiple cell

lines), our selected dataset contains 17 drugs with different
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concentrations in 5 kinds of cell lines, corresponding to 103 drug

instances, of which 23 were associated with FDA-approved breast

cancer treatment. To investigate whether the framework could

recognize these 23 breast cancer treatment instances by awarding

them a high rank in the ordered drug list, a drug screening

performance index (DSP index) (See Methods) and a correspond-

ing P-value were used to estimate the reliability of the prediction.

The DSP index provides a measure of the similarity of the ranked

positions to the order of the original list; a positive DSP index

indicates the real drugs are ranked at the top of the list. A P-value

,0.05 was considered significant. We then repeated the calcula-

tion using the mRNA and CMAP data to compare the

discriminatory abilities of the different three methods. The CMAP

method was consistent with the method used in the CMAP web-

online tools [10]. Specifically, we applied the CMAP method to

our testbed to assess its predictive power in identifying 17 breast

cancer treatments among 6100 instances. The mRNA based

method was conducted in a similar way based on the Pearson

correlation coefficient and the CoMi framework but using gene

expression as the feature rather than the CoMi Index.

Fig 4 shows the results for the three different data types. The

figure shows that the CoMi-based method provides better

discrimination than the other two methods with the highest

average DSP index and the narrowest 75% confidence interval.

The CoMi method was performed from two different disease

sources. Although the DSP index is greater than zero for the

mRNA data, the majority of P-values are .0.05. Most of the

values of DSP index for the CMAP method are less than zero,

indicating the method failed to correctly identify the majority of

true treatment drugs. The difference in the discriminative ability of

these two methods is also highlighted in Table 2. Whereas the top

of the ordered list generated using the CoMi-based method is

enriched for breast cancer drugs, the same drugs are randomly

distributed throughout the corresponding CMAP generated list.

Each DSP index represents the performance of one input

signature where the signature was selected according to a ranked

list of CoMi index. The difference amongst signatures is based on

the different window size used to generate the up and down-tags.

So, when a poor result is obtained for a specific DSP index, this

means the method is very sensitive to the length of the signature,

which in turn is a consequence of sensitivity of the tags to the

window size. Thus, the low robustness of the calculated DSP index

for the original CMAP method suggests that CMAP is very

sensitive to the input signature [41]. For example, for the patients

in GSE15852, since each DSP index is associated with a

corresponding input CoMi signature, we collected 666 CoMi

patterns which were associated with the highest ranked DSP

indices for the positive drugs as these CoMi patterns are the most

discriminative for breast cancer treatment.

Use CoMi to predict drug response in patients
Investigation of the relationship between the CoMi pattern and

drug discrimination suggests that the CoMi method could provide

useful insight into the mechanism of drug action for breast cancer

treatments such as Paclitaxel and Doxorubicin. Therefore, we next

considered the ability of the CoMi method to predict response to

drug treatment in a drug treatment regime in breast cancer

patients. We selected a dataset from a breast cancer cohort study

[42] and identified potential predictive biomarkers for response to

treatment with neoadjuvant chemotherapy. All the patients in

these cohorts were treated with the T-FAC regime which is one of

the most common neoadjuvant chemotherapies for breast cancer.

The TFAC regime consists of Paclitaxel (T), 5-fluorouracil (F),

doxorubicin (A), and cyclophosphamide(C).

Figure 1. The overall framework of the present study. (a.) The CoMi method calculation process. The CoMi pattern is formed by integrating
gene expression data with miRNA target and Gene Ontology information. (b.) Based on the disease differential data, we generate a CoMi disease
induced network. For the drug perturbation case, we can also generate a CoMi network to represent the perturbed drug mechanism of action. In
order to find the treatment for the disease, we compared the negative correlation between the cancer-induced CoMi patterns and drug treatment
induced CoMi patterns. (c.) From the drug perturbation data, we build a library of drug-perturbed CoMi networks. The CoMi network can then be
trained to discriminate FDA-approved breast cancer drugs from other FDA approved treatments not associated with breast cancer. (d.) Application
and evaluation of the ability of the CoMi method to predict response to drug treatment from clinical data. By comparison of the drug discrimination
CoMi feature with the patient response prediction CoMi patterns under similar treatment, the drug’s mechanism of action can be interrogated.
doi:10.1371/journal.pone.0098140.g001
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To investigate the CoMi index’s predictive ability for the

