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Abstract

Enhancers are important noncoding elements, but they have been traditionally hard to characterize 

experimentally. The development of massively parallel assays allows the characterization of large 

numbers of enhancers for the first time. Here, we developed a framework using Drosophila 

STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We 

integrated these features with supervised machine-learning algorithms to predict enhancers. We 

further demonstrated our model could be transferred to predict enhancers in mammals. We 
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comprehensively validated the predictions using a combination of in vivo and in vitro approaches, 

involving transgenic assays in mouse and transduction-based reporter assays in human cell lines 

(153 enhancers in total). The results confirmed our model can accurately predict enhancers in 

different species without re-parameterization. Finally, we examined the transcription-factor 

binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns 

enable the construction of a secondary model effectively discriminating between enhancers and 

promoters.

Introduction

Enhancers are gene regulatory elements that activate expression of target genes from a 

distance [1]. The vast majority of enhancers and their spatiotemporal activities remain 

unknown [2, 3]. Understanding enhancer function and evolution is currently an area of great 

interest because many variants within distal regulatory elements also have been associated 

with various traits and diseases during genome-wide association studies [4–6]. Traditionally, 

regulatory activities of enhancers were experimentally validated using heterologous reporter 

constructs, leading to a relatively small number of enhancers that are functionally validated 

in several selected mammalian cell types [7, 8]. These validated enhancers were typically in 

conserved noncoding regions [9, 10] with particular patterns of chromatin [11], transcription 

factor (TF) binding [12], or noncoding transcription [13]. When complex computational 

methods for predicting tissue/cell line-specific enhancers were trained on these validated 

enhancers, they could be susceptible to potential biases and were difficult to generalize to 

other tissues or species as the training data were usually not large enough. Some published 

methods also trained their model based on TF binding sites [12, 14–16]. The TF binding 

sites provide a larger dataset for training. However, most enhancers do not bind to one or a 

small group of TFs. In addition, it has remained challenging to assess the performance of 

different methods for enhancer prediction with a limited number of putative enhancers being 

validated.

The development of the self-transcribing active regulatory region sequencing (STARR-seq) 

makes it possible to quantitatively assess the activity of millions of candidate enhancers 

across entire genomes [17]. In these experiments, plasmids each containing a potential 

enhancer element downstream of a green fluorescent protein (GFP) gene are transfected into 

target cells. The differences in the activities of the tested regions are reflected by quantifying 

the levels of the resulting reporter transcripts through sequencing. STARR-seq confirmed 

previous findings that active enhancers and promoters are usually located at open chromatin 

regions where various TFs and cofactors bind [18–20]. In addition, it confirmed that the 

regulatory regions are often flanked by nucleosomes that contain histone proteins with 

certain characteristic post-translational modifications, like acetylation on H3K27 (H3K27ac) 

[21]. These attributes lead to an enriched peak-trough-peak (“double peak”) signal, which 

has been observed in previous studies [22].

We developed a method to take into account the specific enhancer-associated pattern within 

different epigenetic signals. Previous ENCODE and modENCODE efforts showed that the 

chromatin modifications on active promoters and enhancers are conserved across higher 
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eukaryotes [23–29]. We further explored this conservation of epigenetic signal shapes for 

constructing simple-to-use transferrable statistical models using six epigenetic marks to 

predict enhancers and promoters in diverse eukaryotic species including fly, mouse, and 

human.

Working across organisms also allowed us to take advantage of different assays to validate 

our predictions in a robust fashion using multiple experimental approaches. In the first stage, 

we predicted enhancers in six different embryonic mouse tissues and tested the activity of 

these predictions in vivo with transgenic mouse assays. We then proceeded to test the 

activity of these elements in human cell lines in vitro, e.g. H1 human embryonic stem cells 

(H1-hESCs), an extensively studied and well-characterized cell line. We showed that the 

enhancer predictions from our transferrable model are comparable to the prediction accuracy 

of species-specific models.

Results

Aggregation of epigenetic signals in Drosophila to create metaprofiles

We developed a framework to predict active regulatory elements using the epigenetic signal 

patterns associated with experimentally validated promoters and enhancers (Fig. 1). The 

STARR-seq studies on Drosophila cell lines provide the most comprehensive datasets as 

they were performed genome-wide and performed with multiple core promoters [17, 30]. 

These peaks typically consist of a mixture of enhancers and promoters. At this stage we did 

not differentiate between the two sets of regulatory elements. As STARR-seq quantifies 

enhancer activity in an episomal fashion, not all peaks would be active in the native 

chromatin environment. Arnold and colleagues showed that the STARR-seq peaks that occur 

with enriched DNase hypersensitivity or H3K27ac modifications tend to be associated with 

active genes, whereas other STARR-seq peaks tend to be associated with enrichment of 

repressive marks such as H3K27me3 [17]. Hence, we took the overlap of the STARR-seq 

enhancers with H3K27ac and/or DHS peaks to get a high confidence set of enhancers that 

are active in vivo, based on which we create the representative metaprofiles for each histone 

modification and DNase signal respectively. During aggregation, we first aligned the two 

maxima in the H3K27ac signal across active STARR-seq peaks, followed by interpolation of 

the signal before calculating the average to generate the metaprofile. Then we calculated the 

dependent metaprofiles for other histone marks following the same procedure (Fig. 1).

