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Abstract: Microalgae exhibit great potential for recombinant therapeutic protein production,
due to lower production costs, immunity to human pathogens, and advanced genetic toolkits.
However, a fundamental aspect to consider for recombinant biopharmaceutical production is
the presence of correct post-translational modifications. Multiple recent studies focusing on
glycosylation in microalgae have revealed unique species-specific patterns absent in humans.
Glycosylation is particularly important for protein function and is directly responsible for recombinant
biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in
microalgae before these organisms can be established as industrially relevant microbial biofactories.
Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae,
experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups,
established approaches for glyco-engineering, and perspectives for their application in microalgal
systems. The insights from this review may be applied to future glyco-engineering attempts to
humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional
biopharmaceuticals from microalgae.
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1. Introduction

Biopharmaceuticals are biological macromolecules that exhibit therapeutic actions in humans.
This group of compounds includes essential molecules such as antibodies, hormones, and vaccines [1].
More than 60% of commercialized biopharmaceuticals are recombinant proteins [2], which are
produced in genetically engineered host cells defined as biofactories [3]. Biofactories can include a
broad spectrum of host organisms spanning from prokaryotic to eukaryotic cells and support a US$140
billion biopharmaceuticals market [4].

Currently, the host cell systems Escherichia coli (bacteria), Saccharomyces cerevisiae and Pichia
pastoris (yeast), and Chinese hamster ovary (CHO) cells (mammalian) dominate the production of
biopharmaceuticals, with the mammalian CHO cells covering >50% of the market [5]. However, these
four cell systems have several disadvantages, including species-specific issues related to the nature of
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each biofactory. E. coli often incurs translational errors, accumulates inclusion bodies, and completely
lacks the eukaryotic organelles and machinery necessary to produce fundamental post-translational
modifications (PTMs) [6]. Challenges with using yeasts include inadequate protein secretion and
incorrect protein PTMs [7,8]. Biopharmaceutical production with CHO cells is expensive because of
the complex culturing requirements associated, difficult to scale, and susceptible to contamination
with human viruses and prions [9,10]. These complications have prompted efforts to optimize these
systems as well as identify more suitable host cell lines. In this context, microalgae have emerged as
attractive novel expression systems for biopharmaceutical production.

Chlamydomonas reinhardtii (Chlorophyceae) has historically been the model microalgal species
for biotechnological innovations [11], due to its advantageous biological features [12,13]. However,
other species are increasingly being evaluated for their capacity to produce recombinant proteins.
Microalgae including Chlorella sp. (Trebouxiophyceae) [14,15], Dunaliella salina (Chlorophyceae) [16],
Nannochloropsis oculata (Eustigmatophyceae) [17,18] and the diatom Phaeodactylum tricornutum
(Bacillariophyceae) [19] have been reported to successfully express biopharmaceuticals.

A major challenge with producing biopharmaceuticals in non-human cells is obtaining correct
post-translational modifications (PTMs) of the recombinant protein. Since each host cell system
possesses its own unique protein processing machinery at a translational and post-translational level,
the same recombinant protein produced in different cell systems can display different and unique
PTMs [20–24]. PTMs such as phosphorylation, acetylation, methionine oxidation, asparagine and
glutamine deamination, proteolysis, disulphide bond formation, and glycosylation all play a significant
role in stability, functionality, and activity of proteins [25]. Among these, glycosylation is a major PTM
that is found on more than 50% of human proteins [26]. In biopharmaceutical production, over 40% of
approved therapeutic proteins are glycosylated, highlighting the importance of understanding and
controlling the glycosylation mechanism of non-human expression systems [27,28].

The cellular mechanisms that determine protein glycosylation patterns are complex and vary among
different eukaryotic species [29]. Given the significant influence of glycosylation on yield, efficacy,
pharmacokinetics, and immunogenicity of recombinant therapeutic proteins, it is essential to choose the
right host expression system to successfully produce a functional biopharmaceutical [30]. Additionally,
sub-optimal glycosylation of recombinant proteins can be overcome using glyco-engineering strategies [31].
Glyco-engineered biopharmaceuticals will present “humanized” glycans that will not be immunogenic to
humans [4].