outcome of the drug treatment process, we generated the CoMi

index and their associated P-values based on the microarray data

provided by three separated neo-adjuvant breast cancer clinical

trials. We split the data into training and testing components and

then applied various machine learning methods. (See Methods for

details). We searched for the most significant CoMi patterns

features where activity among the patients was highly discrimina-

tive in terms of pathological complete response (pCR) by using the

t test to calculate the statistical difference of the CoMi index

between the two groups in the training set. We then used a

classifier to train the features in the training set, and tested them in

the testing set. In the training stage we used under-sampling since

the dataset was imbalanced (pCR/no pCR = 26/152). This

process of training and testing was iterated repeatedly as shown

in Fig 1d. In this way we identified 27 CoMi elements as potential

biomarkers which were distinct in patients with and without a

pCR.

We next tested the predictive performance of CoMi markers

during classification of pCR and non-pCR. The CoMi index was

used as input features for three classifiers (Naive Bayes, SVM and

logistic regression). The classification was performed using five-

fold cross-validation within each data set and repeated 100 times.

The CoMi method achieved an area under the curve (AUC) of

0.78 in dataset GSE20271. For comparison, we also tested the

performance of the Paclitaxel based metagenes identified in the

study by Juul et al [6], and achieved a corresponding AUC of 0.66.

The CoMi method also achieved an AUC of 0.76 and 0.77 using a

Naı̈ve Bayes classifier and SVM classifier respectively compared to

AUCs of 0.60 and 0.56 from the Paclitaxel metagene response as

shown in the Table 3.

We further independently tested the potential markers in other

two cohorts MDA1 and MDA/MAQC-II [2,43,44]. The features

Figure 2. The background newtork is the complete network generated for differential breast cancer data. And three examples of
identified cancer associated CoMi sub-networks and their corresponding drug induced CoMi networks. The GO term nodes are
represented by red circles and miRNA nodes by yellow diamonds. The figure also shows specific sub-networks for associated with breast cancer (left
sub-network) and treatment with Methotrexate (right sub-network) for (a) ‘‘cell-cell signaling’’, (b) ‘‘cell adhesion’’ and (c) ‘‘response to drug/
metabolic process/negative regulation of cell proliferation’’. The node size is proportional to the degree of the node. The value of the edge of CoMi
pattern pair is the CoMi Index and the width of the edge represents the value of -log10(P value). The red edges indicate that the target genes of
miRNAs associated with the indicated GO term are down-regulated. Conversely, blue edges indicate the target genes are up-regulated. In each of
these three cases the regulation pattern of the breast cancer network is inversely correlated with the regulation pattern for the Methotrexate sub-
network.
doi:10.1371/journal.pone.0098140.g002
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Figure 3. The topology of the complete CoMi network analysis of the in-degree (GO term) and out-degree (miRNA) nodes of the
network fit a power law distribution. The Y-axis represents the number of nodes, the X-axis is the number of In-degree/Out-degree nodes. These
graphs indicate that the generated networks are typical scale-free networks.
doi:10.1371/journal.pone.0098140.g003
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tested both CoMi patterns and Paclitaxel metagenes for compar-

ison. For independent validation, we used the features identified

from GSE20271 to test MDA1+ MDA/MAQC-II, and achieved

an AUC of 0.78 using a logistic regression model. As shown in

Fig 5a-c, the ROC of three different classifier results also highlights

the improved accuracy of the CoMi method over the metagene

method [6].

Table 1. The most connected GO nodes and miRNA nodes in the estimated breast cancer differential CoMi network.

Degree GO term node Degree miRNA node

26 signal transduction 7 hsa-miR-183-3p

25 Transport 6 hsa-miR-34a

24 Apoptosis 6 hsa-miR-103

21 protein amino acid phosphorylation 6 hsa-miR-339-3p

20 extracellular region 5 hsa-miR-892b

20 cell cycle 5 hsa-miR-216b

11 regulation of apoptosis 3 hsa-miR-27a

doi:10.1371/journal.pone.0098140.t001

Figure 4. Comparison of the drug discriminative ability of three different data sources. (a.) From left to right. Drug Screening
Performance (DSP) index distribution for CoMi1&2 (GSE15852, GSE5364), mRNA expression data and CMAP. The blue box indicates the CoMi method
performed with GSE15852, the line within each of the box marks the median of the values. The circles indicate outliers (defined as those laying
outside approximately 99.3% coverage, the default setting in Matlab). Higher DSP values indicate stronger agreement with an ordered drug list that
places breast cancer treatments at the top. (b.) Corresponding estimated P-values for the three method plotted as 2log10 (P-value). The horizontal
blue line indicates the 2log10 (0.05) threshold which is considered significant. Both of the CoMi results have all values greater than zero. Although
the mRNA data has majority of points greater than zero, the majority of P-values are .0.05. DSP values for CMAP are almost equally distributed
between positive and negative values and consequently, none of the associated P values are ,0.05.
doi:10.1371/journal.pone.0098140.g004
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For the 27 identified CoMi features, we next investigated the

