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Abstract: The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge
about the mechanisms underlying neuronal regeneration. This current study compared the expression
of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive
effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal
administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without
affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on
functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote
regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising
regenerative potential in vivo, ex vivo, and in vitro.
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1. Introduction

Traumatic brain injury (TBI) is a major cause of morbidity and lifelong disability, making it a
critical healthcare concern worldwide. Globally, an estimated 69 million individuals per year suffer
from TBI, and according to the Centers for Disease Control and Prevention, it accounts for over 30%
of injury-related deaths in the United States [1–3]. There is currently no effective treatment that can
stimulate regeneration, partly due to the heterogeneity of pathophysiology, severity, and outcomes,
so much of the damage/dysfunction in TBI patients becomes permanent [4]. Among over 200 registered
ongoing or completed clinical trials for TBI, administration of chemical compounds (e.g., sertraline,
amantadine, minocycline), transplantation of autologous bone marrow-derived cells, and other
interventions may partially rehabilitate impaired consciousness and/or improve neurocognitive
dysfunction. Nevertheless, a large number of these trials have been terminated (ClinicalTrials.gov).
So, the medical burden of TBI highlights the pressing need to develop better treatments for brain injury.

WNT signaling is an evolutionarily conserved pathway that regulates axis specification of the
neural plate, neural tube morphogenesis, dendrite and axon development, and synaptic plasticity [5–7].
Aberrant WNT signaling has previously been implicated in Alzheimer’s disease and Parkinson’s
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disease [8–10]. In this study, we determined the expression of a number of WNT genes during
regeneration of injured cortical neurons. In vitro and in vivo studies examined the regenerative
potential of WNT3A upon traumatic brain injury.

2. Results

2.1. Identification of WNT Genes as RAGs for Axonal Regeneration of Cortical Neurons

To evaluate neuronal regeneration, rat cortical neurons were cultured in vitro. On DIV (day
in vitro) 8, primary cortical neurons were injured by scraping lines through the culture with a p20 tip
(Figure 1A). It was estimated that 10% neurons were injured via this approach. An anti-mitotic reagent,
AraC, was added to the culture medium to inhibit proliferation of glial cells [11,12]. Regenerating
neurites were tracked for 72 h after injury. Regeneration of injured cortical neurons was most prominent
within 48 h (injured DIV10, iDIV10) after the injury (Figure 1B). Immunofluorescence staining using
anti-microtubule-associated protein 2 (MAP2, marker for dendrites) and anti-Tau (axonal marker)
antibodies demonstrated that the re-growing neurites were mostly Tau+ axons (Figure 1C).
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Figure 1. Neurite re-growth of primary cortical neurons in an in vitro traumatic brain injury (TBI)
model. (A) Schematic flow chart of experimental design. (B) Trajectory of single neurite re-growth
was tracked from 0 h (blue) to 72 h (red) after injury using tracking function of AxioVision software
(left). Quantitative results of average length of re-growing neurite (blue bars) and average cumulative
length (line graph) are shown from iDIV8 to iDIV11 (right). (n = 3, track 12 neurites/experiment.)
(C) Cortical neurons were fixed on iDIV8 to iDIV11 and were subjected to immunofluorescence staining
with anti-Tau (green, axonal marker), anti-MAP2 (red, dendritic marker) antibodies, and DAPI (blue,
nuclei). Merged images are shown. White dashed lines indicate the borders of the injured gap. Scale
bar, 50 µm.
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To identify candidate regeneration-associated genes (RAGs) during regeneration of injured cortical
neurons, our previous RNA-seq data suggest a subset of WNT genes as candidate RAGs (data not
shown), in addition to pathway-focused superarray analysis of 88 WNTs and WNT target genes, given
that our previous data has suggested that WNT signaling is implicated in neuronal regeneration
(data not shown). Superarray analysis showed that 48 genes (54.5%) were up-regulated. Among
them, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT8A, WNT8B, WNT9A, WNT9B,
and WNT10B expression were up-regulated (fold change > 1.5) during regeneration (Figure 2A).
Increased expression of WNT3A, WNT8A, and WNT9B on iDIV10 compared to DIV10 was validated by
qPCR, with the expression of WNT3A and WNT9B showing significant increase (Figure 2B). Although
the fold increase of WNT genes is not high, local concentration of secreted WNTs in the brain tissue
under tight control of blood–brain barrier (BBB) may be sufficient to trigger cellular response.
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Figure 2. Up-regulation of WNT genes during regeneration of injured cortical neurons. (A) Differential
expression profile of WNT-related genes by superarray assay is shown. Genes with an expression
fold-change above 1.5 in response to injury are denoted. (B) Analysis of differential expression of
WNTs by qPCR during neuronal regeneration. Data are presented as mean ± SEM from at least three
independent experiments (WNT3A, 8A: n = 4; WNT9B, 10A: n = 5). * p ≤ 0.05 (paired Student’s t-test).