In this review, we provide a brief overview of various host systems, with a focus on the advantages
and disadvantages of microalgae as biofactories for the production of recombinant therapeutic proteins.
We also discuss strategies to overcome the challenges, with a focus on microalgae glycosylation
status and its comparison to human glycosylation. Lastly, we assess the prospect of applying
glyco-engineering techniques to optimize recombinant biopharmaceutical production in microalgal
host systems.

2. Production of Biopharmaceuticals in Alternative Hosts

Due to improvements in genetic engineering technologies and recombinant protein expression,
the repertoire of biopharmaceuticals produced in biofactories is expanding. Increased capability
to replicate the functional characteristics of larger, more complex proteins [32] has broadened the
range of potential biopharmaceutical applications, including treatments for cancer and autoimmune
diseases [33]. This is particularly evident for antibodies [32], which have been replicated in various
forms including single-chain fragment variables (scFvs) [34] and antigen-binding fragments (Fabs) [35],
amongst others. The choice of biofactory is primarily based on the type of biopharmaceutical
(e.g., functional multi-domain mammalian proteins cannot be produced in bacteria as they require
specific PTMs), but other factors such as production costs, yields, time to market, and the safety
of the patient are also considered when selecting an expression host. The recent production of a
biopharmaceutical used as a treatment for the Ebola virus in Western Africa has proven that plants
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(in this case Nicotiana benthamiana) can be a powerful alternative to common expression systems,
especially for rapid and low-cost production of antibodies using technologies that are relatively simple
to implement in developing countries [36–38]. Among the multitude of alternative expression hosts,
photosynthetic systems have emerged with high potential to offer a rapid and cost-effective alternative
to traditional hosts. The previously described traditional biofactories are all heterotrophic systems and
rely on the addition of organic carbon sources to the culture media, whilst photosynthetic organisms can
generate biomass using CO2 and light, lowering not only carbon footprint but also media complexity
and costs associated with recombinant protein production. In recent decades, plant cells and microalgal
organisms have been analysed for their promising role as photosynthetic host systems, with the latter
being the focus of this review.

3. Microalgal Biofactories

Microalgae are unicellular photosynthetic organisms found in both terrestrial and aquatic
environments [39]. The potential of microalgae to produce natural products with commercial value,
ranging from food additives and health supplements to biofuels and cosmetics, has currently become
widely recognized [40]. Recent advances in genetic engineering have enabled expression of many
recombinant biopharmaceuticals in microalgal hosts (Table 1).

Microalgal biofactories possess many unique advantages. Like plants, microalgae can be cultivated
in large areas and require a lower up-front investment compared to bacterial or mammalian cell
systems [41]. Additionally, microalgae do not harbor human pathogens and some species are generally
recognized as safe (GRAS) [12]. They are easy to cultivate in bioreactors, and thus are less prone to
airborne contamination issues [12]. Moreover, microalgae have higher growth rates and less complex
media requirements compared to plants, and therefore potentially lower production costs [10–12].
Furthermore, microalgae are unicellular organisms that lack functional parts such as roots and
leaves, making recombinant biopharmaceuticals production more uniform within the same batch and
diminishing the energy and resources needed to generate additional biomass [12].

One of the better characterized and widely exploited microalgae for recombinant protein production
is the biflagellate chlorophyte C. reinhardtii [42]. This species has become the model algae to explore and
understand the biological processes occurring within the green microalgal lineage due to an advanced
genetic toolkit and the availability of fully sequenced nuclear and organellar genomes [12]. C. reinhardtii is
now the most comprehensive microalgal platform for expression of recombinant proteins with promising
industry applications in the bioenergy, biopharmaceutical, biomaterial, and nutraceutical sectors [11,43].
A recent toxicology study demonstrated that C. reinhardtii biomass is safe for human consumption [44],
and although C. reinhardtii-derived products are not yet commercially available, extensive research on
large-scale cultivation is bringing it closer to reality [45].

