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Abstract

Background: Predicting protein contacts solely based on sequence information remains a challenging problem,
despite the huge amount of sequence data at our disposal. Mutual Information (MI), an information theory measure,
has been extensively employed and modified to identify residues within a protein (intra-protein) that are in contact.
More recently MI and its variants have also been used in the prediction of contacts between proteins (inter-protein).

Methods: Here we assess the predictive power of MI and variants for domain-domain contact prediction. We test
original MI and these variants, which are called MIp, MIc and ZNMI, on 40 domain-domain test cases containing 10,753
sequences. We also propose and evaluate two new versions of MI that consider triangles of residues and the
physiochemical properties of the amino acids, respectively.

Results: We found that all versions of MI are skewed towards predicting surface residues. Since domain-domain
contacts are on the surface of each domain, we considered only surface residues when attempting to predict
contacts. Our analysis shows that MIc is the best current MI domain-domain contact predictor. At 20% recall MIc
achieved a precision of 44.9% when only surface residues were considered. Our triangle and reduced alphabet
variants of MI highlight the delicate trade-off between signal and noise in the use of MI for domain-domain contact
prediction. We also examine a specific “successful” case study and demonstrate that here, when considering surface
residues, even the most accurate domain-domain contact predictor, MIc, performs no better than random.

Conclusions: All tested variants of MI are skewed towards predicting surface residues. When considering surface
residues only, we find MIc to be the best current MI domain-domain contact predictor. Its performance, however, is
not as good as a non-MI based contact predictor, i-Patch. Additionally, the intra-protein contact prediction capabilities
of MIc outperform its domain-domain contact prediction abilities.

Background
Proteins are actors in a complex system, with their func-
tions to a large extent defined by their interactions with
other proteins. It is the size, shape and chemical prop-
erties of the residues on the surface of the protein that
dictate the capacity of a protein to interact with other
proteins. The ability to predict the residues involved in
these interactions would help to identify specific func-
tionality, structural constraints and even disease-causing
mutations.

In this paper we examine the capacity for mutual infor-
mation (MI) methods to predict these contact residues
between proteins by assessing their ability to predict con-
tacts between two domains of a protein. To date, MI based
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methods have been extensively used to predict contacts
within a protein (intra-protein) [1-12].

MI uses a multiple sequence alignment (MSA) of
homologous sequences; it measures the dependence
between two columns in this alignment, with the aim of
identifying correlated mutations [13]. If two residues are
in close proximity, it is likely that a change in size, shape
or chemistry of one will need to be compensated for by a
change in the other, if the contact is to remain energeti-
cally favourable [3,14-16]. These compensatory mutations
are often referred to as correlated mutations.

MI was first applied to sequence alignments by Korber
et al. to identify covarying positions in a viral peptide
[1]. We hypothesise that MI has since gained popularity
because it is non-parametrized, i.e. the scores of MI are
solely dependent on an MSA and no additional informa-
tion, such as a phylogeny propensity table [12], a similarity
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matrix [17,18] and so on is required. Furthermore, unlike
other algorithms that predict contact “patches” [7,19], or
individual contact residues [20,21], MI attempts to pre-
dict specific pairs of residues that are in contact with one
another.

Horner et al. [22] have collated the accuracies of intra-
protein contact residue prediction from several publica-
tions that employ correlated mutation analysis algorithms,
and showed that MI has an accuracy between 2% and
18%. Accuracy here refers to the percentage of predic-
tions that are correct. The low accuracy of MI has in
turn precipitated many variants that attempt to improve
its performance. These variants specifically attempt to
correct for the following three recognised limitations of
MI: highly variable columns, phylogenetic relationships
and insufficient sequences in the MSA. There is evidence
that columns in the MSA that have a high variability
contribute to random and non-random high MI scores
[8,23], while phylogenetic relationships [5] and insuffi-
cient number of sequences in the MSA [8] weaken the
signal detection ability of MI. In 1995, Clarke [2] cor-
rected the MI score by a measure relating to the number of
amino acid pairs occurring at each position to negate the
influence of highly diverged sequences that may be inap-
propriately aligned in the MSA. Later, Wollenberg and
Atchley [5] used parametric bootstrapping to adjust for
evolutionary relationships; another technique for reduc-
ing phylogenetic noise in the MSA before employing MI
is the evolutionary trace approach [24]. Tillier and Lui [6]
designed a tool which removes columns in an MSA that
carry a high phylogenetic signal and then employs MI to
identify positions in the resulting MSA that coevolve with
each other, but do not coevolve significantly with other
positions. As performance was still disappointing, Martin
et al. attempted to remove the noise caused by entropy by
dividing the MI score of a pair of columns by their joint
entropy [8]. These authors also suggested that a minimum
of 125 sequences should be used in an MSA to reduce
stochastic noise. Dunn et al. improved on this score by
introducing MIp, which modified the MI value by a mea-
sure that aims to eliminate phylogenetic and entropic
effects [9]. Subsequently, Lee and Kim [25] introduced
two other powerful phylogenetic noise reduction MI mea-
sures, MIc and aMIc. In 2010 Brown and Brown [11]
suggested yet another MI measure, ZNMI, that accounts
for different alphabet sizes among columns in the MSA.
These authors also proposed a pipeline to yield highly
reproducible scores. Despite all of these efforts, to date
no single MI measure has achieved general utility or wide
acceptance for predicting intra-protein contact sites.

MI has begun to be extended to predict inter-protein
contact residues. Halperin et al. [26] carried out a small
study of original MI and other correlation algorithms
on 15 bacteria and archea fusion protein families, and

Lee and Kim [25] evaluated their newly formulated MI
measures on a specialised dataset of 27 homo-trimers.
There have also been several high profile case studies
on a small number of examples (one to three), such as
[8-11,27]. However, so far there has been no systematic
study on a large, general purpose, cross-species dataset
of the performance of MI and its latest variants on inter-
protein contact residue prediction, partly because no such
large inter-protein dataset with accurately paired MSAs is
available [25,26].