Match of a metaprofile is predictive of regulatory activity

To calculate the matched filter scores, we first smoothened the input signal track for each 

epigenetic mark. Then we scanned the H3K27ac signal track to find each pair of local 

maximum points that are between 300 and 1,100 basepairs. Due to the variability of the 

distance between the double peaks, we interpolate each double peak region before 

convolving it with the filter to get an initial score (Supplementary Fig. 1). If there are 

multiple overlapping double peak regions, we used the highest score within a 1,500 bp 

region as the prediction for the regulatory potential. We then calculate the matched filter 

scores for other epigenetic marks based on those same double peak regions (See Online 

methods).
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We calculated the matched filter score for all 30 epigenetic modification signals available in 

the Drosophila cell lines on STARR-seq peaks and a negative control set (Supplementary 

Fig. 2). The negatives are randomly chosen non-STARR-seq-peak regions in the genome 

that had the same length distribution as the enhancers from the STARR-seq (see Model 

assessment in Online methods). Interestingly, the distribution of matched filter scores for 

STARR-seq peaks are unimodal for each histone mark except for H3K4me1, H3K4me3, and 

H2Av, which are bimodal. We looked at the degree to which the matched filter scores for 

promoters and enhancers are higher than the matched filter scores for the rest of the genome 

(Supplementary Fig. 2), as this is a measure of the signal-to-noise ratio for regulatory region 

prediction. We observed that the H3K27ac matched filter score is the most accurate feature 

for predicting active regulatory regions identified using STARR-seq (Supplementary Table 

1), consistent with previous studies [21, 31, 32]. In addition, several histone acetylations 

marks, as well as H1, H3K4 methylations, and DHS were the most accurate prediction 

features, whereas other histone marks like H3K79m1 and H4K20me1 were not well suited 

as their matched filter scores for positive regions and negative regions were not 

distinguishable.

To quantitatively evaluate whether the occurrence of the epigenetic metaprofiles could be 

used to predict active enhancers and promoters, we did a ten-fold cross validation assessing 

the average areas under the receiver operating characteristic (ROC) (AUROC) and the areas 

under the precision-recall (PR) (AUPR) curves. Comparing the matched filter result with the 

peak calling result, we found that the AUROC and AUPR of the matched filter scores for 

different histone modifications were higher than those of the peaks of corresponding histone 

marks (Fig. 2), suggesting that the matched filter score is more accurate for predicting active 

STARR-seq peaks than the simple enrichment of the signals.

Integration of matched filter scores of multiple epigenetic features

We first combined the matched filter scores from all 30 measured histone marks along with 

the DHS in statistical models such as random forest and SVM (Supplementary Fig. 3). We 

evaluated the performance of the integrated model using ten-fold cross validation. For each 

fold of validation, 90% of the positives and negatives were used to build metaprofiles for 

each epigenetic marks, generate matched filter scores, and train the integrative model. The 

remaining 10% data were used to test model accuracy. The integrated models with 30 

epigenetic features displayed high accuracy (Average AUROC=0.97 and AUPR=0.93 for 

SVM model with multiple core promoters). We obtained the feature coefficients or GINI 

score of each epigenetic mark from the integrated models.

We then built an integrated model with combined matched filter scores of six commonly 

available and discriminative epigenetic marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, 

H3K9ac, and DHS) associated with active regulatory regions using a linear support vector 

machine (SVM) [33]. The selection of these six features was based on their matched filter 

score performance, their importance in the integrated model, and data availability (See 

Feature Selection in Online methods). We then assessed the performances of different 

statistical approaches including random forest, ridge regression and Naïve Bayes and SVM 

to combine the features. While all these approaches performed similarly (Supplementary 
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Fig. 4), we used a linear SVM in our framework because its performances are most stable in 

cross validations.

We found that the simplified SVM model had a high performance similar to that of the full 

SVM model using all 30 epigenetic marks, with an AUROC of 0.96 (0.97 in the full model) 

and an AUPR of 0.91 (0.93 in the full model). We also trained an SVM model using all 

STARR-seq peaks (including those with no DHS and H3K27ac signals) with the same six 

features. We found that H3K27ac still had the highest GINI score in random forest, albeit a 

slightly smaller coefficient in SVM (See supplementary material). In general, the integrated 

model trained on the six features achieved good performance upon cross-validation, and this 

set of input features allowed the integrated model to be applied to a variety of cell lines and 

tissues, as many relevant ChIP-seq and DNase experiments have been performed by the 

Roadmap Epigenomics Mapping [34] and the ENCODE [35] Consortia in a wide variety of 

samples.

Distinct epigenetic signals associated with promoters and enhancers

We proceeded to create individual metaprofiles and machine learning models for the two 

classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 

assessed the performance of the matched filters for predicting active regulatory regions 

within each category (Fig. 3). We also combined the peaks identified from multiple STARR-

seq experiments of S2 cells and reassessed the performance of the matched filters at 

predicting promoters and enhancers, respectively. Merging the STARR-seq peaks from 

multiple core promoters led to higher AUROC and AUPR for the matched filters of most 

histone marks (Supplementary Table 2). The highest matched filter scores were typically 

observed on promoters, and the matched filters for each of the six features tended to perform 

better for promoter prediction. Similar to previous studies [36, 37], we observed that the 

H3K4me1 metaprofile was very predictive for enhancers but was close to random for 

predicting promoters. In contrast, the H3K4me3 metaprofile could be utilized to predict 

promoters and not enhancers. The histogram for matched filter scores showed that the 

H3K4me1 matched filter score was higher near enhancers while the H3K4me3 matched 

filter score tended to be higher near promoters. The mixture of these two populations led to 

bimodal distributions for H3K4me1 and H3K4me3 matched filter scores when calculated 

over all regulatory regions (Supplementary Fig. 2).

We again trained different statistical models to learn the combination of features associated 

with promoters and enhancers respectively. These integrated models outperformed the 

individual matched filters at predicting active enhancers and promoters (Fig. 3 and 

Supplementary Fig. 5). In addition, the weights of the individual features identified the 

difference in the roles of H3K4me1 and H3K4me3 matched filter scores at discriminating 

active promoters and enhancers from inactive regions in the genome. The trained promoter-

specific model has a high weight for H3K4me3, which is considered as a marker for 

promoters from previous studies [31], but a lower weight for H3K4me1, which is considered 

as a marker for enhancers [31]. This is reversed in the enhancer-specific model, indicating 

the unique features captured for different identification task. (See supplementary material). 

We also created two integrated models utilizing matched filter scores of all 30 histone marks 
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as features for predicting enhancers and promoters. The additional histone marks provided 

independent information regarding the activity of promoters and enhancers as these features 

increased the accuracy of these models (Supplementary Fig. 6).

