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Abstract
The granule-dependent cytotoxic activity of T and natural killer lymphocytes
has progressively emerged as an important effector pathway not only for host
defence but also for immune regulation. The analysis of an early-onset, severe,
primary immune dysregulatory syndrome known as hemophagocytic
lymphohistiocytosis (HLH) has been decisive in highlighting this latter role and
identifying key effectors on the basis of gene mutation analyses and mediators
in the maturation and secretion of cytotoxic granules. Studies of
cytotoxicity-deficient murine counterparts have helped to define primary HLH
as a syndrome in which uncontrolled T-cell activation in response to
lymphocytic choriomeningitis virus infection results in excessive macrophage
activation and inflammation-associated cytopenia. Recent recognition of
late-onset HLH, which occurs in a variety of settings, in association with
hypomorphic, monoallelic mutations in genes encoding components of the
granule-dependent cytotoxic pathway or even in the absence of such mutations
has broadened our view about the mechanisms that underlie the perturbation of
immune homeostasis. These findings have led to the development of a model
in which disease occurs when a threshold is reached through the accumulation
of genetic and environmental risk factors. Nevertheless, validation of this model
will require further investigations.
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Granule-dependent cytotoxic activity is a key regulator 
of immune homeostasis
The role of cytotoxic lymphocytes in defending the organism against 
virally infected cells and tumor cells has long been recognized. 
Through the polarized secretion of granules containing cytotoxic 
proteins, cytotoxic lymphocytes can rapidly kill their cognate target 
cells1. However, only recently have studies of inherited deficiencies 
of lymphocyte cytotoxic activity in humans highlighted the impor-
tance of lymphocyte cytotoxicity in the resolution of inflammation2.

Hemophagocytic lymphohistiocytosis (HLH) syndrome is a life-
threatening immune dysregulation condition characterized by an 
excessive inflammatory response and hypercytokinemia. It is gen-
erally triggered by an infective agent, such as the members of the 
human herpes virus family. HLH manifests as the massive expan-
sion and activation of polyclonal CD8+ T cells; this probably results 
from the failure of cytotoxic T lymphocyte (CTL) and natural  
killer (NK) cells to clear antigen-presenting cells (APCs) and there-
fore terminate an immune response3,4. Uncontrolled T-cell activation 
leads to macrophage activation, a pro-inflammatory cytokine storm, 
cytopenia, coagulopathy, multi-organ cellular infiltration, and organ 
dysfunction5–7. The link between cytotoxicity and lymphocyte 
homeostasis was first demonstrated 15 years ago, following the 
identification of perforin deficiency in a subgroup of patients with 
an inherited form of HLH (familial HLH, or FHL)2. Undoubtedly, 
this step was decisive in the characterization of the other causes of 
inherited HLH and in the identification of key effectors that medi-
ate the exocytic machinery in cytotoxic lymphocytes8,9. Naturally 
occurring or engineered mice with a similar cytotoxicity defect 
have proven to be very useful tools for further understanding the 
underlying pathophysiological mechanism4,10,11. The observation 
that a relatively mild cytotoxic defect can be associated with defec-
tive immune surveillance or atypical HLH onset or both has now 
raised the question of the underlying individual’s risk factors that 
are associated with a subtle cytotoxic defect to drive disease onset.

Studies of inherited defects of cytotoxicity have 
revealed critical effectors of cytotoxic granule 
exocytosis
The sequence of events by which T/NK cytotoxic lymphocytes kill 
targets is now fairly well characterized. When cytotoxic lymphocytes 
recognize their cognate target cells, they form a transient cellular 
conjugate and an immunological synapse (IS) at the area of cell-cell 
contact1,12. Within the very first minutes of target cell interaction, 
the actin network, which was previously positioned across the entire 
contact area, is progressively depleted from the center of the syn-
apse, as recently highlighted by the use of rapid, super-resolution 
imaging methods13–15. The microtubule-organizing centre (MTOC) 
rapidly moves toward the target cell, while the cytotoxic granules 
(containing the cytotoxic proteins perforin and granzymes) migrate 
along microtubules and cluster around the MTOC8,16. At the IS, the 
centrosome can touch the membrane and then deliver polarized 
cytotoxic granules17. The granules fuse with the presynaptic mem-
brane and secrete their contents into the synaptic cleft. This accu-
rate, polarized secretion of lytic reagents ensures that cytotoxic cells 
destroy only the bound target cell and not bystander cells. Within 
the synaptic cleft, perforin oligomerizes, creates pores in the target 
cell membrane, and thus enables the pro-apoptotic granzymes to 