Following the idea of Pazos et al. [18], here we make
a step towards closing this gap by employing MI and its
variants on 40 domain-domain test cases; the contacts
between domains serve as a proxy for inter-protein con-
tacts [18]. We evaluate MI measures that do not require
any additional information and rely solely on the sequence
alignment itself; we focus on the original MI and its most
recent extensions MIp and MIc, as well as ZNMI. Unlike
the other measures, the ZNMI score is embedded in an
iterative pipeline designed by its authors [11]. Hence we
have to analyse the performance of ZNMI differently to its
competitors.

We have also attempted to strengthen the predictive
capabilities of MI by introducing two new MI variants.
The first variant considers triangles of residues rather than
pairs to identify contacts, with the aim of enhancing the
signal, and is referred to as MI3D and MIp3D. As MIc
already considers a third column in its normalising term,
it was not extended to triangle scores. Our second vari-
ant is designed to reduce noise by grouping residues in
the MSA into seven physiochemical categories and sub-
sequently calculating MI. This modification is indicated
by the suffix RA (reduced alphabet), and the resulting five
variants are: MIRA, MI3DRA, MIpRA, MIp3DRA and
MIcRA. Thus altogether we examine the domain-domain
contact prediction ability of 10 MI measures: MI, MI3D,
MIRA, MI3DRA, MIp, MIp3D, MIpRA, MIp3DRA, MIc
and MIcRA, alongside the pipeline ZNMI.

In our study we observe that all versions of MI do not
perform as well as a current leading domain-domain con-
tact predictor, i-Patch [12], which achieves a precision of
48.9% at 20% recall on the 40 test cases. The enhanced
predictive ability of i-Patch may arise from its use of
surface residues only, residue propensity scores, as well
as the MSA. Conversely, MI variants rely solely on the
MSA. Upon further investigation we find that MI, MIp
and MIc scores are skewed towards predicting surface
residues rather than contact. Thereafter, like i-Patch, we
consider surface residues only when attempting to predict
domain-domain contacts using MI. This in turn improves
the contact prediction abilities of all 10 MI measures.
Amongst the 10 tested MI variants and ZNMI, we find
that MIc is the leading MI domain-domain contact predic-
tor, attaining a precision of 44.9% precision at 20% recall.
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Results and discussion
For this inter-protein MI investigation we use 40 pro-
teins that have two domains, and treat each domain as a
separate protein. Proteins are composed of one or more
domains. A multidomain protein, protein A, will often use
one of its domains to bind to protein B and another to bind
to protein C, thus allowing protein A to perform multiple
functions. Consequently, in reality protein-protein inter-
actions are often domain-domain interactions [28]. Hence
using domain-domain interactions within proteins as a
proxy for protein-protein interactions ensures that inter-
acting “proteins” are accurately paired in each MSA, while
capturing interaction mechanisms.

Unfortunately the seemingly more straightforward
approach of building MSAs by finding homologous
sequences of two proteins known to be in complex, and
then pairing the sequences originating from the same
species, is not feasible for the following reasons. Infer-
ring protein-protein interactions across species based on
sequence homology has a low level of accuracy, requir-
ing a sequence identity of far higher than 70% [29]. Using
only sequences with >70% identity would have resulted in
MSAs with a low number of sequences and few amino acid
changes, not sufficient enough to yield statistically signif-
icant MI results [8]. Furthermore, within a species there
may be multiple homologs of the interacting proteins,
and selecting the correct pairs out of this is an unsolved
problem [29]. Therefore previous protein-protein contact
residue prediction investigations have chosen to employ
proteins of known structure, with two domains, that have
several homologous sequences available [12,18]. Hamer
et al. [12] have shown that the propensities of amino acids
to occur as contact residues between two domains in a
protein and between protein complexes are highly sim-
ilar. While it is hence plausible to use domain-domain
interactions as a proxy for inter-protein interactions, it
is however possible that protein-protein interfaces may
indeed differ from domain-domain interfaces.

Here we want to predict whether a residue is a contact
residue or not using MI-based scores on the generated
domain-domain MSAs. As MI assigns scores to pairs of
columns in an MSA, first we calculate the MI score for all
pairs of columns, or triangles of columns in the case of the
3D variants. To obtain a score for individual columns, each
residue in all 40 test cases was assigned the maximum
MI score that the residue column achieved with any other
residue column in its MSA. We also tested assigning the
average score of each residue column, but this resulted in a
significant decrease in the performance of the MI variants.
A residue is then assigned the score of its column.

When calculating MI pair or triplet scores, as in pre-
vious work [9,25], only ungapped aligned columns were
used. When allowing gapped columns there was a ten-
dency for MI methods to underperform.

For the 40 test cases employed, the probability of ran-
domly selecting contacts, i.e. correctly picking a contact
residue from the total set of residues, without any infor-
mation about the proteins involved, is 17.1%. Running
i-Patch [12], a non-MI-based domain-domain contact
predictor, on this dataset resulted in a precision of 48.9%
at 20% recall. When assessing domain-domain contact
prediction, Lee and Kim [25] found that their MIc mea-
sure outperformed their additionally normalised aMIc
score [25], as well as Dunn et al.’s MIp measure [9]. We
also found MIc to be the best domain-domain contact pre-
dictor of our tested MI variants. On our 40 test cases, MIc
attained a precision of 34.7% at 20% recall, demonstrating
that the performance of MI methods is below that of the
parametrised method i-Patch.

We conjecture that the enhanced classification capabili-
ties of i-Patch may be due to its use of residue propensities,
along with its consideration of only residues on the surface
of a protein when attempting to predict contacts between
proteins. Consequently, we examined the effect of sur-
face versus buried residues on domain-domain MI contact
prediction.