2.2. WNT3A Recombinant Protein Promotes Neuronal Regeneration and Functional Recovery

To address the effect of WNT proteins on the regeneration of injured cortical neurons directly,
WNT3A, WNT8A, WNT9B, and WNT10A recombinant proteins were added. The percentage of
relative regeneration was determined as average distance of neurite re-growth compared to the initial
width of the injury gap. The lengths of re-growing neurites during 0–24 h, 24–48 h, and 48–72 h after
neuronal injury were shown. As shown in Figure 3A,B, the regeneration of injured cortical neurons
was improved by 20–25% in the presence of WNT3A compared to without WNT3A by 72 h (iDIV11).
The addition of WNT8A, WNT9B, and WNT10A also enhanced regeneration of injured cortical neurons,
though not to the same extent as WNT3A did (Figure 3A).
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Figure 3. Recombinant WNT3A promotes regeneration of injured cortical neurons and brain tissues.
(A) Cortical neurons were pre-treated with PBS, WNT3A, WNT8A, WNT9B, or WNT10A recombinant
proteins prior to injury on DIV8. Upper: The percentages of gap closure were calculated from iDIV8 to
iDIV11. Bottom: The lengths of re-growing neurites were measured between 0–24 h, 24–48 h, and 48–72
h after injury. Data are presented as mean ± SEM (n = 4 for WNT3A and WNT9B experiments; n = 5
for WNT10A experiment). * p ≤ 0.05, ** p ≤ 0.01 (paired Student’s t-test). (B) Cortical neurons with or
without WNT3A (50 ng/mL) pre-treatment were fixed and subjected to immunofluorescence staining
with anti-TUJ1 antibody (neurites) on iDIV11. (C) Cortical neurons were treated with 1% DMSO
or IWR-1 prior to injury on DIV8. Neurons were subjected to immunofluorescence staining with
anti-TUJ1 antibody on DIV11 and the representative images are shown. Dashed lines in (B,C) indicate
the borders of the injured gap. Scale bar, 100 µm. (D) The effect of WNT3A on neuronal regeneration
was assessed using organotypic brain slice culture. Brain slices were injured at the olfactory tubercle on
DIV0, as indicated by the red dashed line in the upper left atlas map, and cultured with or without
WNT3A (50 ng/mL) in AraC-containing medium. Brain tissues were fixed on iDIV4 and subjected to
immunofluorescence staining with anti-TUJ1 (green) and anti-GFAP (red, glia) antibodies, and DAPI
(blue). The border of injured sites is depicted by white dashed lines, and remaining brain tissue is
underneath the lines in each panel. F: Frontal lobe; O: Occipital lobe. Scale bar, 100 µm. (E) The
length of regenerating neurites from the brain slices treated with PBS, WNT3A, AraC + PBS, or AraC
+ WNT3A were calculated. Data are presented as mean ± SEM (n = 4). Data were analyzed using
non-parametric Mann–Whitney test.
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Thus, the WNT3A-dependent regeneration was further examined by treating injured cortical
neurons with IWR-1, a WNT3A inhibitor, and neuronal regeneration was inhibited (Figure 3C).
To assess the effect of WNT3A in a multicellular three-dimensional (3D) culture, organotypic brain
slice culture was used. Brain slices were injured in the olfactory tubercle, followed by WNT3A or PBS
treatment (Figure 3D). In order to reduce injury-induced glial cell proliferation, which has been shown
to hinder neurite re-growth, the effect of combining WNT3A + AraC or PBS + AraC was also compared.
Injured brain slice treated with WNT3A increased the length of regenerating neurites compared to PBS
control (Figure 3D,E). To show the in vivo effect of WNT3A administration on neuronal regeneration,
we adapted one of the TBI models, controlled cortical impact (CCI) injury mice model. CCI model
mimics post-TBI neuro-pathophysiology, resembling cognitive or behavioral deficits seen in human
TBI patients [13–16]. C57BL/6J mice were injured via CCI at 3 m/s in speed and 1 mm in depth to
generate mild TBI, followed by daily intranasal administration of 50 ng WNT3A recombinant protein
for consecutive four days. As demonstrated in Figure 4A, administration of WNT3A robustly enhanced
regeneration of brain tissue on 4 dpi (day post injury), characterized by better healing of the injured
area compared to vehicle treatment. Within the regenerated tissue, there were increased NeuN+