Application of the STARR-seq model to predict enhancers in mammalian species

One of the important findings of previous ENCODE and model organism ENCODE efforts 

was the conserved patterns of chromatin marks close to regulatory elements across hundreds 

of millions of years of evolution [23–29]. The relationship of chromatin marks to gene 

expression was very similar, for instance, in worms, flies, mice and humans. Therefore, one 

could build a statistical model relating chromatin modification to gene expression that would 

work without re-parameterization across different organisms. This motivated us to transfer 

our well-parameterized model based on the STARR-seq data from flies to mammalian 

systems, eg. mouse and human, and test our model performance.

We started by making genome-wide predictions of regulatory regions in mouse. Predictions 

were made in six different tissues (forebrain, midbrain, hindbrain, limb, heart and neural 

tube) at the embryonic day 11.5 (e11.5) stage (Predictions are available through our website 

at http://matchedfilter.gersteinlab.org). Using our model, we predicted 31K to 39K 

regulatory regions in individual tissues in mouse, with each region ranging from 300bp to 

1,100bp. Similarly, we performed a genome-wide prediction of regulatory regions in the 

ENCODE top-tier human cell lines, including H1-hESC, GM12878, K562, HepG2, A549 

and MCF-7. In H1-hESC, for example, we predicted 43,463 active regulatory regions, of 

which 22,828 (52.5%) were within 2kb of the TSS and were labeled as promoters. Most of 

the predicted regulatory regions were also present near active genes (Figure S7).

Validation in vivo in mouse

To test the activity of predicted mouse enhancers in vivo, we performed transgenic mouse 

enhancer assays (Supplementary Fig. 8) in e11.5 mice for 133 regions, including 102 regions 

selected based on the H3K27ac signals rank of the corresponding mouse tissues and another 

31 regions selected by an ensemble approach from human homolog sequences 

(Supplementary Table 3–8). In addition, we included other published transgenic mouse 

experiments from the VISTA database for validation. In total, we had 1,253 positive regions 

and 8,631 negative regions pulling together from different tissues. This large set of validated 

enhancers allowed us to comprehensively evaluate the predictability of the matched filter 

scores of each epigenetic mark, as well as the integrated SVM model (Fig. 4). On average, 

the integrated model trained with Drosophila STARR-seq data achieved an AUROC of 0.80. 

We also did a similar evaluation with publicly available FIREWACh assay data [38] in 

mouse, and the result was consistent (Supplementary Fig. 9). For comparison, we trained an 

integrated model based directly on the validated mouse enhancers. We observed a similar 

prediction accuracy upon cross validation (see Supplementary Fig. 10 and supplemental 

materials).

Validation in human cell lines

We proceeded to validate our STARR-seq based model for predicting human enhancers 

using a cell line-based transduction assay. We randomly selected 20 predicted intergenic 
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enhancers for validation. Insertion of 11 of the putative enhancers into the HIV vector 

resulted in a significant increase in eGFP expression (P-value < 0.05 for both directions) in 

H1-hESCs (Supplementary Table 9, extended data table). The positive enhancers displayed a 

significant increase in gene expressions in both orientation. In contrast, the negatives 

displayed much lower levels of gene expression (Supplementary Fig. 11). The activity of 

these tested enhancers also showed cell type specificity. More than half of the predicted 

enhancers show activity in H1-hESC (Supplementary Fig. 12), but less in A549 and TZM-

bl, which are derived from tumor cells (See Supplementary table 9 and Supplementary 

material). Overall, 16 of the 20 tested predictions displayed a statistically significant 

increase in gene expression of the reporter gene in at least one of the cell lines. Given the 

promoter specificity of enhancers in such assays, we anticipate that some of the elements 

that could not be validated in this particular vector would function as enhancers in a more 

natural biological context (e.g., with the cognate promoter or in the absence of surrounding 

HIV vector sequences).

TFs exhibit different binding patterns at enhancers and promoters

We further studied the differences in TF binding at promoters and enhancers (Fig. 5) We 

focused on the human H1-hESC cell line as there is large amount of functional genomic 

assays from the ENCODE [35] and Roadmap Epigenomics Mapping Consortium [34] of 

this cell line. Together, the consortia have generated ChIP-Seq data for 60 transcription-

related factors in the H1-hESC cell line, including a few chromatin remodelers and histone 

modification enzymes. Collectively, we call these transcription-related factors “TFs” for 

simplicity.

We showed that the patterns of TFs binding within regulatory regions could be utilized in a 

logistic regression model to distinguish active enhancers from promoters with high accuracy 

(AUPR = 0.90, AUROC = 0.87) (Fig. 5). We were also able to identify the most important 

features that distinguish promoters from enhancers. In addition to TATA box-associated 

factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding patterns as well as 

chromatin remodelers such as KDM5A and PHF8 are some of the most important factors 

that distinguish promoters from enhancers in H1-hESCs. This provides a framework that can 

be utilized to identify the most important TFs associated with active enhancers and 

promoters in each cell type.

We found that although most promoters and enhancers contain multiple TF binding sites, the 

pattern of TF binding at promoters was different from that at enhancers and that TF binding 

at enhancers displayed more heterogeneity: more than 70% of the promoters bound to the 

same set of 2–3 sequence-specific TFs, which was not observed for enhancers (Fig. 5c). The 

majority of the promoters contained peaks for several TATA-associated factors (TAF1, 

TAF7, and TBP). These TF co-associations could lead to mechanistic insights of 

cooperativity between TFs. Similarly, CTCF and ZNF143 may function cooperatively as 

they are observed to co-occur frequently at distal regulatory regions, consistent with the 

previous report [39].

Sethi et al. Page 7

Nat Methods. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In this study, we developed a framework using transferable supervised machine learning 

models trained on regulatory regions identified by STARR-seq to accurately predict active 

enhancers in a cell-type-specific manner. The rich amount of whole-genome STARR-seq 

experiments established the characteristic pattern flanking active regulatory regions within 

certain histone modifications [17]. This motivated us to train a shape-matching and filtering 

model that could be used to identify these patterns in the ChIP-seq signals. As the chromatin 

marks and epigenetic profiles associated with active regulatory regions are highly conserved 

among organisms [23–29], we showed that a well-parameterized model in one model 

organism can be transferred to another with high prediction accuracy.