In our 40 test cases, the probability of randomly select-
ing a surface residue from all residues is 69.9%. Using MI,
MIp and MIc on our dataset as surface residue predic-
tors (is the highest scoring residue on the surface?), we
observed that each of the measures surpassed this random
classification and achieved a precision of 86.9%, 75.5%
and 74.1% respectively, at 20% recall (Additional file 1:
Figure S1). Thus it appears that high scores of all three
variants of MI are skewed towards surface residues. This
is probably due to the observed high entropy of surface
residue columns.

Prior investigations have shown that MI scores strongly
correlate with the entropy of the columns involved [8,23].
Figure 1 shows that MSA columns corresponding to sur-
face residues tend to have a higher entropy than those
associated with buried residues. The observed lower col-
umn entropy for buried residues is consistent with previ-
ous studies that have shown that buried residues are under
greater evolutionary constraints than solvent-accessible
surface residues [30-33]. A slower rate of evolution of
these residues is unsurprising since buried residues often
play a crucial role in maintaining the 3D structure of a
protein. We hypothesise that this skewness of MI towards
surface residues in turn perturbs its ability to predict con-
tact residues. With this in mind we eliminated buried
residues from further evaluation of the performance of
MI, MIp and MIc for domain-domain contact prediction.

After filtering out buried residues in the 40 test cases,
the precision of MIc increases from 34.7% to 44.9% at
20% recall (Figure 2C). The probability of randomly select-
ing a contact residue is now 24.4%. Excluding buried
residues therefore clearly has a considerable effect. As can
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Figure 1 Standardised entropy medians of surface versus buried
residue columns for all domains in the dataset. Comparing the
medians of the standardised entropy scores of each domain’s surface
residue columns (blue) against the medians of each domain’s buried
residue columns (yellow). Residue columns containing one or more
gaps, or having an entropy score of 0 are not included in the median
calculation.

be observed in Figure 2, Table 1 and Additional file 2:
Figure S2, MIc still outperforms the other MI variants.
MI and MIp achieve a precision of 24.4% and 42.3%
respectively at 20% recall (Figures 2 A and B, and Table 1).

For a meaningful comparison of scores however, we
need to assess their stability. In order to test this we ran-
domly selected 70% of the sequences from each MSA 100
times, and recalculated the variant MI scores for each of
the sub-alignments (Table 2). We observed that the rank
order of the top five MI variant scores was maintained
(Table 2). This sub-alignment creation and MI recalcula-
tion procedure was only carried out on those 24 test cases
that had ≥200 sequences, to ensure that there would be at
least 125 sequences in the sub-alignments, the suggested
minimum number of sequences required to reduce the
stochastic noise in the MSA [8]. Hence the results in
Table 1 refer to 40 test cases, while those in Table 2 reflect
the mentioned subset of 24 cases. Based on two-sample
t-tests, with a sample size of 24, the differences between
the top four scores in Table 2 are highly significant at the
0.1% level.

Additionally, it is worth noting that the performance of
all non-3D MI variants improve when using MSAs that
have ≥200 sequences (Tables 1 and 2).

To account for the mentioned variability in scores due
to changes in the MSA, Brown and Brown [11] have
designed a new MI measure, ZNMI, as well as a methodol-
ogy to yield highly reproducible and accurate contact pair
prediction scores. Their suggested algorithm repeatedly

partitions the MSAs into 50% sub-alignments, calculates
the pair scores, retains significant scoring pairs for each
partition and subsequently compares all partitions to
acquire consensus pair scores. It should be noted that
unlike our methodology, this pipeline does not filter out
buried residues. The authors provided us with code for
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Figure 2 Contact versus non-contact prediction P-ROC curves for
MI variants on the 40 test cases. A, B and C illustrate the
performance of MI, MIp and MIc variants respectively when
distinguishing contact from non-contact surface residues. The solid
green line in all plots depicts the chance of randomly selecting a
contact residue, while the dashed green line indicates the probability
of randomly selecting a contact residue when employing the
reduced alphabet amino acid set.
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Table 1 Precision for detecting contact versus non-contact
residues at 20% recall

Contact prediction

MI variant Precision contact vs. non-contact

MIc 44.9

MIp 42.3

MIcRA 36.9

MIpRA 35.8

MIp3D 31.8

MIp3DRA 29.4

MIRA 28.4

Random 24.5

MI 24.4

RandomRA 24.4

MI3DRA 23.5

MI3D 19.9

Results are given for the 40 test cases. MI variants are listed in descending order
of contact versus non-contact precision, i.e. best to worst classifier of contact
residues. The probability of randomly selecting a contact residue from all surface
residues is 24.5%. This probability changes to 24.4% when using the reduced
alphabet amino acid set because residues are lost as the entropy of their
corresponding MSA column reduces to 0.

MI [8], MIp [9], OMES [23,34], SCA [35], ZNMI [11]
and ZRES [10] measures wrapped within their proposed
pipeline, but unfortunately not for MIc. Having run this
code on our 40 domain-domain test cases we find that
using ZNMI in conjunction with their algorithm does
improve on the performance of original MI; at 20% recall
the precision of ZNMI is 30.5% (Table 3), as opposed
to the 24.4% precision of original MI (Figure 2A and
Table 1). ZNMI within the Brown and Brown pipeline
even outperforms MIp, when MIp is incorporated into
the same pipeline (27.1% precision at 20% recall; Table 3).
However, the performance of MIp independent of the
pipeline, after filtering out buried residues and columns
with one or more gaps, supersedes ZNMI and all other
coevolving residue algorithms tested by the authors, as
illustrated by its precision of 42.3% at 20% recall (Table 3).

3D and Reduced Alphabet MI adjustments
To investigate methods that might further enhance
the predictive power of MI variants we designed two
adjustments. The first adjustment considers triangles of
columns rather than pairs, based on the idea that interac-
tions occur in patches [36]. This variant is denoted by the
suffix 3D. The second adjustment, suffixed RA, reduces
the 20 amino acids to seven categories based on their
physical and chemical properties, with the aim of reducing
noise.