access the target cytosol18–20. The mechanism of granzyme uptake 
has long been subject to debate. By using time-lapse microscopy 
techniques that pinpoint the moment at which perforin permeabi-
lizes the target cell plasma membrane within the IS, researchers 
observed that the time course of target cell apoptosis after pore 
formation is very rapid (that is, within 10 mins)21,22. In contrast 
to what has been proposed in other studies23–25, this suggests that 
granzymes cross the plasma membrane and are not taken up in 
endosomes.

In addition to perforin deficiency2, which accounts for about one third 
of the FHL cases, several inherited forms of HLH are characterized by 
failure to deliver cytotoxic granule contents. The identification of the 
underlying molecular causes has contributed to our understanding of 
the key steps in the secretion of cytotoxic granules at the IS8. Biallelic 
mutations in UNC13D (encoding Munc13-4, accounting for about 
one third of FHL cases), STX11 (encoding syntaxin 11, about 5% 
of FHL cases), and STXBP2 (encoding syntaxin-binding protein 2, 
also known as Munc18-2, about 20% of FHL cases) led to the occur-
rence of HLH in FHL types 3, 4, and 5, respectively26–29. In about 
10% of FHL cases, the molecular defect remains uncharacterized. 
Biallelic mutations in RAB27A (encoding the small GTPase Rab27a) 
and LYST (encoding lysosomal trafficking regulator) account for the 
development of HLH in Griscelli syndrome30 and Chédiak-Higashi 
syndrome31, respectively. Remarkably, each of these molecules 
mediates a discrete, non-redundant step in cytotoxic granule exo-
cytosis at the IS. Rab27a and Munc13-4 are respectively required 
for the granule docking and priming steps at the plasma membrane, 
whereas syntaxin 11 interacts with Munc18-2 to enable granules to 
fuse with the plasma membrane8. Although the role of LYST is less 
well understood, it may regulate a late granule maturation step32. 
The effector molecules’ partners and interconnections have been 
progressively characterized to reveal the overall picture of granule 
exocytosis. Notably, interaction between Rab27a and Munc13-4 
was shown to be mandatory for tethering the cytotoxic granules at 
the IS in order to complete the exocytic process33. Munc13-4 inter-
acts with several syntaxin isoforms, among them syntaxin 1134. 
Furthermore, Rab27a binds to three different members of the 
synaptotagmin-like (SLP1-3) family expressed in cytotoxic cells 
that have partially overlapping functions in granule transport and 
docking35–37.

It has been proposed that direct contact between polarized centro-
somes and the plasma membrane drives cytotoxic granule delivery 
at the IS17,38. However, there is evidence to suggest that alternative 
mechanisms are involved, such as the observation that very rapid, 
effective cytotoxic granule secretion can precede MTOC polariza-
tion in some CTL-target cell conjugates39. In the latter study, inhibi-
tion of MTOC polarization did not prevent cytotoxic granule release. 
Furthermore, the Slp3/Rab27a complex expressed in cytotoxic cells 
was shown to interact with a kinesin motor and to mediate the ter-
minal transport of polarized cytotoxic granules toward the IS35. In 
view of the diversity of in vivo settings in which cytotoxic cells 
are triggered, one can legitimately hypothesize that granule deliv-
ery may occur via several different routes. Indeed, recent research 
has shown that cytotoxic cells are heterogeneous and change 
their killing performance over time and as a function of antigenic 
stimulation40,41. Timescale studies of single NK cells or CTLs have 
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revealed a progressive increase in the rapidity and efficiency of kill-
ing during serial killing, which also varies according to the avidity 
of antigen recognition40,41. It remains not well understood how what 
has been shown in vitro applies in vivo, such as the nature of target 
cells and the strength of triggering signal.