correlation between the CoMi pattern across samples and the

outcome of pCR status. Several CoMi markers showed a

significant positive correlation with the group of patients with

pCR, and a significantly negative correlation with the group of

patients without pCR (Fig 6a). The CoMi pattern of potential

markers in this figure also reveals several interesting regulatory

relationships indicating miRNA regulation on GO Terms. Some

of these GO Terms are closely related to drug effect, such as

‘‘immune response’’, ‘‘signal transduction’’ and ‘‘G-protein

coupled receptor protein signaling’’. In particular, Fig 6a shows

that hsa-miR-182-3p has a strong regulatory effect on several

GOBP Terms including ‘‘endoplasmic reticulum’’ and ‘‘endoplas-

mic reticulum membrane’’. This is consistent with a previous

report that hsa-miR-182-3p is over-expressed in breast cancer

[45]. Furthermore, ESR1 also has an association with another

important onco-miRNA, hsa-miR-18a [46].

Predictive CoMi features provide a network view of drug
response

A recent paper investigated the mitotic and ceramide pathway

as a predictor of response to chemotherapy with neoadjuvant

Paclitaxel and 12 metagenes were ultimately shown to be

significantly associated with response in pCR patients who have

a pathological complete response (referred to as Paclitaxel

metagenes hereafter) [6]. In this study we investigated the

connection between the target genes revealed by our CoMi

markers and the Paclitaxel metagenes. We selected the Paclitaxel

metagene ESR1 (which is a target gene associated with the GO

term ‘‘regulation of transcription, DNA-dependent’’ and the hsa-

miR-18a target geneset) as an example and compared the

expression of ESR1 in a group of pCR and no pCR patients

respectively. As shown in Fig 6b, ESR1 is down-regulated in the

pCR response compared with the no pCR response. The CoMi

pattern of hsa-miR-18a regulation on the GO term ‘‘regulation of

transcription, DNA-dependent’’ is up-regulated in the pCR

response compared with the no pCR response (Fig 6c), indicating

that hsa-miR-18a might target and down-regulate the expression

of genes (such as ESR1) involved in the GO term ‘‘regulation of

transcription, DNA-dependent’’. Comparison of the statistical

significance of the respective t test results for the pCR and no pCR

groups suggests that the CoMi index is changed more significantly

than the target gene ESR1. Since the CoMi index data cannot be

directly compared to the gene expression data, we compared the

rate of change for ESR1 and the CoMi pattern for ‘‘regulation of

transcription, DNA-dependent’’/hsa-miR-18a for the pCR group

to the no pCR group using the fold change of the average

expression. The results are shown in Fig 6d. The left-hand bars

show the changes for ESR1, and the right paired bars show the

changes for the CoMi pattern. The CoMi pattern not only

Table 2. Ranked drug list for CoMi based and CMAP based methods.

Drug list of CoMi index-based method Drug list of CMAP method

Rank Drug KS Score Rank Drug KS Score

1 mitoxantrone 0.699029 1 decitabine 0.6893

2 mercaptopurine 0.572816 2 lomustine 0.4587

3 doxorubicin 0.524272 3 tamoxifen 0.4397

4 daunorubicin 0.504854 4 procarbazine 0.4369

5 lomustine 0.495146 5 chlorambucil 0.4223

6 paclitaxel 0.393204 6 mitoxantrone 0.3883

7 vinblastine 0.385113 7 paclitaxel 0.3576

8 tamoxifen 0.37448 8 etoposide 0.2646

9 azacitidine 0.288026 9 sirolimus 0.1534

10 tetrandrine 0.240291 10 daunorubicin 20.3811

11 methotrexate 0.213592 11 tetrandrine 20.4393

12 hycanthone 20.16505 12 methotrexate 20.4660

13 sirolimus 20.24782 13 vinblastine 20.4919

14 procarbazine 20.25243 14 hycanthone 20.4951

15 chlorambucil 20.37136 15 doxorubicin 20.5146

16 etoposide 20.43204 16 azacitidine 20.5728

17 decitabine 20.85437 17 mercaptopurine 20.9417

doi:10.1371/journal.pone.0098140.t002

Table 3. AUC scores for three different classifiers with different types of markers for Metagene and CoMi datasets.