The idea behind the 3D version is that protein bind-
ing involves patches of residues in contact. This idea has

been previously used to predict contact residues [12,36].
Furthermore, the success of MIc lies in its normalising
factor, the coevolutionary pattern similarity (CPS) score,
which estimates the coevolutionary relationship between
the pair of residues currently under consideration and
all other residues in the MSA [25]. We thus speculated
that adding additional residue information to MI and MIp
pair scores may enhance their domain-domain contact
predictive capabilities. Hence we created new versions of
MI and MIp that consider triangles rather than pairs of
columns to identify contacts (MI3D (Equation 13) and
MIp3D (Equation 14)). Increasing the dimensionality of
MI and MIp in this manner surprisingly worsened perfor-
mance in both cases; the precision at 20% recall of MI3D
and MIp3D are 19.9% and 31.8% respectively as compared
to precision of MI and MIp of 24.4% and 42.3% (Figure 2
A and B, and Table 1). We conjecture that adding an extra
dimension to MI and MIp magnifies the noise in the MSA
more than it boosts the signal.

Assuming that contact residues mutate in a correlated
manner in order to maintain their interaction, it is not
evident how much of a change a residue can undergo

Table 2 Precision for detecting contact versus non-contact
residues at 20% recall, for sub-alignments of 70%

Contact prediction for sub-alignments

MI variant 70% AVG 70% STD DEV 100%

MIc 52.5* 2.1 54.8

MIp 46.0* 2.1 47.4

MIcRA 41.9* 1.8 41.4

MIpRA 38.2* 1.5 38.5

MIp3D 30.6 1.3 28.5

MIRA 30.2* 1.2 31.4

MIp3DRA 28.0* 1.2 30.9

MI 25.8* 0.8 27.6

MI3DRA 23.2* 1.0 25.5

Random - - 24.4

RandomRA - - 24.4

MI3D 20.0 0.6 21.8

70% of sequences in an MSA were randomly selected and the 10 MI variant
scores based on the new sub-alignment were calculated. This subset selection
and calculation procedure was repeated 100 times for those test cases that had
≥200 sequences to ensure ≥125 sequences in each sub-alignment [8]. Thus 24
test cases were used. For each of the 100 iterations a P-ROC curve similar to
Figure 2 was plotted for the 24 test cases (figures not shown), and the precision
at 20% recall recorded. Columns one and two, respectively, contain the averages
and standard deviations of these 100 precision values. Column three indicates
the precision attained at 20% recall when all sequences in the 24 original MSAs
were used. When considering this set of 24 cases, the probability of randomly
selecting a contact residue from all surface residues is 24.4% generally and when
using the reduced alphabet MSAs. The MI variants are listed in descending order
of the average precision of the 100 70% sub- alignments. The presence of an ‘*’
at an MI variant indicates that the difference between the precision of this MI
variant and the next lowest is significant at the 0.1% level, when using
two-sample t-tests with a sample size of 24.
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Table 3 Precision at 20% recall of contact prediction
algorithms used within Brown and Brown [11] pipeline

Brown and Brown [11] pipeline

Algorithms Precision contact vs. non-contact

MIp - original, minus buried 42.3

SCA 31

ZNMI 30.5

ZRES 28.9

MIp 27.1

MI 25.7

OMES 25.7

MI - original, minus buried 24.4

Results are given for the 40 test cases. The Brown and Brown [11] pipeline was
applied to the contact residue prediction algorithms listed in column one, with
the exceptions of MIp and MI “original, minus buried.” As in Table 1, these two
algorithms were run independently of the pipeline and buried residue columns,
residue columns with one ore more gaps or an entropy of 0 were filtered out.
The table is arranged in descending order of precision.

while still maintaining its contacts. Using a reduced alpha-
bet residue set addresses this point; as it groups residues
by their physiochemical properties, under the assumption
that residues with the same physiochemical properties
will maintain similar interactions. Grouping the 20 amino
acids into seven categories only improved the perfor-
mance of basic MI and MI3D, which rose in precision
at 20% recall from 24.4% to 28.4% and 19.9% to 23.5%
respectively (Figure 2A and Table 1). In all other cases the
reduced alphabet (RA) appeared to reduce noise as well as
signal (Figure 2, Table 1 and Additional file 2: Figure S2).

Case study
The case study Skerker et al. [27] has received a lot of
attention for successfully determining inter-protein con-
tact specificity residues with the aid of MI. The authors
used original MI (Equation (4)) to determine a subset of
contact residues that allow for specific binding of a his-
tidine kinase (HK) with its interacting response regulator
(RR). The MSA provided by these authors does not con-
tain the sequence of the structure used in their analysis.
Hence we ran MI and MIc on the HK-RR MSA provided

by Hamer et al. [12], which does include the sequence of
this reference structure.

As Skerker et al. were interested in residue pairs only
between the DHp domain (four helix bundle) of the HK
and its interacting RR, only these MI and MIc scores were
considered when examining performance. In accordance
with our evaluation method on the 40 test cases, all buried
residues were eliminated, as were residues correspond-
ing to columns that had one or more gaps or an entropy
of 0. This leaves us with 46 DHp residues, nine of which
are contacts, and 68 RR residues, amongst which 24 are
contacts.

As we have no score cut-off for predictions we check the
number of correct predictions among the top nine predic-
tions for DHp. If there was no relationship between the MI
scores and contact sites, then the number of correct pre-
dictions would follow a Binomial distribution with sample
size nine and probability of success 9/46. Under this model
we would expect 1.76 correct predictions.

For RR there are 24 contact residues. We check the num-
ber of correct predictions among the top 24 predictions. If
there was no relationship between the MI scores and con-
tact sites, then the number of correct predictions would
follow a Binomial distribution with sample size 24 and
probability of success 24/68. Under this model we would
expect 8.47 correct predictions.