The use of animal models to characterize the 
pathophysiology of hemophagocytic lymphohistiocytosis
Animal models of primary HLH in which cytotoxicity-deficient 
mice are challenged with a virus have proven to be invaluable for 
understanding the pathogenesis of HLH under defined conditions. 
It has been demonstrated that after lymphocytic choriomeningitis 
virus (LCMV) infection of perforin-deficient mice, hyperactive 
CTLs and high levels of interferon-gamma (IFN-γ) are the driv-
ing forces behind the development of fatal HLH4. LCMV’s potent 
induction of HLH might be due, at least in part, to its ability to 
infect APCs and thus strongly stimulate a T-cell response without 
the need for antigen cross-presentation. Likewise, Epstein-Barr 
virus (EBV), a major trigger of HLH in humans, can directly infect 
B cells, which also have an antigen presentation function and trigger 
prolonged antigenic stimulation when not eliminated by cytotoxic 
lymphocytes. In addition to viral priming, antigen persistence and 
prolonged presentation were shown to be critical in the development 
of primary HLH in murine models4,10. This appears to contrast with 
the onset of primary HLH in newborn infants or even fetuses with 
cytotoxicity defects, since a pathogen trigger cannot be identified in 
many cases42,43. Although as-yet-unknown microorganisms may act 
as the trigger, this observation suggests that, in contrast to the situ-
ation in mice, the granule-dependent cytotoxic pathway in humans 
also has a role in T-cell homeostasis in the absence of an external 
stimulus (as is also the case for the Fas/FasL pathway). It has been 
shown that the elimination of a rare, antigen-presenting dendritic cell 
(DC) population by CD8+ T cells in a negative feedback loop is a 
critical determinant of the magnitude of T-cell responses44,45. Thus, 
the elimination of specific APC populations probably determines 
the activation status and survival of hyper-reactive T cells and acts 
as a rheostat by limiting T-cell responses. Whether the granule-
dependent cytotoxic pathway is also participating to check self-
reactive T/B cells is therefore a possibility that needs to be further 
investigated.

In mice, the degree of cytotoxicity impairment appears to be the 
best predictor of the development and severity of HLH, as shown 
by studies of the time course of HLH onset in various HLH-prone 
strains with defects in the granule-dependent cytotoxic pathway10,46. 
The same is true in humans10,46 (Figure 1A). In genetically deter-
mined murine models of HLH, the cytotoxicity of both T cells and 
NK cells is impaired. However, in contrast to CD8+ T-cell deple-
tion, NK cell depletion in perforin-deficient mice did not prevent 
the development of manifestations of HLH4. CTLs were thus con-
sidered to be the main players in the development of HLH. How-
ever, recent work has revealed that T cells and NK cells have a 
non-redundant cytotoxic function in HLH: CTLs mediate LCMV 
viral clearance, whereas NK cells limit hyperactivation of CTLs11. 
This finding further suggests that the perforin-dependent cytotoxic 
activity of NK cells has a key role in the maintenance of immune 

homeostasis and the prevention of immunopathology47,48. How-
ever, the underlying mechanism through either direct or indirect 
T/NK cell interactions remains to be characterized. Furthermore, 
one cannot fully exclude the participation of other potentially cyto-
toxic cells such as invariant NK T (iNKT) cells and CD4+ T-cell 
subsets, including specific regulatory T (Treg) populations, in this 
setting. It is also worth noting that in syntaxin 11-deficient mice, 
which display a milder cytotoxic defect and less severe HLH 
than perforin-deficient mice, blockade of inhibitory receptors of 
T-cell exhaustion (such as PD1/PDL1) dramatically increases the 
severity of HLH and results in fatal disease49. This finding indi-
cates that T-cell exhaustion is another important modulator of 
HLH severity.