While STARR-seq provides a genome-wide unbiased test of the enhancer activity of putative 

sequences, it is intrinsically episomal and thus not completely revealing the enhancer 

activity in the native chromatin environment. Selecting for chromosomally active enhancers 

using H3K27ac and DHS could introduce subtle biases in model training. To address this 

issue, we employed very different experiment techniques and provided orthogonal 

validations. This included in vivo transgenic assays and in vitro transduction assays, in 

which the predicted regions were tested for regulatory activity in the native chromatin 

environment. With these orthogonal validations, we were able to comprehensively assess our 

tissue-specific predictions in six different tissues in mouse. With multiple comparisons to 

other published methods trained directly on mouse data, we showed that the matched filter 

model is transferable with high accuracy in predicting active enhancers in mouse tissues. 

The in vitro transduction assays were performed in H1-hESCs and three other human cell 

lines to validate the human regulatory elements predictions. The majority of the predicted 

elements displayed a significant increase in expression of the reporter gene, further 

confirming the predictability of our model in mammalian organisms.

Recently, genome-wide STARR-seq has been applied to mammalian systems like HeLa-S3 

cells [40]. In the future, we expect that more extensive whole-genome STARR-seq dataset 

will become available on mammalian systems. It could be advantageous to re-train the 

matched filter model on state-of-art datasets. With the setup of our framework, re-training 

the model with newly generated datasets should be straightforward. We envision that our 

framework would benefit from these datasets and generate more comprehensive regulatory 

element annotations across eukaryotic species.

Online methods:

Creation of metaprofile

A metaprofile is a template used to estimate the signal distribution on active enhancers for 

one epigenetic signal. We evaluated whether we could utilize the metaprofiles to predict 

active promoters and enhancers using matched filters (Fig.1). Matched filter is a well-

established pattern recognition algorithm that uses a shape-matching filter to recognize the 

occurrence of a template in the presence of stochastic noise [41]. We started with creating 

the metaprofiles, which we generally denote as s n , based on experimentally validated 

active enhancers. The STARR-seq studies on Drosophila cell lines provide the most 
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comprehensive datasets as they were performed genome wide and with multiple core 

promoters [17, 30]. These peaks typically consist of a mixture of enhancers and promoters. 

At this stage, we did not differentiate between the two sets of regulatory elements. As 

STARR-seq quantifies enhancer activity in an episomal fashion, not all peaks would be 

active in the native chromatin environment. Arnold and colleagues showed that the STARR-

seq peaks that occur with enriched DNase hypersensitivity or H3K27ac modifications tend 

to be associated with active genes, whereas other STARR-seq peaks tend to be associated 

with an enrichment of repressive marks such as H3K27me3 [17]. Hence, we took the overlap 

of the STARR-seq enhancers with H3K27ac and/or DHS peaks to get a high-confidence set 

of enhancers that are active in vivo, based on which we will create representative 

metaprofiles for each histone modifications and DNase signals, respectively.

We utilized the smoothed histone signal tracks for the Drosophila S2 cell line provided by 

the modENCODE consortium [42] to create metaprofiles for ChIP-seq signals. The genome-

wide profile for open chromatin (DNase-seq or DHS) for the S2 cell line was calculated 

based on experiments by the Stark lab [17]. To create the metaprofiles, we aligned active 

STARR-seq peaks with identifiable “double peak” patterns of the H3K27ac signal and 

aggregated the signals in the S2 cell line (Fig.1B). Aggregation of signals over a large 

number of enhancers reduced the noise in the metaprofiles. To identify double peak regions, 

we initially identified the minimum in the H3K27ac signal track closest to the middle of the 

STARR-seq peaks. A minimum was accepted if it had the lowest signal within a 100 base 

pair region in the H3K27ac signal track. We then proceeded to identify the flanking maxima 

(both sides of the minimum) within a total of 2-kilo base pair region of the STARR-seq peak 

(1kb on each direction from the center of the STARR-seq peak). These maxima were 

accepted only if they had the highest signal within a 100 base pair region in the H3K27ac 

signal track.

Approximately 70% of the active STARR-seq peaks contained an identifiable double peak 

within the H3K27ac signal, although there was variability in the distance between the two 

maxima of the double peak in the ChIP-chip signal (Supplementary Fig. 1a). While the 

minimum tended to occur in the center of these two maxima on average, the distance 

between the two maxima in the double peaks varied between 300 and 1,100 base pairs. 

During aggregation, we first aligned the two maxima in the H3K27ac signal across active 

STARR-seq peaks. We then interpolated the signal with a cubic spline fit so that the signal 

track contained an equal number of points for each double peak region. All interpolation and 

smoothing steps were performed using the scipy module in Python. The aggregated signal 

tracks were averaged to create the metaprofile for the double peak regions. While the signal 

tracks were aggregated based on identifying the double peak regions in the H3K27ac signal 

track, the same set of operations could be performed with any epigenetic mark expected to 

have the double peak pattern flanking regulatory regions.

We calculated the metaprofiles of ~30 other epigenomic datasets (histone marks and DHS 

signal). These metaprofiles were calculated by aggregating the corresponding ChIP-seq or 

DHS signals based on the same regions where H3K27ac double peak were identified, so the 

matched filter scores of each epigenetic mark were calculated on the same regions in the 

integrated model. We observe that the metaprofiles for some epigenetic marks also show a 

Sethi et al. Page 9

Nat Methods. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



double peak pattern, and the maxima across different histone modification signals tended to 

align with each other on average, likely because these epigenetic marks flank enhancers in a 

similar pattern as H3K27ac (Supplementary Fig. 1). This indicates that a large number of 

histone modifications would simultaneously co-occur on the nucleosomes flanking an active 

enhancer or promoter. In contrast, the repressive histone marks did not contain a double peak 

pattern, so they did not have the same epigenetic template associated with enhancers. The 

DHS signal, as expected, displayed a single peak at the center of the H3K27ac double peak.

