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Abstract: This qualitative review on rotavirus infection and its complications in the central nervous
system (CNS) aims to understand the gut–brain mechanisms that give rise to CNS driven symptoms
such as vomiting, fever, feelings of sickness, convulsions, encephalitis, and encephalopathy. There is
substantial evidence to indicate the involvement of the gut–brain axis in symptoms such as vomiting
and diarrhea. The underlying mechanisms are, however, not rotavirus specific, they represent
evolutionarily conserved survival mechanisms for protection against pathogen entry and invasion.
The reviewed studies show that rotavirus can exert effects on the CNS trough nervous gut–brain
communication, via the release of mediators, such as the rotavirus enterotoxin NSP4, which stimulates
neighboring enterochromaffin cells in the intestine to release serotonin and activate both enteric
neurons and vagal afferents to the brain. Another route to CNS effects is presented through systemic
spread via lymphatic pathways, and there are indications that rotavirus RNA can, in some cases
where the blood brain barrier is weakened, enter the brain and have direct CNS effects. CNS effects
can also be induced indirectly as a consequence of systemic elevation of toxins, cytokines, and/or
other messenger molecules. Nevertheless, there is still no definitive or consistent evidence for the
underlying mechanisms of rotavirus-induced CNS complications and more in-depth studies are
required in the future.

Keywords: rotavirus; disease symptoms; central nervous system; enteric nervous system; gut–brain
communication; gastroenteritis

1. Introduction

In children under the age of five, rotavirus is the most common causative agent of
severely acute gastroenteritis worldwide [1,2]. The major symptoms of rotavirus infection
of the small intestine are diarrhea and vomiting, which can cause rapid dehydration in
young children and even lead to organ failure and death. Although rotavirus infects the
small intestine, most of its symptoms, such as vomiting, sickness feeling, fever, loss of
appetite, and fatigue, indicate signaling via the central nervous system (CNS). In fact, brain–
gut communication in rotavirus infection [3,4] is suggested to play an important role in its
major symptoms [5,6]. Additionally, there is growing evidence of CNS complications, such
as convulsions, encephalitis, and encephalopathy, that may be associated with rotavirus
infections [7–9]. Yet, definitive and consistent evidence of the underlying mechanisms
are largely lacking, making it difficult to review and explain how the pathogen causes
these various CNS associated symptoms. This review therefore aims to create a better
understanding of CNS complications caused by rotavirus infection, by exploring published
literature on rotavirus infections and CNS symptoms.

2. Histopathological Mechanisms of Rotavirus Infection

Rotavirus infects enterocytes in the small intestine, where the virus exhibits tropism
towards mature enterocytes and only infects the middle and top portions of the villi [10].
Rotavirus also infects sensory enterochromaffin (EC) cells [11,12], but these cells are few,
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less than 1% of the intestinal epithelium [13]. Histopathological analysis has demonstrated
vacuolization of the enterocytes and shortening and blunting of villi in the rotavirus-
infected intestine [14,15].

3. Brain–Gut Communication in Rotavirus Infection

The cellular changes observed in the rotavirus-infected intestine appear before the
onset of symptoms and resolve before viral clearance; this indicates that the onset of
diarrhea and vomiting might be caused by mechanisms other than direct pathological
effects [16]. Several hypotheses for the mechanism by which rotavirus could induce
diarrhea have been proposed, such as villus ischemia, reduced absorptive capacity of
the enterocytes, effects of the rotavirus enterotoxin non-structural protein 4 (NSP4), and
activation of the enteric nervous system (ENS) [17].

During rotavirus replication in enterocytes, the enterotoxin NSP4 is produced and
released. NSP4 stimulates neighboring EC cells to release serotonin and activates nerves
within the ENS as well as vagal afferents to the brain [11], causing diarrhea and vom-
iting [18–22]. Serotonin is a mediator involved in intestinal motility [19,23–25], secre-
tion [21,22,26], pain sensation [27–29], regulation of inflammation [30,31], and activation
of the vagus nerve will propagate the signal to the brain and elicit, e.g., vomiting [20,32].
These findings indicate the important role of the mediators, such as NSP4 and serotonin,
but also the gut–brain axis, to explain rotavirus symptom mechanisms.

4. Role of the ENS in Rotavirus Infection

The first study to investigate the role of the ENS in rotavirus disease was published by
Lundgren et al. two decades ago [33], who by applying drugs that inhibit ENS functions
on an in vivo mice model, confirmed that rotavirus induces intestinal fluid and electrolyte
secretion by ENS activation. The ENS and intestinal epithelium cells are in close contact
with the vagal nerves [34]. About 80–90% of these vagal nerves are afferents that project
from the gut and send sensory information to the brain. The remaining 10–20% of the
vagal nerves are efferents projecting to the periphery to modulate various effects [35].
From an evolutionary point of view, symptoms of rotavirus infection are not specific to
the pathogens per se but are rather generated as general protective mechanisms to combat
infections and eliminate pathogens and their toxins [36].