The in vivo failure of cytotoxic cells to eliminate target cells leads 
to a fatal cytokine storm, a hallmark of HLH. Previous research has 
shown that the threshold of T-cell activation determines whether a 
lytic synapse (which is induced at low antigen concentrations and 
which enables cytotoxic activity) or a stimulatory synapse (induced 
at high antigen concentrations and which enables both cytotoxic 
activity and IFN-γ production) is formed50. Remarkably, it was 
recently shown that cytotoxicity-deficient lymphocytes form longer 
contacts with their cognate target, thus resulting in many succes-
sive rounds of Ca2+ flux into cytotoxic cells and triggering of pro- 
inflammatory cytokine secretions51. Thus, the cytokine storm as 
observed in HLH likely depends on both quantity and quality of 
contacts formed between cytotoxic cells and APCs.

Phagocytosis of blood cells by macrophages (known as hemo-
phagocytosis) is another hallmark of primary HLH, although it can 
be observed in a variety of infectious or inflammatory disorders52. 
A study of perforin-deficient mice has revealed that IFN-γ specifi-
cally triggers this process, which can be reproduced in wild-type 
mice by inducing the sustained elevation of IFN-γ. Direct, IFN- 
γ-dependent activation of macrophages prompts the development of 
severe, consumptive anemia and other types of cytopenia, probably 
through direct changes in the macrophages’ endocytic uptake53. 
These results indicate that hemophagocytosis is actually an adapted 
response to sustained or severe inflammation. Further details on the 
role of macrophages and other inflammatory cells in the pathophys-
iology of HLH have been provided in recent reviews5,6,54.

Although cytotoxic lymphocytes exert a key role in the develop-
ment of primary HLH, other immune cells and signaling pathways 
may also contribute. It has been shown that MyD88, which medi-
ates Toll-like receptor (TLR) and interleukin-1 (IL-1) signaling, 
is required for HLH development in Unc13d-deficient mice, sug-
gesting that innate immune cells contribute to the development of 
HLH55. Moreover, high levels of IL-4 or repeated TLR9 stimula-
tion in wild-type mice can induce the development of an HLH-like 
syndrome56,57. Hence, proteins from the cytotoxic exocytic pathway 
may have additional functions in other immune cell types (such as 
inflammatory cells), the absence of which modulates the pathogen-
esis of HLH. More generally, any regulatory molecule involved in 
an inflammatory pathway might contribute to the development of 
the manifestations of HLH.
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Figure 1. Impact of various genetic and environmental risk factors on threshold of hemophagocytic lymphohistiocytosis (HLH) 
development. (A) A gradient of hemophagocytic lymphohistiocytosis (HLH) severity correlates with the defect in cytotoxic activity of 
lymphocytes that results from various genetic defects in humans and mice. Null mutations are considered in this image. (B) Evolving view 
of the risk factors inducing HLH development. Mild to extreme immune stimuli, in combination with severe (null) mutations, hypomorphic 
mutations, monoallelic mutation in several or one of the genes involved in HLH, appear to determine an individual’s risk for developing HLH. 
HLH risk lies above the red line in the hatched area.