Matched filter algorithm

The epigenetic signal at enhancers and promoters can be approximated as the linear 

superposition of background noise and the metaprofile s(n) learned in Figure 1. To identify 

the occurrence of the metaprofile with the presence of noise, we adopted the canonical 

signaling processing method known as matched-filter. The matched filter process convolves 

the signal y(n) with the filter h(n). Before calculating the matched filter score, interpolation 

of signal was used to ensure that the scanned region contained the same number of points as 

the metaprofile.

r(n) = (y ∗ ℎ)(n) = ∑
i = n − N

n
y(i)ℎ(n − i)

where ∗ stands for convolution, and r(n) is the resulting matched filter score. The matched 

filter is defined as the conjugated reverse of the metaprofile template:

ℎ(x) = s∗(N − x)

where N is the total number of points in the template, and * denotes the complex conjugate.

As shown in Supplementary Figure 1, there was a large amount of variability in the span 

(distance between the two peaks in the histone signal) of the regulatory region in the 

epigenetic signal. As a result, we scanned different spans of the genome with the matched 

filter (distance between the two peaks were allowed to vary between 300 and 1,100 base 

pairs) and took the highest score as the matched filter score for that region. Matched filter 

recognizes the given template in a signal in the presence of noise with the highest signal-to-

noise ratio [41]. At positive regions, the presence of the metaprofile within the signal leads 

to high matched filter scores. At background regions where the signal is mostly comprised 

of noise, the matched filter score is low.

Statistical learning models

We built an integrated model to include matched filter scores from multiple epigenetic 

signals for more accurate enhancer prediction. The matched filter scores from each 

epigenetic signal are first normalized. The distribution of matched filter scores in random 

negative regions for a particular histone mark is approximately Gaussian and it represents 

the background distribution in the genome. The Z-scores of matched filter scores with 
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respect to the negatives (random regions of genome) were used as input features for training 

different statistical learning models. The Z-score of the matched filter score is defined as:

z = r − μ
σ

where r is the matched filter scores, μ and σ are the mean and standard deviation of the 

Gaussian fit to the matched filter scores for random regions in genome.

We have tested different statistical learning models, including the support vector machine 

(SVM) [43], ridge regression [44], random forest [45], and Gaussian naïve bayes [46] 

models. For SVM, we utilized a linear kernel to distinguish between positives and negatives. 

The linear SVM identifies a decision boundary that maximally separates the regulatory 

regions and the random regions of the genome from the decision boundary. Ridge regression 

is a linear regression technique that prevents overfitting by penalizing large weights for each 

feature. Random forest is an ensemble learning method that operates by constructing a large 

number of decision trees and outputting the mean prediction of different decision trees. We 

used thousand trees for creating our enhancer and promoter prediction models. The naïve 

Bayes classifier is a family of simple probabilistic classifiers that assumes that all the 

features are independent of one another. We used scikit-learn [47] with default parameters 

for training and assessing the performance of all the statistical models. In the main text, we 

discussed the results of the support vector machine (SVM) model, which showed high 

performance, and low variance in performance upon cross validation.

Feature selection

We selected the features to use in our framework by assessing their individual performance 

with matched filter, their importance in the integrative model, and their general data 

availability in mammalian systems. Specifically, the ability to distinguish enhancers from 

negative regions of each feature is shown in Supplementary Figure 2 and Supplementary 

table 1. We found that some histone marks like H3K27ac give very different score 

distributions for the enhancer regions and random regions, while other histone marks like 

H3K79m1 and H4K20me1 have indistinguishable score distributions on these two categories 

of regions.

For the importance of each feature in the integrative model, we trained an SVM model, a 

random forest model, and a ridge regression using all 30 epigenetic marks, and assessed the 

importance of each feature using their feature coefficient or GINI score. Among these 30 

features, H3K27ac, H3K4me1, H3K4me3 and H3K9ac showed high feature coefficients or 

high GINI score in all three models; DHS and H3K4me2 had high GINI scores and were 

also widely used in previous literature to identify promoters and enhancers. In contrast, other 

histone marks like the repressive mark H3K27me3 show little contribution to the integrated 

model as indicated by the GINI score and the feature coefficients.

Finally, as the 30 histone marks we tested were from Drosophila experimental data, many of 

them were unavailable in even top-tier tissues and cell lines for mouse and human. For 

example, H2BKac performed well with matched filter, and had a very high feature 
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coefficient in each model, but the ChIP-seq experiment data is generally unavailable in 

mammalian cell lines. As our goal was to build a model with broad applicability across 

organisms, we decided to not include these epigenetic marks (e.g., H2BK5ac, H4ac and 

H4K12ac) for now, but if more study is done on these histone marks in the future, we can 

easily include them in our framework. After filtering, we found six features that satisfied all 

three above criteria, namely, H3K27ac, H3K4me1, H3K4me1, H3K4me3, H3K9ac, and 

DHS. Integrating these six features in the linear SVM model yielded a high performance 

(AUROC of 0.96, AUPR of 0.91) similar to that of the complete SVM model using all 30 

epigenetic marks (AUROC of 0.97, AUPR of 0.93). We subsequently tested the performance 

of this simplified model in Drosophila cells, mouse tissue, and human cells.

In the 6-feature model, the DHS signal has lower weight than the other 5 features (Fig. 2). It 

should be noted that the matched filter on DHS signal performed well on its own. The lower 

weight is likely due to the fact that the information in DHS is redundant with the information 

contained within the histone mark (e.g., the DHS peaks usually occur at the trough region 

between two maxima in the histone signal). Despite the redundancy, the combination of the 

DHS and histone signals was more predictive of regulatory activity because the reinforcing 

signals strengthened the prediction as compared to the uncorrelated noise.