Logistic model Naı̈ve Bayes classifier SVM

Metagene(12) 0.6647 0.6000 0.5564

CoMi(27) 0.7870 0.7560 0.7732

doi:10.1371/journal.pone.0098140.t003
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achieves better discriminatory performance than the gene

expression of the metagenes, but the pattern also provides

important information on biological processes that are involved

in the drug response. This is summarized in Fig 6e which shows

that the GO term ‘‘regulation of transcription, DNA-dependent’’

is also regulated by another miRNA ‘‘hsa-miR-33b’’ suggesting it

may be a key biological process in tumorigenesis.

Predictive CoMi features are in line with published
metagene

Since the metagenes were selected from the Paclitaxel resistant

pathway experimental study by Juul N, et al [6], their predicted

CoMi features can be used to reveal their associated biological

mechanisms. These are summarized in Fig 7 and Table 4. For

example, from Table 4, we observe that the CoMi pattern of the

effect of hsa-miR-548b-3p on the GO Term: ‘‘Oxidation

reduction’’ has three Paclitaxel metagenes (PGR, COL4A3BP

and GBA3) Paclitaxel. Interestingly, the expression of these genes

didn’t show significant differences between the pCR and no pCR

groups (data not shown), which suggests that the CoMi feature

might integrate the collective effects of marginal changes of

multiple genes involved in the same GO term.

Predictive CoMi features are related to drug mechanism
of action

Table 4 lists the several associations between the CoMi features

for Paclitaxel response and the CoMi features for breast cancer

treatment discrimination. Since the patients were treated with

neoadjuvant drugs, and two of these drugs, Paclitaxel and

Doxorubicin, were both tested individually for their treatment

effect, we next considered whether their CoMi features could show

an association based on the breast cancer treatment effect. To this

end, we checked the consistency of informative CoMi features in

discriminating successful drugs (‘drug-classification CoMi’) with

the predictive CoMi features for drug response in patients

(‘patients-classification CoMi’). For the 666 drug-classification

CoMi identified in section 2.2 and the 27 identified CoMi for

patients’ outcome there are 9 overlaps (Table 4). The significant

overlap (Hyper-geometric test P-value = 7.9226e209) indicates

that these two CoMi list are significantly consistent, suggesting

these CoMis are useful not only as predictors for drug response,

but also as an optimized representation of Paclitaxel action on

patients.

Discussion

In this present study we introduce the concept of the CoMi

(Context-specific-MiRNA-regulation) as a representation of the

Figure 5. the CoMi pattern markers for pCR prediction for three different classifiers. (a) ROC using Logistic Regression (b) ROC using Naive
Bayes classifier (c) ROC using SVM classifier (d) the clustergram of the identified 27 CoMi predictors (Y axis) for the outcomes of the patients response
(X axis) in clinical trials MDA1+ MDA/MAQC-II. The line under the graph shows the label of the class (0 for the pCR group, 1 for the no pCR group).
Most of the patients that have pCR are clustered in the right hand clade (X axis) which suggests that the markers can effectively cluster the pCR
patients.
doi:10.1371/journal.pone.0098140.g005
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Figure 6. The CoMi pattern used to predict pCR in clinical trials involving Paclitaxel. (a) Graphical summary of correlation analysis
between the CoMi pattern across samples and the outcome of pCR status. The edges represent activities pattern where green lines indicate highly
negative correlations, red lines indicate positive correlations. (b) The expression distribution of the gene ESR1 in the two groups of pCR and no pCR
patients. (c.) The distribution of the CoMi index (hsa-miR-18a on ‘‘Regulation of transcription, DNA-dependent’’) in two the groups of patients. (d.) The
fold change of the average expression from the patients without pCR to the group of people has pCR of the gene ESR1 and the CoMi pattern. The
blue bar represents the average value of CoMi Index of patients without pCR, while the red bar is the average value of the group of patients with pCR.
(e.) The regulation network of two CoMi activities with its target gene. Gene ESR1 is the target of the CoMi pattern of hsa-miR-18a’s regulation on the
GO term ‘‘Regulation of transcription, DNA-dependent’’, it is also the target of the CoMi pattern of hsa-miR-33a’s regulation on the GO term
‘‘Regulation of transcription, DNA-dependent’’.
doi:10.1371/journal.pone.0098140.g006
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miRNA regulation network in the transcriptome. One of the basic

assumptions is that a miRNA is involved in a biological process

through regulation of its target genes, and that a subset of genes

within the same biological process are not necessarily regulated by

the same miRNA. This is supported by multiple studies

[12,47,48,49,50]. In this work we use the Gene Ontology (GO)

to abstract a miRNA’s regulation on to a specific GO biological

process. In this way we can interpret the significance of an

identified relationship such as cancer, normal or drug treatment.