The results are recorded in Table 4. The p-value is the
probability of seeing a number this large or larger under
the corresponding Binomial model. None of the p-values
are below 5%. Therefore at the 5% level there is no statisti-
cal evidence to reject the null hypothesis that in this case
study random guess does as well as MI and MIc.

Conclusions
MIc is the best current MI domain-domain contact pre-
dictor. The performance of MIc on our domain-domain
test cases is not as good as its intra-protein contact pre-
diction [25]. Its predictive capabilities are also not as high
as i-Patch [12], a non-MI-based domain-domain contact
predictor, but unlike this algorithm, MIc relies solely on
sequence information in an MSA. Our 3D and reduced
alphabet variants of MI did not improve prediction, but

Table 4 Performance of MI and MIc on a histidine kinase (HK) - response regulator (RR) complex

Case study

DHp: 9 contacts out of 46 RR: 24 contacts out of 68

Contacts among top 9 p-value Contacts among top 24 p-value

MI 3 0.2503 9 0.4864929

MIc 4 0.0800 9 0.4864929

MI and MIc are run on the HK-RR MSA provided by Hamer et al. [12]. Each surface, ungapped DHp residue column, having a column entropy greater than 0, is assigned
the maximum score it achieves when paired with the RR residue columns. These DHp residues are then ranked according to score and the number of true contact
residues amongst the top nine scores are recorded for MI and MIc respectively. The same steps are applied to residues in the RR and the number of true contact residues
in the top 24 scores are counted for MI and MIc. The p-value refers to the probability of seeing a number this large or larger under the corresponding Binomial model.
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illustrate the delicate trade-off between signal to noise in
the use of MI for domain-domain contact prediction.

Methods
In order to perform the tasks in our methods, code was
written in perl, MATLAB and Python, and is available
upon request.

Datasets
For this domain-domain MI investigation we use pro-
teins that have two domains, rather than protein com-
plexes, and treat each domain as a separate protein.
In this manner we can be sure that accurate “protein-
protein” pairings are used in the MSA. The MSAs are
taken from [12], available at http://www.stats.ox.ac.uk/
research/bioinfo/resources, which in turn are based on
datasets in [18,37-39]. The proteins for which each MSA
was constructed has a known pdb structure [40] of
X-ray resolution 2.5Å or better, and well annotated
domain boundaries [12]. This structure is henceforth
referred to as the “reference structure” and is used to
identify surface, buried, contact and non-contact residue
columns within the MSA. The MSA was generated by
using the structural protein as a BLAST query [41,42]
against the NCBI-NR database [43]. The homologs iden-
tified were made non-redundant at the 90% level using
Cd-hit [44]. The final alignment was generated using
MUSCLE [45] and MaxAlign [46].

Amongst the set of 67 protein cases available from [12],
proteins that contain a single domain that interacts with
more than one other domain in the set are disregarded.
We chose to omit these proteins as domains interacting
with multiple domains may have undergone correlated
mutations not pertaining to the pair of domains being
presently considered. We thus lose 15 of the 67 cases.
In order to aid statistical analysis of the results we select
only those domain pairs that have at least 20 contact
and 20 non-contact residues on each domain, and the
corresponding MSA columns of these residues must be
ungapped and have an entropy greater than 0. Therefore
a further 9 test cases are lost. Similarly, we filter out 1
test case that has less than 20 surface and buried residues
respectively. These factors, along with eliminating 2
cases that have poorly annotated secondary structures
in their reference pdb structure file [40], leave us with
40 inter-domain MSAs (Table 5; using [12,47]). The 80
single domains in this dataset range in size from 60 to 376
residues.

Within the 40 inter-domain MSAs there are non-
standard amino acid entries, such as B, Z, X, * and ?.
As there is no established method of processing these
sequencing uncertainties, we choose to treat them as a
gap, while the Brown and Brown pipeline code processes
them as additional amino acids [11].

Identifying the surface versus buried residue pairs
For each reference structure protein in the dataset, we cal-
culate the solvent accessibility of the residues using JOY
[48]; each domain is treated as a separate entity. In the
reference structure, residues that are > 7% accessible to
a 1.4Å radius water molecule are denoted as “surface”
residues [48]. Those that do not meet this criterion are
termed “buried.” This information about a residue is then
annotated to the entire MSA column to which it belongs.

Employing this criterion on our 40 test cases, along with
eliminating residue columns that have an entropy of 0 or
contain a gap, leaves us with 5483 surface residues and
2364 buried residues. These numbers decline to 5362 and
2174 respectively when employing the 40 reduced alpha-
bet MSAs, as the reduced alphabet MSAs have a greater
number of columns with 0 entropy (Equation (1)). The
ratios of surface to buried residues in the reduced and
non-reduced alphabet sets are 2.5 and 2.3 respectively.
The number of 0 entropy columns in the reduced and
non-reduced alphabet set are 668 and 326 respectively,
while the number of columns with one or more gaps in
both sets are 3479.

Identifying the contact versus non-contact residues
Residues within the binding interface of a pair of interact-
ing domains are labelled as “contact” residues (Figure 3).
There is not one particular accepted definition for con-
tact residues [26,49-51]. Here we classified a residue in the
representative protein structure as a “contact” residue if:

1. It is on the surface of the individual domain.
2. It is < 4.5Å from a residue in the other domain [50].
3. The solvent accessibility of the residue is different

depending on whether the domain is viewed as a
separate structural entity or whether the domain is in
complex.

If not all of the above criteria are met, a residue is
denoted as a “non-contact” residue.

Using these criteria, and once again ignoring residue
columns having an entropy of 0 or a gap, leaves us with
1342 contact and 4141 non-contact surface residues, over
all 40 test cases. These numbers decline to 1306 and 4056
respectively when employing the reduced alphabet on the
40 test cases. The ratio of contact to non-contact residues
is 0.32 in both the reduced and non-reduced alphabet sets.