Recombinant protein production in C. reinhardtii has been achieved by engineering both the
chloroplast and nuclear genomes. In the chloroplast, the level of transgenic expression can reach 20%
of total soluble protein (TSP) [10]. However, recombinant proteins expressed in the chloroplast are
retained inside the plastid and cannot be secreted [46]. Therefore, recombinant proteins expressed
in the chloroplast are unable to pass through the secretion route via the endoplasmic reticulum and
the Golgi apparatus, and cannot be subjected to fundamental PTMs such as glycosylation [12,46].
Hence, chloroplast expression is only suitable for non-glycosylated proteins. Recombinant proteins
expressed from the nucleus, on the other hand, can be targeted to the secretion route by adding specific
signal peptides to the recombinant amino acid sequence, resulting in secretion and glycosylation of the
recombinant protein [10]. Unfortunately, nuclear expression results in very low yields, due to random
integration, low transformation efficiency, and gene silencing mechanisms [46,47].
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Table 1. Twenty years of recombinant biopharmaceutical production in microalgae.

Organism Organelle Protein Reference

C. reinhardtii Chloroplast E7 of HPV-16 [48]
D2-CTB [49]
α-galactosidase [50]
Phytase [50]
Xylanase [50]
Pfs25 [51]
Pfs28 [51]
Pfs25-CTB [52]
E2 [53]
Pfs48/45 [54]
M-SAA [55]
Anti-HSV glycoprotein D Isc [56]
12FN3 [57]
Erythropoietin [57]
HMGB1 [57]
Interferon β [57]
Proinsulin [57]
SAA-10FN3 [57]
VEGF [57]
Allophycocyanin [58]
VP1-CTB [59]
V28 [60]
Anti-PA 83 anthrax IgG1 [61]
Anti-CD22-gelonin sc [62]
Anti-CD22-ETA sc [63]
GAD65 [64]
TRAIL [65]
Phytase (AppA) [66]
Metallothionein-2 [67]

C. reinhardtii Nucleus Human Epidermal Growth Factor [68]
VEGF-165 [69]
GBSS-AMA1 [70]
GBSS-MSP1 [70]
Erythropoietin [42]
Sep-15 [71]
Lolium Perenme IBP [72]
β-1,4-endoxylanase [73]

C. vulgaris Nucleus Human growth hormone [14]
C. sorokiniana

C. ellipsoidea Nucleus mNP-1 [15]
NP-1 [74]
Flounder growth hormone [75]

D. salina Chloroplast α-galactosidase [50]
Phytase [50]
Xylanase [50]

D. salina Nucleus V28 [76]
HBsAg [16]

P. tricornutum Nucleus Anti-Hepatitis B IgG [19]
Anti-MARV NP IgG [77]

N. oculata Nucleus Bovine lactoferricin (LFB) [18]
Nucleus Flounder growth hormone [17]
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As increasing knowledge and genetic tools become available, other microalgae species have
been exploited for recombinant protein production, including monoclonal antibodies, hormones, and
enzymes. Several species, including Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea, D. salina,
N. oculata, and the diatom P. tricornutum have been successfully used to express biopharmaceuticals
(Table 1). In particular, P. tricornutum has gained noticeable importance due to the ability to secrete
fully functional IgG antibodies [19]. An overview of the recombinant biopharmaceuticals produced in
microalgae over the last two decades is presented in Table 1.

Few recombinant biopharmaceuticals produced in alternative host systems have successfully
passed clinical trials and reached commercialization status [2,78]. One is ELELYSO®, a recombinant
glucocerebrosidase produced in carrot cells and approved for Gaucher’s disease treatment by FDA in
2012 [2,79]. The second one is ZMapp, an antibody cocktail administered during the Ebola virus outbreak
in Western Africa [36–38]. One component of ZMapp (cZMAb) was produced in N. benthamiana [37,38].
Recently, two new antibody therapies outperformed ZMapp, leading to a different approved therapy
for the Ebola virus [80]. Microalgal biopharmaceuticals are still absent from the market, mainly due to
the low yields of recombinant proteins obtained from these biofactories [46,47].

4. Post-Translational Modifications and Glycosylation

Post-translational modifications (PTMs) are chemical modifications of a protein during or after its
synthesis within the cell. Amino acids, the building blocks that define the physio-chemical structure
and functionality of a protein, can be altered by more than 250 different PTMs [81]. The repertoire of
PTMs is very complex, considering that 15 out of the 20 common amino acids can be modified [82].
More than 5% of the total human genome encodes for enzymes involved in PTMs, including those
involved in phosphorylation (kinases and phosphatases), acetylation (acetylases and deacetylases), and
glycosylation (glycosyltransferases) [27]. Protein PTMs, together with alternative RNA splicing and
translation, enhance molecular diversification of gene products and participate in a complex system to
regulate the physiology of eukaryotic cells [27,83].