5. CNS Complications in Rotavirus Infection

The first study to connect rotavirus infection and the CNS was published by Salmi et al.
in 1978 [37] presenting two clinical cases of children with rotavirus gastroenteritis, where
one had developed a fatal Reye’s syndrome and the other one encephalitis with a slow
recovery. Since then, rotavirus-induced CNS involvement has, in young children, been
associated with seizures/convulsions [9,38–40], meningitis [41], encephalitis [37,42,43],
hemorrhagic shock [44], Guillain–Barré syndrome [45–47], cerebellitis [48–54], and en-
cephalopathy [37,55,56]. The actual frequency of these CNS symptoms remains unclear
but has been estimated to be between 2% and 6% [7,57–59]. Nevertheless, the mechanisms
by which rotavirus causes the CNS effects are still under debate.

Rotavirus antigen (antigenemia) and free unenclosed genomic RNA are commonly
(65% of cases) detected in the serum of children with rotavirus diarrhea [60], and viremia
have also been reported [60–62]. Case reports from immunodeficient children with rotavirus
gastroenteritis have described the detection of rotavirus RNA in organs such as the liver,
kidneys, and the CNS [63,64]. Rotavirus antigen has also been detected in cerebrospinal
fluid (CSF) of children with mild or severe convulsions, or encephalitis [39,41–43,55,65–68].
Additionally, nucleotide sequencing revealed an identical rotavirus strain in the stool and
CSF samples of a patient with concurrent rotavirus gastroenteritis and signs of CNS com-
plications; a finding that implies that rotavirus was able to spread from the gastrointestinal
tract to the CNS, where it probably played a role in the onset of neurological disease [69].
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Studies using diffusion-weighted imaging also suggest a connection between ro-
tavirus infection and white matter injury (WMI), however, without direct invasion of
the CNS [70,71]. Cerebral WMI is recognized as the most common form of injury in the
developing brain of neonates and is also thought to be associated with seizures. Rotavirus,
enterovirus, and parechovirus have been found in newborns with WMI [70], but in contrast
to enterovirus and parechovirus, rotavirus was not found in the CSF, and CSF pleocytosis
was not detected in rotavirus-infected children with WMI. Moreover, fever and rashes, as
responses to inflammation, are rare in neonates suffering from WMI and rotavirus infection.
Activation of brain microglia, excitotoxicity, and free radical attack has been suggested to
be the downstream event to systemic infection, and inflammation leading to WMI [72].
However, since rotavirus was not detected in CSF [40,73,74] and inflammatory cells were
not detected in the CSF and the brain [73], the mechanism for how rotavirus may cause
WMI in neonates remain unclear.

6. Pathophysiology of CNS Complications

The rotavirus enterotoxin NSP4 is considered to be one of the mediators causing
neurological complications [75]. Rotavirus has been shown to infect neuronal cells in vitro,
and viral proteins has been identified in both axons and dendrites [76]. These findings
indicate that rotavirus might be able to invade the CNS and have a direct effect or replicate
and induce neurotransmitter dysregulation. This hypothesis is, however, somewhat contro-
versial, since rotavirus RNA is not always detected in the CSF. Another hypothesis is that
mediators in circulation, such as prostaglandins [77], cytokines [49,78,79], reactive oxygen
species [80], rotavirus RNA, or NSP4, may act as secondary messengers and indirectly
induce CNS effects. Additionally, increased levels of excitatory amino acids have also been
found in the CSF, which may induce neurological disorders and are possibly related to the
severity of the disorder [81].

Following oral inoculation of murine rotavirus in mice, rotavirus-specific proteins
have been detected in macrophages and B-cells in gut-associated lymphoid tissue [82],
providing the lymphatic system as yet another route for extra-intestinal spread.

The blood–brain barrier (BBB) consists of highly selective semipermeable border of
endothelial cells that, under normal conditions, prevents direct entry of solubles into the
CNS and thereby protects the brain from injury [83]. However, several regions of the CNS,
such as the area postrema (AP), subfornical organ, pineal gland, and median eminence
of the hypothalamus, collectively known as the circumventricular organs (CVOs), have
fenestrated capillaries that lack conventional BBB properties and enable some vascular
permeability. These regions could provide a doorway, from where blood-borne rotavirus
could enter the brain. During disease, several molecular factors, including inflammatory cy-
tokines (TNF-α, IL-1, and IL-6) and reactive oxygen species, can cause BBB dysfunction [83].
These mediators have also been shown to be increased during rotavirus infection [84,85].
Rotavirus genomes have been discussed to pass the BBB with increased vascular permeabil-
ity during convulsions or through infection of neuronal cells and release into the CSF [86].
However, the causality of these observations remains obscure. As rotavirus is not always
found in the CSF, it has been suggested that it either only exists for a very short time in the
CSF or it is present in concentrations below detection limit [84].