(neuronal marker) cells for WNT3A-treated mice compared to PBS-treated control group (Figure 4B).
Upon injury, increased glial fibrillary acidic protein (GFAP) reflects injury-induced proliferation of
glial cells. GFAP+ signal was compared between proximal regions to the injury site, ipsilateral distal
regions to the injury site, and contralateral uninjured regions. The relative intensity of GFAP at the
proximal region over distal region (proximal/distal) was higher in PBS-treated group compared to that
of sham-treated group, and was higher in WNT3A-treated group compared to that of sham-treated
group (Figure 4C). These results suggest that the main effect of WNT3A is on NeuN+ neurons, instead
of GFAP+ cells.

Functional recovery of damaged motor and somatosensory brain regions was assessed by cylinder
test conducted 1 day before injury (−1 dpi), 1, and 3 dpi to quantify the asymmetry use of forelimb
(Figure 5A). If the left brain was injured, motor function of the right forelimb would be impaired.
A preferred usage of left forelimb (asymmetry use) would be observed. As revealed in Figure 5B,
sham-treated mice exhibited 10% variation of asymmetry score from 1–3 dpi compared to that of
−1 dpi. PBS administration increased 20–25% asymmetry score from 1–3 dpi compared to that of
−1 dpi, reflecting obvious brain injury. WNT3A administration reduced asymmetry score 10% on 1 dpi
and increased 5% on 3 dpi. Together, these functional assays demonstrate that WNT3A administration
preserves the motor function of mice upon traumatic brain injury.
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Figure 4. Recombinant WNT3A promotes regeneration of injured brain tissue of controlled cortical
impact (CCI) mice. (A) The effect of WNT3A on neuronal regeneration was assessed using in vivo CCI
mouse model. Cortical impact on motor and somatosensory cortex was generated and the mice were
given PBS or 50 ng WNT3A intranasally during 0–3 dpi. Injured brain tissues were fixed, cryosectioned
on 4 dpi, and subjected to immunofluorescence staining with anti-TUJ1 (green), anti-GFAP (red)
antibodies, and DAPI (blue). White dashed lines depict the border of CCI sites. The regions of interest
(ROIs) are indicated in the boxed regions. Scale bar, 1 mm. Enlarged images of the ROIs are shown at
the bottom. Scale bar, 0.5 mm. (B) The number of NeuN+ cells and (C) the relative intensity of GFAP
of CCI cryosections from sham group (n = 10), PBS-treated (n = 12) and WNT3A-treated (n = 8) CCI
animals were quantified as described in the Materials and Methods. GFAP-immunostained cryosection
on the left panel in (C) defines 0.05 mm2-ROIs within white boxes. Dashed lines indicate the borders of
the impact site. Data are presented as mean ± SEM. ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, analyzed
by one-way ANOVA followed by Tukey’s test.
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Figure 5. Intranasal administration of WNT3A preserves motor function of CCI mice. (A) Timeline
of the experimental design for cylinder test. Dpi, day post injury. (B) The box plots of mice forelimb
placing capacity in the left (ipsilateral unimpaired) forelimb before and after CCI for sham control
(n = 10), PBS control (n = 8), and WNT3A treatment (n = 7) (−1 to 3 dpi). The boundaries of the boxes
closest and farthest to the zero point indicate the 25th and the 75th percentiles, respectively. The black
bars within the boxes mark the median and the values are presented below the plot. The limit of
whiskers above and below the boxes mark the maximal and minimal values respectively. * p ≤ 0.05,
analyzed by Two-way ANOVA followed by Tukey’s test.