Model assessment

In order to assess the accuracy of the matched filter model for predicting enhancers and 

promoters, we used a ten-fold cross validation. The STARR-seq positives and negatives were 

randomly divided into ten groups. For each fold of cross validation on a single histone mark, 

the profiles were created with 90% of the STARR-seq positives, and the remaining 10% of 

the positives were used for testing the accuracy of the model. Similarly, In the integrative 

SVM model, the SVM was trained on 90% of the data in each fold of cross validation, 

whereas the remaining 10% of the positives were used to test accuracy.

We quantified our model performance with area under receiver-operating characteristic 

(ROC), and area under precision-recall (PR) curves. In the ROC curve, the true positive (TP) 

rate was plotted against the false positive (FP) rate at different thresholds in the statistical 

model. The TP rate is defined as the number of true positives identified by the model divided 

by the total number of positives. The FP rate is defined as the fraction of negatives 

misclassified as positives by the model, divided by the total number of negatives. When 

comparing the performance of two different classifiers in the ROC curve, the classifier with 

a higher TP rate at the same FP rate is considered to be a better classifier. The area under the 

ROC (AUROC) is a single measure for the accuracy of a model, as models with higher 

AUROC are generally considered to be better models.

In the PR curve, the precision was plotted against recall at different thresholds in the 

statistical model. The recall is the same as the TP rate of the model (i.e., the number of true 

positives identified by the model divided by the total number of positives). The precision is 

the fraction of positives predicted by the model that are correct (i.e., the number of true 

positives identified by the model divided by the total number of positives predicted by the 

model). The area under the PR curve (AUPR) is another measure of performance of a model. 

If the AUPR is high, the corresponding model has a low false discovery rate and can better 
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distinguish the positives from the negatives. PR curves are particularly useful to assess the 

performance of classifiers in skewed or imbalanced data sets in which one of the classes is 

observed much more frequently compared to the other class [9]. For such skewed datasets, 

the AUROC for two different models may be very similar even though they actually differ in 

performance with respect to their precision. Hence, the area under the PR (AUPR) curve is a 

better reflection of the performance difference between two models with a similar AUROC 

in skewed datasets.

In Figure 2, the positives are defined as the active peaks (intersecting with DHS or H3K27ac 

peaks) from a single STARR-seq experiment (single core promoter) or the union of active 

peaks from multiple STARR-seq experiments (multiple core promoters). The negatives are 

randomly chosen non-STARR-seq-peak regions in the genome that had the same lengths 

distribution as the enhancers from the STARR-seq. We required most of the regions to 

contain some H3K27ac signals, as negatives with no H3K27ac signal at all wouldn’t provide 

enough information for training. We typically chose 5 to 10x the number of negatives as 

compared to the number of positives in Figures 2, 3, and 4, as the number of enhancers and 

promoters in the genome (positives) is far less than the number of negatives; moreover, the 

area under the PR curve is dependent on the ratio of negatives to positives during the ten-

fold cross validation.

To evaluate the impact of the training sample size on model performance, we did a saturation 

analysis where we down-sampled the training data to different levels of fractions and 

evaluated the model performance on the remaining data. For each down-sampling fraction 

from 10% to 90% with 10% as the step, we performed the ten-fold cross-validations. In each 

fold, the whole model including the aggregation of signals was based on the training data 

set. The performance was tested on the remaining data and was independent of the training 

data. We found that the average AUPR increased with an increasing size of training data. 

The AUPR of the SVM model started to saturate with 80%−90% of the experiment data for 

training (Supplementary Fig. 4). The average AUROC remained comparable, although the 

variances decreased with increasing training data size. This might suggest that a five-fold 

cross-validation would be sufficient.

Promoters and Enhancers

In the STARR-seq experiment, each peak functions as an enhancer within the plasmid 

environment in the S2 cell line. However, to delineate the native role of the region, we 

classified them as promoters and enhancers based on their distance to the transcription start 

sites in the genome. In Figure 3, the active promoters were defined as active STARR-seq 

peaks (multiple core promoter) within 1 kb of TSS (Ensembl release 78); enhancers were 

defined as active STARR-seq peaks more than 1kb from any TSS in Drosophila. However, a 

few of the promoters may also regulate distal genes in addition to their promoter activity 

[48].

Validating enhancers in mammalian species

We downloaded tissue specific epigenetics data from the ENCODE portal (https://

www.encodeproject.org). The histone signals were converted to log-fold enrichment (with 
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respect to control signal). We ran the integrated matched-filter to get the enhancer and 

promoter predictions for six different mouse tissues (forebrain, midbrain, hindbrain, limb, 

heart and neural tube) at the embryonic day 11.5 (e11.5) stage (Genome-wide predictions 

are available through our website at https://goo.gl/E8fLNN). These tissues were selected as 

their epigenetic signals have been highly studied in mouse ENCODE, providing us with a 

rich source of raw data that could be utilized for making enhancer and promoter predictions. 

In addition, the VISTA database contains close to 100 validated enhancers that could be used 

to test predictions in each of these tissues. Using our model, we predicted 31K to 39K 

regulatory regions in individual tissues in mouse, with each region ranging from 300bp to 

1,100bp. Notably, a consistent proportion of two-thirds (66–70%) of these predicted 

regulatory regions were distal regulatory elements for all six tissues, with the other one-third 

(30–34%) being proximal regulators (Supplementary Table 10). These numbers agree with a 

previous enhancer evolution study [49], and suggest that the amount of enhancers and 

promoters are likely comparable in different tissues.

Similarly, we performed a genome-wide prediction of regulatory regions in the ENCODE 

top-tier human cell lines, including H1-hESC, GM12878, K562, HepG2, A549 and MCF-7. 

Predicted active regions within 2kb of any TSS were annotated as promoters, and regions 

that were more than 2kb from any TSS were annotated as enhancers. The distribution of the 

expression of the closest gene (GENCODE v19 TSS [50]) from the ENCODE RNA-seq 

dataset for H1-hESCs was compared to the expression of all genes from H1-hESCs. The 

Wilcoxon test was used to measure the significance of changes in gene expression.

To assess the predictions, we ranked all the tested candidate elements by either the matched-

filter scores of individual features, or the final prediction (probability of being an enhancer) 

from the integrated SVM model. We then took the labels of the candidate elements from the 

experiment readout to assess the predictions using ROC and PR curves.