Several mechanisms have been proposed to explain the CNS complications of rotavirus
infection, see Figure 1. However, conclusive evidence linking rotavirus and the CNS are
largely lacking and many aspects of the pathophysiology remain elusive.
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Figure 1. Schematic representation of possible routes by which rotavirus infection can affect the brain
to give rise to central nervous system (CNS)-associated symptoms. From very early on, infection-
induced released mediators like rotavirus enterotoxin nonstructural protein 4 and serotonin can
activate nerves (I) that propagate the signal to the brain. In hosts suffering from malnutrition, im-
munosuppression, or immunodeficiency, virus/-antigen/-RNA may enter the bloodstream and/or
the lymphatic system, and together with dysfunction in the blood brain barrier there is a possi-
bility that they directly enter the brain (II) to cause less prevalent symptoms like encephalitis or
encephalopathy. However, evidence that rotavirus enters the brain is lacking. Finally, infection-
induced systemic elevation of rotavirus-antigens or -RNA, toxins, cytokines, and/or other messenger
molecules may indirectly (III) affect the brain. Routes are not exclusive and could overlap or occur at
different timepoint in the same host. Hour glasses represent time lapse post infection. Less common
symptoms represented by smaller arrows and text.
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7. Conclusions

Symptoms such as nausea, vomiting, pain, and sickness feeling are commonly asso-
ciated with rotavirus gastroenteritis and likely to involve the CNS. Currently reviewed
literatures strengthen this view and clearly indicate the CNS in the underlying mechanisms
of rotavirus symptoms. The literature provide evidence for three different routes by which
rotavirus infection could activate the brain and give rise to various CNS symptoms (see
Figure 1).

1. Nervous route. At the site of infection in the intestines, released mediators such
as NSP4 and/or serotonin can activate the ENS and vagal afferents that, through
nervous communication, signal to the brain. This nervous pathway is direct, fast, can
occur early in the course of the disease, and is not interrupted by defense mechanisms
like the BBB.

2. Direct invasion. In a host that suffers from malnutrition or immunodeficiency and
exhibit e.g., dysfunction in the BBB, virus can potentially enter the brain. The virus
can also enter the lymphatic system, from where it is spread to other organs, including
the CNS. This route obviously requires a weakened host and can only occur later in
the course of the disease when the virus has already replicated several rounds and
virions are present in high titers. However, the causality of direct invasion remains
obscure since rotavirus cannot always be found in CSF.

3. Second messengers. Systemic elevation of toxins, cytokines, and/or other messen-
gers can indirectly induce CNS effects. This kind of CNS response is per defini-
tion occurring later in the course of the disease and is likely part of a coordinated
immune response.

Naturally, these routes are not exclusive and could all occur in the same host.
The broad function of the CNS is to maintain homeostasis by interpreting sensory

information and creating motor responses. Protecting the host from pathogenic invasions
is part of this broad function, and there is an evolutionary drive for the CNS to respond to
pathogens accordingly. For example, fever is evolved as an organized strategy to combat
viral and bacterial infections [87]. Similarly, vomiting is another strategy for the host to
rapidly get rid of infected and/or toxic food. Food intake is a risky behavior that exposes
the host to viral and bacterial pathogens and toxins [5]. The ability to rapidly, via gut–brain
communication, identify a threat and activate diarrhea and vomiting, and subsequently
to flush out toxins and pathogens and reduce exposure and risk for uptake, provides an
evolutionary advantage that is not specific to rotavirus infection.

Invading pathogens, other exogenous factors, or factors produced by cells within
the brain can cause neuro-inflammation, which is orchestrated through the activation of
microglia, astrocytes, neurons, endothelial cells, and pericytes [88]. On activation, glial cells
and neurons closely interact with each other and communicate to regulate barrier properties
and inflammatory responses. In fact, the endothelium–microglia interface constitutes the
first line of defense of the CNS against injury [88]. The permeability of the BBB is increased
in some children during rotavirus infection. Thus, in children exhibiting CNS effects such
as convulsions, encephalitis, and encephalopathy, the virus or viral antigen may have
entered the nerves or bloodstream and caused direct or indirect effects on the CNS [89].

The vagal nerves, which represent the gut–brain connection, have been shown to
regulate permeability [90] and inflammation [91–94]. Similarly, enteric glia cells in the gut
have been shown to regulate intestinal inflammation and permeability [95–97], and it is
believed that microglia cells in the brain may have similar functions [98]. Therefore, based
on these findings, the CNS effects in young children could be due to a low vagus nerve
tone or by mechanisms that weaken barrier function.

Despite the multitude of evidence for the involvement of the CNS in rotavirus patho-
physiology, defined pathways and the mechanistic explanation of most symptoms are still
absent. This lack of causal links is partly due to technical limitations, making it difficult
to detect and to conduct the required holistic investigations in two large organs at great
distance afar. However, emerging new techniques such as 3D imaging of whole organs
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at cell resolution and co-cultivation of enteroids or organoids with enteric glia cells and
neurons provide new opportunities to investigate and connect the components that drive
gut–brain communication during viral infections. Such knowledge will provide a better
understanding of rotavirus pathophysiology and enable the development of more specific
and efficient therapies in the future.
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