3. Discussion

Upon neural injury, various signaling pathways (e.g., STAT3, BMP signaling) are triggered in
reactive astrocytes, followed by the production of growth factors (e.g., BDNF, NGF), cytokines (e.g.,
IL-6, CNTF, CT1), and secreted proteins that are permissive to neuronal regeneration and proliferation
of glial cells [17–20]. The current study characterized the positive effect of WNT3A during regeneration
of injured cortical neurons, brain slices, and CCI mice model. A major challenge for treating TBI lies
in the efficiency of drug delivery and cellular uptake, which is limited by the BBB. In healthy brains,
the BBB restricts the influx of small molecules from circulation [21,22]. Although WNT3A is not likely
to pass through the BBB in an uninjured brain due to its size, the BBB is compromised in response
to TBI and may be permissive to WNT3A uptake after intravenous injection [23]. On the other hand,
intranasal delivery of proteins is believed to bypass the BBB in animal models [24], and our results
demonstrate that this method of WNT3A delivery can produce a promising outcome on regeneration
of injured brain neurons. The clinical efficacy of systemic or intranasal administration of protein drugs
to the brain of TBI patients remains to be tested [25,26]. Alternatively, small-molecule activators of
WNT3A, such as 6-bromoindirubin-3′-oxime (BIO), may be readily permeable to the BBB and could be
considered for clinical use.

In conclusion, this study identified WNT3A as a RAG, of which expression is induced
during regeneration of injured cortical neurons. Administration of WNT3A protein promotes
neuronal regeneration.

4. Materials and Methods

4.1. Animals and Ethics Approval

All experiments were executed in accordance with the guidelines of the Laboratory Animal Center
of National Tsing Hua University (NTHU; No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan),
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and protocols were approved by the NTHU Institutional Animal Care and Use Committee (approval#
10658, approved on 01 April 2018).

4.2. Reagents

Powder of Minimum Essential Medium (MEM), fetal bovine serum (FBS), horse serum
(HS), penicillin-streptomycin (PS), B-27™ supplement, L-glutamine (L-Gln), Antibiotic-Antimycotic
(AA), TRIzol reagent, Lipofectamine 2000, Alexa Fluor 488, 555 IgG secondary antibodies,
and 4′, 6′-Diamidino-2-phenylindole (DAPI) were purchased from Invitrogen (Carlsbad, CA, USA).
Neurobasal® medium, Eagle’s basal medium (BME), and N-2 Supplement were purchased from
Gibco (Grand Island, NY, USA). Poly-l-lysine (PLL), glutamate, Cytosine-β-d-arabinofuranoside
(AraC), bovine serum albumin (BSA), sucrose, formaldehyde solution, chloroform, phenol solution,
and IWR-1 were from Sigma-Aldrich (Saint Louis, MO, USA). WNT3A recombinant protein was
purchased from PeproTech (Rocky Hill, NJ, USA). WNT8A and WNT9B were from R&D Systems
(Minneapolis, MN, USA). Power SYBR Green Master Mix were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Anti-Tau (sc-5587) and anti-MAP2 (sc-56561) antibodies were purchased from
Santa Cruz Biotechnology (Dallas, TX, USA). Anti-TUJ1 antibodies (802001 and 801202) were purchased
from BioLegend (San Diego, CA, USA). Anti-GFAP (GTX108711), anti-NeuN (GTX30773) antibodies,
and rabbit IgG (GTX26702) were from GeneTex (Irvine, CA, USA) or Novus (NB300-141, Centennial,
CO, Canada) for cryosection staining.

4.3. In Vitro Culture of Primary Neurons, Injury/Regeneration Assay, Neurite Tracking, Immunofluorescence
Staining, and Quantification of Neurite re-Growth