There have been many studies that have focused on the

difference between miRNA target and non-target gene expression

to estimate the activity of the miRNA [51]. Here, based on the

specific context definitions, a single miRNA and a particular

biologically meaningful gene set, we divide the gene set into two

parts consisting of the miRNA target and non-target genes. The

expression differences between the two subsets are then considered

to be representative of a miRNA’s regulatory contribution. In this

way, we define the CoMi as an abstract probe to profile the

regulation intensity for each miRNA within each biologically

annotated gene set.

In the present study we demonstrated the use of the CoMi as a

new way to interpret the hidden biological process in the

mechanism of action of drugs on the transcriptome network,

and to quantitatively discriminate successful breast cancer drugs

from their peers by combining miRNA target information with

Gene Ontology biological annotation modules. There are already

several published works that explore the miRNA’s functional

association through biological functional modules. Some of these

approaches integrate the miRNA’s target information with

functional gene modules to filter the potential mRNA target and

consider the potential function of miRNA [52,53]. Another

approach uses the miRNA’s target information enriched in similar

Gene Ontology terms to build a synergistic miRNA-miRNA

network [54]. These authors have also used drug perturbation

data to construct a miRNA-miRNA network in an attempt to

interfere possible roles in cancer in order to identify drug

candidates [55]. In our work, we are able to abstract the miRNA’s

regulation on a specific GO biologic process, and describe its

significance and repression level. We use the CoMi as a novel

perspective for analyzing breast cancer differential data and use

this to build a CoMi network. Furthermore, we link the disease

and drug by using the strong negative correlation of a miRNA’s

regulation in different conditions to discover the CoMi network of

drug related function and the drug mechanism of action. This is

Figure 7. The relationship between the predictive CoMi pattern and the published metagene. The left box lists the miRNAs in the CoMi
pattern that was identified as a predictive marker. The right box lists the 12 metagenes identified in the study by Juul N, et al [6] on the Paclitaxel
resistant pathway. We predicted that some elements of the CoMi pattern (e.g. hsa-miR-548b-3p on the GO Term: ‘‘Oxidation reduction’’) have a
repressive effect on some of the metagenes (e.g. GBA3, COL4A3BP and PGR) as shown by the three arrows from the miRNA to its target genes.
doi:10.1371/journal.pone.0098140.g007

Table 4. List of overlapped CoMi patterns in
drug-discriminating CoMi features and patients-classification
CoMi features.

miRNA GO Term

hsa-miR-302c extracellular region

hsa-miR-574-5p extracellular region

hsa-miR-17 mitochondrial inner membrane

hsa-miR-599 Golgi apparatus

hsa-miR-892b plasma membrane

hsa-miR-509-3-5p integral to membrane

hsa-miR-18a regulation of transcription, DNA-dependent

hsa-miR-323-5p Proteolysis

hsa-miR-22 protein transport

doi:10.1371/journal.pone.0098140.t004
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the first report that uses such a network to analysis the drug

mechanism of action and predicts drug sensitivity.

Following the pioneering work of the Connectivity Map, there

have been several subsequent efforts that attempt to use gene

expression signatures or modules to identify potential drug

treatments [10,41,56]. However, these analyses are very sensitive

to the input signature [41]. By incorporating gene expression data

and the miRNA regulations that describe the underlying biological

network, we demonstrate that our CoMi network based approach

offers greater sensitivity compared to methods based only on gene

expression data.

In recent years, an increasing number of disease markers

have been identified through analysis of genome-wide expression

profiles [42]. However, these marker sets appear to share very

little in common and lack functional network insight

information. This highlights one the primary limitations of using

predictive gene expression signatures based on small and unbal-

anced samples; this leads to impaired reproducibility in independent

validations [6,7]. By integrating gene expression profiles from

clinical trials with our CoMi method, the data is mapped into a

CoMi pattern. We can then identify several CoMi activities with

significant P-values as potential biomarkers for the response to the

therapy.