Validation in mouse embryos

In Figure 4, the enhancers were tested by transgenic mouse reporter assays [9, 51]. Predicted 

enhancers were PCR amplified and cloned into a plasmid upstream of a minimal hsp68 

promoter and a lacZ reporter gene. Resulting plasmids were linearized and injected into 

single-cell FVB/NCrl strain Mus musculus embryos. After reimplantation into surrogate 

mothers, resulting embryos were collected at embryonic day 11.5 (e11.5), stained for b-

galactosidase activity, and imaged. Elements were scored positive for enhancer activity if at 

least three resulting transgenic embryos had reporter gene expression in the same tissue and 

pattern. Elements were scored negative if at least five transgenic embryos were recovered 

and no reproducible staining patterns was observed.

Validation in human cell lines

We used a third-generation, self-inactivating (SIN) HIV-1 based vector system in which the 

enhanced GFP (eGFP) reporter was driven by the DNA element of interest to test putative 

enhancers after stable transduction of four cell lines, including H1-hESCs (Supplementary 

Fig. 11). The predicted enhancers were PCR amplified from human genomic DNA and 

separately inserted immediately upstream of a basal Oct-4 promoter of 142 bp within the 
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SIN HIV vector. Each putative enhancer was tested in triplicate for both forward and reverse 

orientation in H1-hESCs. We used empty SIN HIV vector and FG12 as the negative and the 

positive controls, respectively. Note that the empty vector had the basal Oct-4 promoter, 

along with the IRES-eGFP reporter cassette. We assessed putative enhancer activity by flow 

cytometric readout of eGFP expression 48–72 h post-transduction, normalized to the 

negative control.

We selected a total of 23 predicted intergenic enhancers for validation. These predictions 

were chosen at random to ensure that they truly represented the whole spectrum of predicted 

enhancers and not just the top tier of predicted enhancers. Of these 23 putative enhancers, 20 

were successfully PCR-amplified and cloned into the SIN HIV vector in both directions. To 

measure the distribution of gene expression in the absence of enhancer, we also amplified 

and cloned 20 non-repetitive elements with a similar length distribution that were predicted 

to be inactive into the same SIN HIV vector. All positive and negative DNA elements were 

transduced and tested for activity in both forward and reverse orientations as enhancers are 

thought to function in an orientation-independent manner. Following the same procedures, 

we performed functional testing in duplicate in HOS, TZM-bl, and A549 cell lines in 

addition to H1-hESCs.

Performance comparison to other computational methods

We compared the performance of the matched filter to the peak-based models of the 

different epigenetic marks (Fig. 2), we used the histone (or DHS) peaks that overlapped with 

at least 50% (10%) of the STARR-seq peak to rank that prediction. We used a smaller 

threshold for DHS peaks as they are much shorter than histone peaks. We achieved similar 

results with thresholds of 25% for both histone and DHS peaks. The p-value of the 

intersecting peak was used to rank the peak-based predictions. The modENCODE histone 

peaks and DHS peaks [42] were compared to the matched filter scores in Figure 2.

We compared with other published enhancer prediction tools, including ChromHMM, a 

multivariate hidden Markov model [52]; CSIANN, a neural network based approach [53]; 

DELTA, an ensemble model integrating different histone modifications [54]; RFECS, a 

random forest model based on histone modifications [36], and REPTILE, a more recent 

published method that integrates histone modifications and whole-genome bisulfite 

sequencing data [55]. We used the mouse experimental data published in REPTILE for the 

comparison, and assessed the performance of our method compared to the four published 

methods mentioned above for all four mouse tissues with available experimental data, ChIP-

seq data, and DNase data.

Our integrated model outperformed ChromHMM in all four tissues, with an AUROC value 

of 0.76 in hindbrain (versus ChromHMM 0.69), and 0.81 in limb (versus ChromHMM 

0.75), etc (Supplementary Fig. 13a). For comparison with supervised algorithms like 

CSIANN, DELTA and REPTILE, our method had the highest AUROC in three out of four 

tissues (hindbrain, limb and neural tube) as shown in Supplementary Fig. 13b. In midbrain, 

the AUROC for our prediction was slightly lower than REPTILE and RFECS, possibly 

because the DNase experiment performed in midbrain was very noisy; the DNase 

experiment of mouse e11.5 midbrain was marked as “low SPOT score” in ENCODE, where 
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SPOT stands for Signal Portion of Tag. We found that while 75% to 81% of the genome 

regions had DNase signals in the other three tissues, only 52% of the genome regions 

showed DNase signal in the experiment in midbrain. Overall, the comparison shows that our 

model trained using the Drosophila STARR-seq data had better performance than the other 

methods that were trained directly using mouse experimental data.

For human, we did not have an extensive amount of validated enhancer data. For 

comparison, we first checked the overlap of our predicted enhancers with the enhancer 

predictions from ChromHMM [56], and Segway [57]. We observed that a majority of our 

predictions overlap with either of them (See Supplementary materials). In addition, we 

compared our cell type-specific enhancer predictions with the integrative annotation of 

ChromHMM and Segway using CAGE-defined enhancers from the FANTOM5 Atlas [58]. 

We found that the percentage of overlap for our predicted enhancers was more than three 

times higher than that of the combined ChromHMM and Segway enhancers in each of these 

cell lines. Despite the fact that our framework predicted a smaller number of enhancers, the 

number of overlaps was still higher for our predictions. We also compared the predicted 

promoters from our model with their promoter annotations using FANTOM5 promoter sets. 

Again, the promoters predicted in our model had a higher fraction of overlaps with the 

FANTOM promoters (Supplementary Fig. 14). In addition to the integrative ENCODE 

annotation, we again compared with other supervised enhancer predictions like CSI-ANN 

[53], DEEP [59] and RFECS [36], using the FANTOM5 enhancer dataset. We found that our 

predicted K562 enhancers had a similar fraction of overlap with FANTOM5 enhancers 

compared to that of CSI-ANN, but the fraction was more than twice as high as that of DEEP 

and RFECS (Supplementary Fig. 14).