What is the minimum level of cytotoxic activity 
required to preserve immune homeostasis?
Genetically determined forms of HLH can occur even when a cyto-
toxicity defect is only partial or apparently absent. This is the case 
in X-linked lymphoproliferative syndrome (XLP). Patients with 
XLP are extremely vulnerable to EBV infection and most go on to 
develop HLH58. There are two genetic forms: XLP-1 and XLP-2. 
Firstly, XLP-1 results from a deficiency in the signaling lymphocyte 
activation molecule (SLAM)-associated protein (SAP)59–61. SAP-
deficient CTLs and NK cells are selectively impaired in their cytotoxic 

response to infected B cells; the response requires interaction 
between SLAM family receptors and subsequent SAP-dependent 
signaling in T lymphocytes but not in other cell types62,63. Secondly, 
XLP-2 results from a deficiency in the X-linked inhibitor of apop-
tosis protein (XIAP) (also known as BIRC4)64. However, XIAP-
deficient CTLs and NK cells exhibit apparently normal in vitro 
cytotoxic responses (regardless of the SLAM-receptor depend-
ency). The cytotoxic activity of iNKT cells is known to be acti-
vated by EBV-infected B cells65. Indeed, the exacerbated apoptosis 
of XIAP-deficient iNKT cells, induced by EBV infection, might 
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be involved in the development of HLH in XLP-2. Alternatively, 
the mechanisms underlying EBV-driven HLH in XLP-2 may  
differ completely from those observed in XLP-1 and other inherited 
forms of HLH. In a setting of XIAP deficiency, the accumulation 
of apoptotic cells and the persistence of EBV-infected cells might 
trigger abnormal inflammation and contribute to the development 
of HLH. This hypothesis is supported by the observation that XIAP 
deficiency in mice results in excessive DC death and inflammasome 
activation66.

It is difficult to assess the minimal level of cytotoxic activity 
required for the maintenance of immune homeostasis. Hypomor-
phic mutations in HLH genes that preserve residual cytotoxic-
ity significantly delay the onset of HLH but predispose patients 
to hematological cancers67–69. Adult patients with HLH have 
been found to carry a monoallelic mutation in one or more FHL 
genes70–73. These findings suggest that the accumulation of het-
erozygous mutations that partially impair the granule-dependent 
cytotoxic pathway may have an additional functional impact. This 
hypothesis could be tested by studying inter-crossed animal mod-
els of HLH with monoallelic mutations. The concept whereby a 
monoallelic mutation in cytotoxicity-related genes can lead to 
immune disturbance also requires far more investigation, par-
ticularly in much larger cohorts of patients with induced HLH 
versus healthy controls. When the cytotoxicity defect is mild, the 
relative weight of additional genetic and environmental factors in 
HLH triggering is probably greater. It is tempting to speculate that  
(i) “extreme” stimuli may be sufficient to induce sporadic HLH 
development in any individual and (ii) the overall risk is augmented 
by the accumulation of genetic variants promoting excessive or 
poorly regulated immune response (Figure 1B). Along these lines, 
mutations in genes controlling inflammatory processes may also 
contribute to HLH. Recently, de novo activating mutations in the 
nucleotide-binding domain of inflammasome component NLRC4, 
associated with high levels of inflammatory cytokines in general 
and of IL-18 in particular, were found to be linked to recurrent 
HLH74–76. Since impaired cytotoxicity was not detected in that 
setting, this finding highlights the role of additional molecules 
in the pathophysiological process leading to HLH. By coupling  

next-generation sequencing to animal model studies, it should 
now be possible to determine whether HLH can be a polygenic 
condition in adults.

Concluding remarks
Over the last few decades, characterization of the molecular bases of 
primary HLH has highlighted the critical role of CTL activity in the 
control of immune homeostasis and has identified key effectors of 
cytotoxic granule exocytosis and their specific functions along the 
cytotoxic pathway. Broader knowledge of the scope of HLH occur-
rence has prompted the hypothesis whereby HLH is a “threshold” 
disease. A combination of both genetic factors and environmental 
factors (infections, self-antigens, and so on) is needed for the devel-
opment of HLH in a context of residual cytotoxicity. Some cases of 
HLH do not appear to be directly related to a cytotoxicity defect, 
indicating that other genes, notably involved in macrophage-related 
inflammation, regulating the same disease pathway also have a role. 
Characterizing the synergistic connections between the various risk 
factors for HLH will be a key challenge in the coming years.
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