Sprague–Dawley rats were purchased from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) Primary
cortical neurons were dissociated from dissected cortices of rat embryos (E18) and were seeded on
PLL-coated plates for in vitro culture as previously described [27,28]. For the injury assay, neurons
were injured on DIV8 by scraping with a p20 tip to generate injured gaps. For samples with WNT
recombinant protein treatments, cortical neurons were pre-treated with WNT3A (50 ng/mL), WNT8A
(100 ng/mL), WNT9B (100 ng/mL), or phosphate buffered saline (PBS) control 1 h prior to injury.
For treatment with WNT inhibitor IWR-1, cortical neurons were treated with IWR-1 (10 µM) or DMSO
control (1%) immediately after injury. Neurite re-growth was monitored from iDIV8 to iDIV11 in
the same field-of-view by using the “Mark and Find” positioning function of AxioVision SE64 Rel.
4.9.1. software (Zeiss, White Plains, NY, USA). Live images were captured on a Carl Zeiss Observer Z1
microscope. The average width of injured gaps was calculated from measurements made at twelve
positions in each gap. The percentage of gap closure was calculated as 100% × (1 − remaining gap
distance/original gap distance). Up to six injured gaps were quantified per condition in at least three
independent experiments.

To track re-growth of individual neurons, the tracking function of AxioVision SE64 Rel. 4.9.1.
software (Zeiss, White Plains, NY, USA) was used on live images from the injury assay. From iDIV8
to iDIV11, the re-growth of 12 single neurites per field was tracked in three injured gaps in three
independent experiments. The tips of regenerating neurites were located at 24-h intervals after injury,
and the length of extension was measured for each day. The average length of neurite re-growth per
day and the average cumulative re-growth (0–72 h) were calculated.

To better visualize neurites, neurons were fixed, blocked, and incubated with specific primary
antibodies. Fluorescence images were taken using a Carl Zeiss Observer Z1 microscope.

4.4. Superarray qPCR and Gene Expression Analysis

For superarray analysis, total RNA was extracted from cortical neurons and used in a WNT
Signaling Pathway-focused PCR Array (SuperArray Bioscience Corporation, Frederick, MD, USA).
Differential gene expression levels were calculated.
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For gene expression analysis, total RNA from neurons was isolated at indicated time points and
processed with a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham,
MA, USA). Gene expression was analyzed by qPCR using Power SYBR Green Master Mix and an ABI
StepOnePlus, calculated by the ddCt method, and normalized to GAPDH.

4.5. Organotypic Brain Slice Culture

Brains isolated from E18 rats were washed with HBSS medium and embedded in 2.5% low-melting
agarose gel. The brain was then soaked in the artificial cerebrospinal fluid (ACSF: 125 mM NaCl,
5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgSO4, 2 mM CaCl2, 25 mM NaHCO3, and 20 mM glucose; pH
7.4), pre-pumped with 95% O2/5% CO2, and sectioned by a Leica microtome VT100. Coronal tissue
sections with a thickness of 350 µm were collected and injured with a scalpel. Sliced tissues were
cultured on PLL-coated inserts in 66% BME medium supplemented with 25% HBSS, 5% FBS, 1% N-2
Supplement, 1% P/S, and 0.66% (wt/vol) D-(+)-glucose. For WNT3A treatment, WNT3A recombinant
protein (50 ng/mL) was added daily, along with fresh culture medium. AraC (5 µM) was administered
from DIV0 to DIV2 to limit the proliferation of glial cells.

For immunofluorescence staining of brain slices, injured brain slices were fixed with 4% PFA for 2
h at room temperature on iDIV4. The insert membrane with the attached brain slice was trimmed and
tissues were subjected to immunostaining with anti-TUJ1 and anti-GFAP antibodies at dilutions of
1:750 and 1:500, respectively, for overnight incubation at 4 ◦C, followed by overnight incubation of
1:1000 secondary antibodies at 4 ◦C. DAPI was used to stain the nuclei at room temperature for 2 h.
The brain slices were mounted and images were taken with a Carl Zeiss LSM780 confocal microscope.
For quantification of regenerating injured brain slice, the area containing regenerating neurites and the
length of injured tissue border were measured by Zeiss ZEN 2.3 lite Imaging Software (Zeiss, White
Plains, NY, USA). The length of regenerating neurites was calculated as (area/length).