TFs binding patterns at enhancers

To measure the differences in TF binding and co-binding patterns at promoters and 

enhancers, we overlapped the ChIP-seq peaks from ENCODE with our predicted enhancers 

and promoters using intersectBed. The two regions were considered to be overlapping if at 

least 25% of the ChIP-seq peak overlapped with the predicted enhancer or promoter.

To check if the STARR-seq-based enhancer predictions have different TF binding patterns, 

we referred to the fraction of TF occupancy of predicted enhancer from other methods. The 

comparison demonstrated in Supplementary Fig. 15 shows that the TF binding pattern of our 

prediction is very similar to previous literature report [36].

Code and data availability

We have implemented our methods in Python. The source code and the output annotations 

referenced in the paper are available at the website http://matchedfilter.gersteinlab.org. A 

dockerized image is also provided at this site.

A detailed description of the datasets used in this study is in the supplement. Specifically, 

the Drosophila epigenetics datasets used in this study were generated by the modENCODE 

consortium, available online (http://data.modencode.org). The mouse epigenetics datasets 

were generated by the ENCODE and Roadmap Epigenomics consortium, available online 

(https://www.encodeproject.org). We downloaded the Drosophila STARR-seq data [25] and 
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the mouse FIREWACh data [30] from previous studies. The mouse transgenic enhancer 

assay results were generated by the Pennacchio lab at LBNL. Experiment results are 

summarized in supplementary tables 4–9, with the mouse images and additional details 

available on the VISTA Enhancer Browser (www.enhancer.lbl.gov). The human cell line 

enhancer reporter assay results were generated by the Sutton lab at Yale University. 

Experiment results are summarized in supplementary table 10. More detailed results for each 

cell line are available in the extended data table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Flowchart of the Matched-filter model.
A) We identified the “double peak” pattern in the H3K27ac signal close to STARR-seq 

peaks. The red triangles denote the position of the two maxima in the double peak. B) We 

aggregated the H3K27ac signal around these regions after aligning the flanking maxima, 

using interpolation and smoothing on the H3K27ac signal, and averaged the signal across 

different STARR-seq peaks to create the metaprofile in C). The same operations were 

performed on other histone signals and DHS to create metaprofiles in other dependent 

epigenetic signals. D) Matched filters were used to scan the histone and/or DHS datasets to 

identify the occurrence of the corresponding pattern in the genome. E) The matched filter 

scores are high in regions where the profile occurs (grey region shows an example) but low 

when only noise is present in the data. The individual matched filter scores from different 

epigenetic datasets were combined using integrated model in F) to predict active promoters 

and enhancers in a genome-wide fashion.
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Figure 2: Performance of matched filters and integrated models for predicting STARR-seq 
peaks, comparing to peak-based models.
The performance of the matched filters of different epigenetic marks and the integrated 

model for predicting all STARR-seq peaks was compared using ten-fold cross validation. A) 

The area under the receiver-operating characteristic (AUROC) and the precision-recall 

(AUPR) curves were used to measure the accuracy of different matched filters and the 

integrated model. B) Weights of the different features in the integrated model are plotted; the 

mean value is displayed in the bar plot while the error bars show the standard deviation of 

feature weights measured by ten-fold cross validation. These weights may be used as a 
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proxy for the importance of each feature in the integrated model. C-D) The individual ROC 

and PR curves for each matched filter and the integrated model are shown. The performance 

of these features and the integrated model for predicting the STARR-seq peaks using 

multiple core promoters and a single core promoter were compared to the performance of 

peak-based models. The colored numbers within the parentheses in A) refer to the AUROC 

and AUPR for predicting the peaks using a single STARR-seq core promoter; the colored 

numbers outside the parentheses refer to the performance of the model for predicting peaks 

from multiple core promoters; the gray numbers in the parentheses refer to the performance 

of the peak-based models.
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Figure 3: Performance of matched filters and integrated models for predicting promoters and 
enhancers.
The performance of the matched filters of different epigenetic marks and the integrated 

model for predicting active promoters and enhancers were compared using ten-fold cross 

validation. A) The numbers within parentheses refer to the AUROC and AUPR for 

predicting promoters; the numbers outside the parentheses refer the performance of the 

models for predicting enhancers. B) Weights of the different features in the integrated 

models for promoter and enhancer prediction are plotted; the mean value is displayed in the 

bar plot while the error bars show the standard deviation of feature weights measured by ten-
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fold cross validation. C-D) The ROC and PR curves for each matched filter and the 

integrated model are shown. The performance of these features and the integrated model for 

predicting the active promoters and enhancers using multiple core promoters were 

compared.
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Figure 4: Performance of matched filters and integrated model for predicting active enhancers in 
mice.
The performance of the Drosophila STARR-seq-based matched filters and the integrated 

model for predicting active enhancers identified by transgenic mouse enhancer assays in six 

different tissues of e11.5 mice. A) The AUROC and AUPR are shown for the integrated 

SVM model in six tissues. The weights of the different features in the integrated model are 

the same as the weights shown in Figure 3 for enhancers. B) The individual ROC curves of 

each feature and the integrated SVM model for each tissue are shown. C) The individual PR 

curves of each feature and the integrated SVM model for each tissue are shown.
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Figure 5: Differences in TF binding patterns at enhancers and promoters.
A) The fraction of predicted promoters and enhancers that overlap with ENCODE ChIP-seq 

peaks for different TFs in H1-hESC are shown. The names of all TFs in the figure can be 

viewed in Figure S35. B) The AUROC and AUPR for a logistic regression model created 

using the pattern of TF binding at each regulatory region to distinguish enhancers from 

promoters are shown. The weight of each feature in the logistic regression model could be 

used to identify the most important TFs that distinguish enhancers from promoters. C) The 

patterns of TF co-binding at active promoters and enhancers are shown. The TFs co-occur at 
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promoters regions tend to form obligate complexes. The names of all the TFs in this graph 

can be viewed in Figure S36.
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