Our results show that CoMi features outperform published gene

expression patterns or ‘metagenes’ selected from functional RNA

interference analysis of drug response pathways [6] and demon-

strate that the CoMi biomarkers can also be related to the gene

target in the drug response pathway. Results on the benchmark

datasets indicate this approach is effective and outperforms the

gene expression method, and can reveal additional informative

features related to drug response mechanisms.

Nevertheless, despite these advantages, there is still room for

improvement. The current limitations in accuracy and specificity

of miRNA target prediction adds noise to the network, and

redundancy and inaccuracies in the Gene Ontology causes further

imprecision in the predicted network patterns. As these are refined

through experiment and curation, this will improve further the

prediction efficiency and inaccuracy.

Materials and Methods

Workflow
The study is organized into four parts (Fig 1): (1) Using the gene

expression as input and the Gene Ontology as context, we

integrate miRNA target information with associated GO terms to

calculate the CoMi profile. (2) Using breast cancer as an example,

we combine the disease and drug perturbation gene expression

patterns with the CoMi activities and map the data into a CoMi

pattern. This CoMi pattern can then be used to build a disease-

specific CoMi network and a drug differential CoMi network. (3)

We then establish a drug discrimination method to verify the

CoMi’s performance by promoting FDA approved breast cancer

drugs within the library to extract the most discriminative CoMi

features related to breast cancer. (4) Finally, we convert the clinical

data of breast cancer treated with neoadjuvant Paclitaxel into a

CoMi pattern, then predict response to neoadjuvant Paclitaxel

using CoMi features, demonstrating the CoMi features reveal

more informative biological meanings compared to the mRNA

based method.

Datasets used in the study and generation of target and
non-target gene sets

The Breast cancer disease datasets were selected from the Gene

Expression Omnibus (accession number GEO GSE15852,

GSE5364) and contained expression data from 43 and 13 human

breast tumors and their paired (adjacent) normal tissues respec-

tively. Each gene in the expression dataset was mapped to a subset

of Gene Ontology terms (i.e., Gene Ontology Biological Process-

GOBP and Gene Ontology cellular component-GOCC) to define

a ‘‘context-specific’’ gene set. The age range was from 22 to 79.

The data were analyzed with Microarray Suite version 5.0 (MAS

5.0) and GCOS version 2.0 using the default Affymetrix analysis

settings. The clinical diagnosis was limited to a few terms:

infiltrating ductal carcinoma, invasive ductal carcinoma, lobular

carcinoma, mucinous carcinoma and ductal carcinoma. MiRNAs

target gene information was generated for each miRNA by

collecting target predictions from the online miRNA target

prediction sources, (ExprTargetDB [57] which combines miRanda

[58], TargetScan [59] and PicTar [60]) and consolidating as

described in detail in our earlier report [32].

Generation of the CoMi Network and CoMi patterns
The CoMi network was generated based on the premise that a

given miRNA, miRNAi, targets several genes represented by a

gene set Mi. Similarly, a given GO term GOj (taken from the

Gene Ontology Biological Process-GOBP and Gene Ontology

cellular component-GOCC vocabulary) will be mapped to several

genes, forming a ‘‘context specific’’ gene set Gj for that GO term.

The intersection of these two sets Mi>Gj can be considered to

represent the regulation of GOj by miRNAi and partitions Gi into

two subsets of target and non-target genes. By applying the hyper-

geometric test to these target and non-target genes we can identify

significant overlap for any Mi>Gj and in these cases generate a

corresponding CoMi pattern CoMiij. Taken together, the set of all

CoMiij pairs represent a CoMi profile and, because of the overlap

between different CoMiij, form an overall CoMi network for the

miRNA/GO dataset (Fig 8).

A given CoMi pattern CoMiij does not change, i.e., the target

and non-target gene sets are fixed. What can change for a disease

or drug treatment is the expression levels of the genes in the target

and non-target sets. We quantify these expression levels by

defining a CoMi index for each condition (i.e. normal vs. disease

vs. drug treatment). This CoMi network can then be used to

represent (i) gene expression data from drug treatment in CMAP

(DRGEXP), and (ii) disease expression data from GEO (DISEXP)

by calculating a CoMi index for each CoMi pattern identified in

the previous step for DRGEXP and DISEXP respectively.