4.6. Controlled Cortical Injury (CCI) Model

Eight-to-ten-week-old C57BL/6J male mice were purchased from National Laboratory Animal
Center, Taiwan, and subjected to TBI by using the pneumatic CCI equipment (Electric Cortical Contusion
Impactor, Custom Design & Fabrication, Inc., Sandston, VA, USA). Upon anesthesia, craniectomy was
then performed to remove the skull in a shape of 3-mm-diameter circle over the left frontoparietal
cortex (−0.5 mm anteroposterior and +0.5 mm mediolateral to bregma). After exposing the dura matter,
the brain was impacted by pneumatically operated CCI device at the velocity of 3 m/s, reaching 1 mm
in depth, affecting a 2-mm-diameter circular area, and with 500-ms dwell time to generate mild TBI [13].
After CCI-induced brain injury and suturing, PBS or 50 ng WNT3A was intranasally delivered to mice
daily for consecutively four days. On 4 dpi, the TBI mice were anesthetized and perfused with saline
and 4% paraformaldehyde. The brain tissues were then isolated, immersed in 10%, 15%, and 20%
sucrose followed by embedded in Shandon Cryomatrix embedding resin (Thermo Scientific, Waltham,
MA, USA) and sliced into 10-µm sections by cryostat microtome (Leica CM3050 S, Leica Biosystems,
Baffalo Grove, IL, USA). The cryosections were incubated in antigen retrieval solution at 70 ◦C for
20 min and then incubated in 1% BSA for 2 h. After BSA blocking, the cryosections were subjected to
immunofluorescence staining with anti-TUJ1 and anti-GFAP antibodies, followed by incubating with
fluorescence-conjugated secondary antibodies. DAPI was used to stain the nuclei at room temperature
for 10 min. Finally, the cryosections were mounted by using 90% glycerol. Fluorescence images of
brain cryosections were imaged by Zeiss Confocal LSM800 and analyzed by Zeiss ZEN 2.3 lite Imaging
Software (Zeiss, White Plains, NY, USA). The intensity of GFAP around the impact site (indicated as
“proximal”), at the ipsilateral hemisphere distal to the impact site (indicated as “distal”), and at the
contralateral uninjured hemisphere (indicated as “uninjured”), was quantified separately by calculating
the average GFAP intensity of 4 defined squared region of interest (ROI) in each brain region. Relative
intensity of GFAP was defined as the average intensity of proximal regions divided by the average
intensity of distal or uninjured regions (Figure 4C, left panel). The number of NeuN+ cells was defined
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as the average NeuN+ cells counted in the 4 squared ROI at the proximal regions around the impact
site. The area of each ROI is 0.05 mm2.

4.7. Behavior Assays for Functional Recovery

Asymmetry use of forelimb was measured to represent functional recovery of damaged brain
region. To this end, the cylinder test was conducted 1 day before injury (−1 dpi, day post injury),
and 1–3 dpi, at 7–9 pm to quantify the asymmetry use of forelimbs. The protocol of cylinder test was
modified according to Hua, Y et al.’s [29]. Briefly, C57BL/6 mice were put in a transparent cylinder
of plexiglass and the behavior was recorded. The number of times that the forelimbs contact on the
cylinder wall was calculated in 5 min. Valid forelimb–wall contacts were considered for further data
quantification if the forelimbs were raised over the shoulder of the mice. Data of cylinder test were
quantified by calculating the percentage of the unimpaired left forelimb use (ipsilateral limb to the
CCI site), which was calculated by following parameter: (1) The frequency of the mice using its left
forelimb first (U, unimpaired), (2) the frequency of the mice using its right forelimb first (I, impaired),
and (3) the frequency of the mice using both forelimbs (B, both). The percentage of the unimpaired
limb use was calculated as [U/(U + I + B)], indicated as “% left forelimb use”. To minimize bias, data
collected from behavior experiments of sham group animals demonstrating slight brain injury or CCI
animals failed to be injured at expected brain regions were excluded, according to immunostaining of
the cryosections. Among available behavior recordings, only data where forelimb contact equals to or
more than three times in the given duration were included.

4.8. Statistical Anaylsis

All results are expressed as mean ± SEM or box-and-whisker plot from at least three independent
experiments unless otherwise noted. Paired Student’s t-test was performed using Microsoft® Excel®

2016 MSO (16.0.4849.1000) 64 bits for Figures 2B and 3A. Prism v.8.0.2 (GraphPad Software, available
online: https://www.graphpad.com/scientific-software/prism/) was used to perform non-parametric
Mann–Whitney test (Figure 3E), one-way ANOVA followed by Tukey’s test (Figure 4B,C), and two-way
ANOVA followed by Tukey’s test (Figure 5B). Statistical significance (*) is defined as p ≤ 0.05.
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