Calculating the Shannon Entropy
The entropy Hunstandardised(J) of each column J in an MSA
is calculated by Equation (1) with log denoting loge here,

Hunstandardised(J) = −
n∑

i=1
P(J = j) log P(J = j). (1)

We use loge in our MI calculations so that we may com-
pare our results with other MI investigations [23,27]. In

http://www.stats.ox.ac.uk/research/bioinfo/resources
http://www.stats.ox.ac.uk/research/bioinfo/resources
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Table 5 The dataset

Dataset

Protein D1 D2 Sequences Species

1A45 1 82 83 173 160 E(146)N(14)

1BIB 67 270 271 317 236 A(12)B(201)N(23)

1BKS 1 188 189 268 478 A(21)B(401)E(10)N(46)

1FNB 19 152 153 314 58 B(22)E(34)N(2)

1G8A 1 51 52 227 75 A(47)E(20)N(8)

1G8P 18 216 261 350 230 A(10)B(143)E(49)N(28)

1I39 1 158 159 200 688 A(32)B(538)E(7)V(1)U(1)N(109)

1J5X 2 169 170 319 252 A(9)B(183)E(5)N(55)

1LAP 1 147 148 484 454 A(2)B(331)E(84)N(37)

1LLD 7 148 149 319 709 A(33)B(389)E(221)N(66)

1MRI 1 162 163 246 68 B(2)E(65)N(1)

1PII 1 255 256 452 75 B(65)N(10)

1RHD 1 156 157 293 505 A(26)B(365)E(57)U(1)N(56)

1THM 1 127 128 208 106 A(1)B(62)E(34)N(9)

1W98 88 227 228 357 70 E(64)N(6)

1WRU 3 176 177 346 64 B(58)V(2)N(4)

1X2G 1 246 247 337 224 A(2)B(155)E(42)N(25)

2AAA 1 376 377 484 245 B(141)E(74)N(30)

2AHE 16 108 109 253 144 B(25)E(100)N(19)

2D3V 3 95 96 195 77 E(71)N(6)

2D8N 16 97 102 189 240 E(195)N(45)

2E64 1 188 189 235 294 A(9)B(231)E(4)U(1)N(49)

2I00 10 300 301 406 116 A(2)B(80)N(34)

2IU5 1 71 72 180 65 B(56)N(9)

2NPO 3 76 77 188 224 A(3)B(182)U(1)N(38)

2NRC 1 247 261 480 188 A(9)B(96)E(68)N(15)

2OF7 17 67 68 207 204 B(135)N(69)

2OI8 8 86 87 216 215 B(151)N(64)

2PGD 1 172 178 433 317 B(211)E(78)N(28)

2PGE 3 136 137 368 138 A(6)B(102)E(1)N(29)

2PGX 2 56 57 250 102 B(87)N(15)

2PHZ 20 142 143 296 420 A(4)B(343)N(73)

2QY9 201 284 285 495 471 A(32)B(344)E(15)N(80)

2REB 23 268 269 328 482 B(434)E(12)N(36)

2TS1 1 220 248 319 598 B(512)E(34)N(52)

4ENL 1 126 127 436 649 A(32)B(448)E(122)N(47)

4MDH 1 154 155 333 339 A(6)B(173)E(134)N(26)

5FBP 1 201 202 335 355 A(3)B(213)E(112)N(27)

6GST 1 82 90 217 374 B(10)E(312)N(52)

8TLN 1 135 136 316 44 A(1)B(36)E(2)N(5)

The “protein” column contains a list of pdb identifiers [40]. D1 and D2 columns denote the start and end pdb residues of domains 1 and 2, respectively. For all pdbs
listed, the start and end residues are located in chain A of the structure, except for pdb 1W98 where the mentioned domains are in chain B, and pdb 8TLN in chain E.
The “sequences” column indicates the number of sequences present in the multiple sequence alignment (MSA). The final column states the distribution of sequences
in each MSA taken from the various species’ domains: eukaryotes (E); archea (A); bacteria (B); viruses (V); unclassified (U); and not found (N), i.e. those sequences that
could not be found in the NCBI Taxonomy Database. This dataset was taken from Hamer et al. [12].
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this equation J is a column in the MSA with probabilities
P(J = j) for the discrete set of n amino acids jε{1, ..., n}.
When P(J = j) = 0 then we set P(J = j) log P(J = j) =
0. The entropy is maximal when all j are equally likely
to occur, i.e. P(J = j) = 1/n and Hunstandardised(J) =
− ∑ 1

n log 1
n = log n [13].

In order to compare the entropies from different MSAs
we standardise the entropy score as follows:

H(J) = Hunstandardised(J) − Hunstandardised
σHunstandardised

, (2)

where Hunstandardised(J) is the entropy of column J in the
MSA, and Hunstandardised and σHunstandardised are the average
entropy and estimated standard deviation, respectively,
over all columns in the MSA combined. Our calculated
entropies range from 0.0 to 2.8, while the standardised
entropies vary from -4.2 to 3.0.

Calculating MI
The joint entropy of two columns J and K is defined as:

Hunstandardised(J ; K) =

−
n∑

j=1

m∑
k=1

P(J = j, K = k) log P(J = j, K = k), (3)

where column J has n different residues, and column K has
m different residues.

The general MI formula is:
MI(J ; K)unstandardised = Hunstandardised(J)

+ Hunstandardised(K)

− Hunstandardised(J ; K).
(4)

The MI is maximal when residues in columns J and K
always covary, i.e. P(J = K) = 1 making the MI =
− ∑n

j=1 P(J = j) log P(J = j). The maximum MI that can
be observed for protein sequences, which have 20 varying
residues, is log20 � 2.9957 [13].

Unstandardised MI values of 0 are omitted from any fur-
ther analysis. The reason for this explained in the section

titled “MI scores of 0.” The average MI and estimated stan-
dard deviation of the MI of all contact and non-contact
pairs in the protein are then calculated. A “standardised
MI score” is calculated as

MI(J ; K) = MIunstandardised(J ; K) − MIunstandardised
σMIunstandardised

,

(5)

where MIunstandardised(J ; K) is the MI of columns J and K
in the MSA, and MIunstandardised and σMIunstandardised are the
average MI and estimated standard deviation respectively,
over all interacting domains’ column pairs in the MSA,
excluding pairs with an MI value of 0, involving a 0 entropy
residue column or a gapped residue column.