Significant changes between target and non-target genes for a

given CoMiij were identified by using the t-test (described below)

and are assumed to correspond to the effect of the up or down

regulation by miRNAi on GO term GOj.

The respective CoMi profiles for DRGEXP and DISEXP can

then be compared to identify significantly inversely correlated

profiles. For example, if the disease state produces a significant

down regulation of a group of genes by miRNAi, then the drug

treatment affects a corresponding up-regulation of the same

gene set. In this way, disease relevant CoMi networks can be

identified.

Generation of networks
Networks were generated using Matlab and Cytoscape was used

for visualization [61]. Network topology was investigated using the

Network Analysis plug-in for Cytoscape. Because miRNA are

mediators, i.e., they have the ability to silence a gene, the miRNAs

were considered outgoing edges and GO terms incoming

edges, and the in-degree and out-degree of each node was

determined.
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Identification of CoMi patterns significantly associated
with disease and with drug treatment

To identify significant changes in target gene expression

values brought about by the presence of a particular disease we

compared the changes in expression values for target and non-

target genes for a specific miRNA for normal and disease

states. For each CoMi pattern CoMiij we performed the t-test as

follows:

NCtij~
�XX T jNC{ �XX NT jNCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
T jNC

.
nT

zS2
NT jNC

.
nNT

r

where �XXT jNCstands for the fold change vector (cancer vs.

normal) of the miRNA target gene set, �XXNT jNC is the fold

change vector (cancer vs. normal) of the non-target gene set,

nT is the number of miRNAs target genes and nNT is the

number of non target genes. A P-value ,0.05 was considered

significant.

Similarly, we identified drug induced CoMi change as follows:

NDtij~
�XX T jND{ �XX NT jNDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
T jND

.
nT

zS2
NT jND

.
nNT

r

where �XXT jNDstands for the fold change vector (drug treatment vs.

normal) of the miRNA target gene set, �XXNT jNDis the fold change

vector (drug treatment vs. normal) of the non-target gene set, nT is

the number of miRNAs target genes and nNT is the number of

non target genes. A P-value ,0.05 was considered significant.

The drug-induced gene expression change of known drugs was

derived from the CMAP dataset, consisting of expression profiles

from five different human cell lines treated with 1309 different

compounds at different concentrations [10].

Generation of the drug reference library
To build a reference library of drugs as a test dataset to

investigate the ability of the CoMi method to distinguish drugs

Figure 8. Schematic of generation of CoMi profile for a specific miRNA/GO Term pair. The yellow diamond represents a miRNA, the
trapezoid represents a gene. Some of the genes could be repressed by its targeting miRNA as shown by a arrow from the miRNA to the gene. The
green and red colours correspond to up- and down-regulation respectively and the height of the gene trapezoid correponds to expression level. The
pink ellipse encompassing the set of genes represents a GO term. An arrow from an miRNA to a target gene within a GO term indicates this miRNA
has a significant effect on this GO term as determined by the hypergeometric test and this miRNA/GO term pair is referred as a CoMi pattern. By
searching each GO term for significant miRNA pairing we generate a CoMi profile and and an associated CoMi index which represents how much
influence a specific miRNA influences the GO term (calculated from the statistical difference between the miRNA’s target and non target genes
expression within the GO term). By considering different perturbations (e.g. cancer or drug effects), we can build a CoMi network based on these
CoMi patterns and by extracting the most significant CoMi patterns according to the estimated P-value of the CoMi index, we can generate breast
cancer signature based on CoMi patterns and generate a CoMi network.
doi:10.1371/journal.pone.0098140.g008
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associated with disease treatment from other drugs, we selected

gene expression information from the Connectivity Map [10] for a

set of selected drugs and mapped them into a CoMi pattern as

described above. 17 drugs were selected based on their overlap

between the ‘‘standard agent database’’ [62] and CMAP with 103

instances in CMAP (corresponding to multiple dose treatment for

one drug). 5 of these 17 were recognized breast cancer drugs in

routine clinical usage (23 instances in CMAP) with successful

outcome.

Identification of CoMi patterns associated with drug
treatment

To identify CoMi patterns that were associated with drug

treatment we generated a disease query signature by combining

the top k up-regulated CoMi activities (the up-tag), and the bottom

k down-regulated CoMi activities (the down-tag) from the

cancer specific CoMi patterns, where k = 5 to k = 1/3 of

the number of CoMi patterns in the profile. In the same way, a

query signature was calculated from each entry in the drug CoMi

pattern library. Finally, the Spearman correlation coefficient

was calculated between the disease query signature and each

instance of the drug query and the drugs were ranked based on

this value.

To determine whether this method could distinguish recognized

drug treatments for breast cancer from other randomly selected

drugs, all the n instances in the candidate instance library were

ranked in an ascending order according to the Spearman

correlation coefficient, resulting in a drug ranked list. We then

used the Kolmogorov-Smirnov (KS) statistic to test whether the

rank positions of the 23 successful breast cancer drug instances

from CMAP were significantly enriched at the top of the ranked

list.

a~ Max
t

j~1

j

t
{

V (i)

N

� �

b~ Max
t

j~1

V (i)

N
{

j

t

� �

DSP Index~
{b : avb

a : awb

�

Where t the number of positive drugs in the library (23), j denotes

the jth drug instance according to the rank within the N drugs in the

list, and V(j) is the ranked position of the jth drug instance. To

estimate the corresponding DSP P-value, the data was bootstrapped

by permuting the rank position of successful-drug-related instances

and counting how many times the absolute value of the random KS

score was larger than the absolute value of the real KS score for

1000 times. We denoted this P-value as the ‘‘Drug Screening

Performance P-value’’ (DSP P-value). To compare the predictive

abilities of the CoMi method with alternative features we also

calculated the DSP based using gene expression values based on

mRNA as well as the original CMAP method, but using the

Spearman coefficient rather than the KS statistic.

Patient CoMi pattern calculation
We retrieved the gene expression and treatment response data

from three cohorts from three neo-adjuvant breast cancer clinical

trials. The datasets (GSE20271, MDA and MDA/MAQC-II)

[2,43,44] with associated Affymetrix microarray analyses were

derived from the primary tumor prior to drug treatment

(Paclitaxel). Since the MDA1 and MDA/MAQC-II trials were

done by the same investigators, at the same site, with the identical

gene expression platforms, we combined the two T-FAC treated

cohorts to increase statistical power for univariate logistic

regression analysis as performed in the original study [63]. For

the 178 patients of GSE20271 and 233 patients from MDA1 and

MDA/MAQC-II, the pCR (pathological complete response) status

was determined at the time of surgery.

In all cases, response to therapy defined in terms of pathologic

complete response (pCR) was determined at the time of surgery.

We converted the gene expression pattern of each patient into a

CoMi pattern as follows:

TDtij~
�XX T{ �XX NTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
T
�
nT

zS2
NT
�
nNT

q

where �XXT stands for the average gene expression value of the

miRNA target genes, �XXNT is the gene expression values of the non-

target gene set, nT is the number of miRNAs target genes and

nNT is the number of non target genes. A P-value ,0.05 was

considered significant

Patient response prediction
To investigate the ability of the CoMi index to act as a predictor

of the outcome of drug treatment process, we generated CoMi

Index and their associated p-values for the datasets from the three

neo-adjuvant breast cancer clinical trials above and applied

various machine learning methods. The CoMi index associated P-

values and clinical outcome pCR/nopCR were used as inputs. We

divided the data into training data (80%) and testing data (20%)

and classification was performed with five-fold cross-validation.

Potential biomarker features were selected from the training set

and then applied to the test set. The area under the ROC curves

(AUC) for the test data was used to evaluate classification

performance. The AUC value was the average value of 1000

classification results and we searched for the optimum number of

CoMi features that produced the best accuracy. Three classifiers,

multiple logistic regression analyses, and SVM and Naive Bayes

were tested using the Matlab toolbox version 2010b.

Comparison with identified Paclitaxel resistant
metagenes

Here we compared the prediction performance of CoMi

features with the metagenes based on the reported data from the

work of Juul N, et al, which investigated the mitotic and ceramide

pathway as a predictor of the response to chemotherapy using the

neoadjuvant Paclitaxel. Twelve metagenes were identified as being

significantly associated with response in pCR patients [6]. In the

prediction process, the training data was generated by under-

sampling to obtain a balanced dataset and the 12 metagenes were

used as features to train for the Metagene dataset and then tested

in the testing set repeatedly to generate an average AUC value as

the same process with CoMi features. For the CoMi features that

were investigated for Paclitaxel resistant, correlation between the

27 CoMi feature’s Index expressions with the outcome of the pCR

status is shown in Fig 6a. The Person correlation coefficient is used
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to estimate the relationship of the 27 CoMi and the outcome of

the pCR status.
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