Our calculated MIunstandardised scores vary from 0.0 to
1.6, while the standardised MI scores range from -3.2 to
3.7.

Calculating MIp
Dunn et al. proposed a variant of MI that aims to correct
for background (random and phylogenetic) noise of each
pair of columns under consideration, MIp [9] . This MI
correction is denoted by the equation

MIpunstandardised(J ; K) = MIunstandardised(J ; K)−APC(J ; K),
(6)

where MIunstandardised(J ; K) is calculated as denoted in
Equation (4). As previously, pairs involving a 0 entropy
residue column or a gapped residue column, or having an
MI score of 0 are ignored. APC(J ; K), the average product
correction, is a modification term for columns J and K in
the MSA, evaluated as follows:

APC(J ; K) = MIunstandardised(J) MIunstandardised(K)

MIunstandardised
,

(7)

domain 1
domain 2

contact residue

D1

D2

D1

D2

3.4

Figure 3 Contact residues in a pair of interacting domains. Test case 1J5X.pdb [40]. The two structurally defined domains are depicted in
orange (residue 2 to 169) and green (residue 170 to 319) respectively. In the magnified frame, residues in red denote contact residues. Dotted lines
and corresponding numbers indicate the Ångström distance between a pair of atoms in the connected residues.
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where MIunstandardised(J) is the average mutual infor-
mation for column J , MIunstandardised(K) is the average
mutual information for column K , and MIunstandardised is
the overall average mutual information.

As done previously for MI, MIp scores are also standard-
ised (Equation (8)),

MIp(J ; K) = MIpunstandardised(J ; K) − MIpunstandardised
σMIpunstandardised

, (8)

where MIpunstandardised(J ; K) is the MIp of columns J and
K in the MSA and MIpunstandardised and σMIpunstandardised are
the average MIp and estimated standard deviation respec-
tively, over all calculated column pairs in the protein.

Our MIp scores vary from 0.0 to 0.4, while the standard-
ised MIp scores range from -3.1 to 7.0.

Calculating MIc
Lee and Kim designed normalising measures that aim to
reduce phylogenetic noise in MI scores [25]. They begin
with the coevolutionary pattern similarity score (CPS)
that measures the similarity between the MI score pat-
terns of the two residues being considered. It is denoted as
follows,

CPS(J ; K)= 1
n−2

∑
L �=J ;K

MIunstandardised(J ; L)MIunstandardised(K ; L).

(9)

Here MIunstandardised(J ; L) is the MI score of the columns
J and L, which is calculated as described in Equation (4).
The number of columns in the MSA are denoted by n.

%
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ai

rs
 w

ith
 0

 M
I

% of MSA columns with 0 entropy

% 0 entropy vs. % 0 MI 

Figure 4 Effect of entropies of 0 on MI scores. The percent of
columns in an MSA that have an entropy of 0 is plotted against the
percent of all domain-domain residue pairs in the corresponding
complex that have an MI value of 0. Only those columns in the MSA
that correspond to a residue in the reference structure are used.
Columns that have one or more gaps are ignored. Each point on the
plot represents a single case study in our domain-domain dataset.

Since the CPS is the product of two MI scores, it is then
normalised by the square root of the mean of all CPS
scores.

NCPS(J ; K) = CPS(J ; K)√
1

n(n − 1)

∑
J ,K CPS(J ; K)

. (10)

To adapt the NCPS for domain-domain prediction we
consider only those CPS scores that refer to domain-
domain column pairs, i.e. one column from each protein,
and adjust n in Equation (10) accordingly. Once again
MI values of 0 are ignored, as are 0 entropy and gapped
residue columns. This NCPS score is then subtracted from
the corresponding MI pair score to yield Lee and Kim’s
noise reduced MI variant, MIc.

MIcunstandardised(J ; K) = MIunstandardised(J ; K)

− NCPS(J ; K).
(11)

MIc scores for each protein are standardised in a man-
ner similar to MI and MIp (Equations 5 and 8), so that MIc
values from different proteins can be compared.

MIc(J ; K) = MIcunstandardised(J ; K) − MIcunstandardised
σMIcunstandardised

,

(12)

where MIcunstandardised(J ; K) is the MIc of columns J and
K in the MSA and MIcunstandardised and σMIcunstandardised
are the average MIc and estimated standard deviation
respectively, over all column pairs being considered in the
protein.

The MIc scores calculated on our 40 test cases range
from -0.02 to 0.1, while the standardised scores range from
-2.4 to 7.7.

3-dimensional (3D) MI and MIp
MI [27] and MIp [9] were adapted to consider triangles of
residues;

MI3Dunstandardised(J ; K ; L) =
n∑

j=1

m∑
k=1

s∑
l=1

P(J = j, K = k, L = l)

× log
P(J = j, K = k, L = l)

P(J = j)P(K = k)P(L = l)
,

(13)

where MSA column J from domain 1 has n differ-
ent residues, column K from domain 2 has m different
residues, and column L from domain 2 has s different
residues. Residues in the representative protein structure,
corresponding to columns K and L, should be < 4.5Å
from each other in order to be considered as being on the
same patch in the domain.

MIp3D is defined as

MIp3Dunstandardised(J ; K ; L) = MI3Dunstandardised(J ; K ; L)

− APC3D(J ; K ; L).
(14)
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In this equation MI3Dunstandardised(J ; K ; L) is calculated as
denoted in Equation (13) and APC3D(J ; K ; L) is calculated
as

APC3D(J ; K ; L) = MI3Dunstandardised(J) MI3Dunstandardised(K) MI3Dunstandardised(L)

MI3Dunstandardised
, (15)

where MI3Dunstandardised(J) is the average 3D mutual
information for column J , MI3Dunstandardised(K) is
the average 3D mutual information for column K ,
MI3Dunstandardised(L) is the average 3D mutual informa-
tion for column L, and MI3Dunstandardised is the overall
average 3D mutual information.

In order to compare the 3D mutual information scores
between test cases, MI3D and MIp3D scores were stan-
dardised in a manner similar to those described in
Equations (5), (8) and (12), respectively. Once again MI3D
values of 0 were ignored, as were 0 entropy columns and
columns containing one or more gaps.

Reduced Alphabet (RA) MI scores
We grouped the 20 amino acids into the same seven phys-
iochemical categories successfully employed by Hamer
et al. in their domain-domain contact predictor, i-Patch
[12]. These seven categories include: Small (S,G,A,P),
Hydrophobic (V,M,I,L,C), Negatively charged (D,E), Aro-
matic (F,Y,W), Polar (Q,T,N), Favoured Positively-charged
(R,H), and Disfavoured Positively-charged (K). These
physiochemical groups are abbreviated to S, H, N, A, P, F
and D respectively. Hamer et al. introduced Favoured and
Disfavoured categories because Lysine (K) was found to be
rare in protein/domain interfaces (propensity 0.66), while
Arginine (R) and Histidine (H) were far more common
(propensities of 1.05 and 1.11, respectively) [12].

We replaced the amino acid alphabets in each MSA by
their corresponding category abbreviation and recalcu-
lated MI, MIp, MIc, MI3D and MIp3D as described above.
The five new MI variant scores are referred to as MIRA,
MIpRA, MIcRA, MI3DRA and MIp3DRA.

We choose to employ this particular set of seven physio-
chemical categories as it was successfully used by i-Patch
[12] in domain-domain contact prediction. We do not
expect another grouping to dramatically improve the pre-
dictive capabilities of MI and its variants further.

P-ROC curves
For classification, each residue in all 40 test cases was
assigned the maximum MI score that its residue column
achieved with any other residue column in its MSA. When
the average score of each residue was assigned instead, the
performance of the MI variants decreased significantly,
consequently the maximum score was employed.

When there is a disproportionate number of positive
versus negative cases, P-ROC (Precision Recall Operating

Characteristic) curves [52] provide an alternative to ROC
(Receiver Operating Characteristic) curves [53] when
attempting to evaluate the performance of a classifier. In
our 40 test case dataset, contact residues constitute only
24.5% of all residues, thus the P-ROC will be more infor-
mative than the ROC curve. To calculate precision and
recall the percentiles of the scores are used as cut-offs,
where

precision = TP
TP + FP

, (16)

and

recall = TP
TP + FN

. (17)

TP in these equations denote the number of true posi-
tives, FP denotes the number of false positives and FN
symbolises the number of false negatives.

Each P-ROC plot contains a flat horizontal line (green)

at
TP

total scores
. This line denotes the probability of ran-

domly discriminating positive versus negative cases. For
example, in Figure 2 the solid green line is at 0.245 because
there are 1342 “contact” scores out of 5483 total surface
scores in the non-reduced alphabet test set. In this figure
the dashed green line is at 0.244 because there are 1306
“contact” scores out of 5362 total surface scores in the
reduced alphabet test set. Similarly, in Additional file 1:
Figure S1 the solid green line is at 0.699 as there are
5483 “surface” scores out of 7847 total scores in the non-
reduced alphabet test set, while the dashed green line is at
0.712 for there are 5362 “surface” scores out of 7536 total
scores in the non-reduced alphabet test set.

Sub-sampling to test stability of MI scores
To test the stability of the 10 MI variant scores under
minor changes in the MSA, for each test case 70% of
sequences in the MSA were randomly selected and all 10
MI scores recalculated and 10 respective P-ROC curves
were plotted. This sub-sampling and calculation process
was repeated 100 times per test case for every MI variant.
Then the average and standard error of the precision val-
ues for the 100 P-ROC curves were calculated for each MI
variant. The precision values at 20% recall for each of the
MI variants are listed in Table 2.

This sub-alignment creation and MI recalculation pro-
cess was only carried out on those 24 test cases that
had ≥200 sequences to ensure that a minimum of 125
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sequences were retained in each sub-alignment, the sug-
gested minimum number of sequences required to reduce
the stochastic noise in the MSA [8].

MI scores of 0
Pairing any MSA column with a fully conserved column,
i.e. a column with an entropy of 0, results in a joint entropy
equivalent to the entropy of the non-fully conserved col-
umn and subsequently an MI score of 0 for that pair. Since
conserved columns do not give any indication of corre-
lated mutations, MI scores involving these columns are
ignored. This is standard procedure; for example, [6]. The
relationship between percent of columns in an MSA with
an entropy of 0 and percent MI scores of 0 computed can
be observed in Figure 4. This approximately linear rela-
tionship further affirms the direct influence a column with
an entropy of 0 has on the MI score of pairs involving that
column.

Additional files

Additional file 1: Figure S1. Surface versus buried prediction P-ROC
curves for MI variants on the 40 test cases. A, B and C illustrate the
performance of MI, MIp and MIc variants respectively when distinguishing
surface from buried residues. The solid green line in all plots depicts the
chance of randomly selecting surface residues, while the dashed green line
indicates the probability of randomly selecting a surface residue when
employing the reduced alphabet amino acid set.

Additional file 2: Figure S2. Contact versus non-contact prediction MCC
curves for MI variants on the 40 test cases. Performance evaluation of the
predictive power of MI, MIp and MIc using the Matthews Correlation
Coefficient (MCC) score [54]. A, B and C illustrate the performance of MI,
MIp and MIc variants respectively when distinguishing contact from
non-contact surface residues. The solid green line at 0 in all plots depicts
the chance of randomly selecting a contact residue. An MCC score of +1
indicates a perfect prediction, while a score of −1 represents total
disagreement between prediction and observation.
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