PTMs such as phosphorylation, glycosylation, and nitration are involved in important cellular
processes [84]. For example, phosphorylation can operate as switches to modulate specific catalytic
activities of the protein [85]. Another function of PTMs is to mark proteins for degradation by
ubiquitination [85]. PTMs can also act in response to external stimuli, for example, when a cell is
subjected to biological stress it can activate proteins with specific PTMs to counteract the stress [86].
Of the many PTMs relevant to biopharmaceutical production, glycosylation plays a major role.
In fact, glycosylation is found on more than 50% of human proteins [26], and on more than 40% of
approved recombinant biopharmaceuticals, highlighting the importance to understand and control the
glycosylation mechanism of non-human expression systems [27,28].

Glycosylation refers to a covalent bond between a polysaccharide chain and an amino acid, formed
during translation of the protein. The two most frequent types of glycosylation are N-linked and
O-linked glycosylation. N-linked glycosylation is characterized by the formation of a covalent bond
between the glycan and the amidic group of an asparagine (Asn) residue. O-linked glycosylated
proteins have the glycan linked to the hydroxyl component of a serine (Ser) or a threonine (Thr) residue.
Glycosylated proteins and glycan structures strongly regulate fundamental biological processes within
the cell, such as cell adhesion, self/nonself recognition, molecular trafficking and clearance, receptor
activation, and endocytosis [87].

Glycosylation significantly enhances yield, folding, efficacy, and pharmacokinetics of recombinant
biopharmaceuticals [30]. During recombinant protein production, non-human host organisms can
attach glycan residues (monosaccharides) that would be absent on the human endogenous protein,
potentially resulting in lower yields, incorrect folding, and inefficacy of the biopharmaceutical [10]. For
example, glycosylation plays a fundamental role in activity of antibody-based therapeutics [88]. In fact,
antibodies can target and kill hostile cells by antibody-dependent cellular cytotoxicity (ADCC) or
complement-dependent cytotoxicity (CDC) mechanisms, and both ADCC and CDC are directly related
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to glycosylation presence and status of the antibody [89–91]. Therefore, an antibody carrying incorrect
glycosylation might show diminished activity. Moreover, correct glycosylation and proper folding
also affect immunogenicity and antigenicity of recombinant biopharmaceuticals. Immunogenicity is
the capability of a molecule to trigger an immune response in the patient, whilst antigenicity is the
ability of a molecule to bind immune system products. Therefore, an antigen is not necessarily an
immunogen, whilst an immunogen is inevitably an antigen. Immunogenic biopharmaceuticals can
trigger an immune response in the patient resulting in accelerating clearance during therapy or, in some
rare cases, life threatening complications [92]. Glycans can trigger an immunogenic reaction either
indirectly or directly. Glycosylation can have an indirect effect on immunogenicity by influencing
therapeutic proteins folding, solubility and structural stability [93]. In fact, incorrect or no glycosylation
can alter the secondary/tertiary structure and/or prompt aggregation of therapeutic proteins, factors
breaking the immune tolerance of the patient. Moreover, specific non-human residues can be directly
recognised as exogenous by the patient immune system and trigger an immunogenic response [94].
At least four non-human glycans have been identified as being able to induce an immune response
in humans. These residues are: α-Gal, Neu5Gc, β(1,2)-xylose and α(1,3)-fucose [93]. The α-Gal and
Neu5Gc residues are present in therapeutics produced in mammalian cells such as CHO cells, while
β(1,2)-xylose and α(1,3)-fucose are present in plant and microalgal-produced glycoproteins [93]. Given
the crucial role of glycosylation in folding, activity, and immunogenicity of biopharmaceuticals, it
is essential to understand the glycosylation capabilities of a chosen biofactory to produce properly
folded, effective, and safe recombinant therapeutics.

4.1. N-Glycosylation

N-glycosylation requires a strict consensus sequence, where the amino acid sequence must be
Asn-Xxx-Ser/Thr [95], where Xxx can be any amino acid other than proline (Pro). Further studies
expanded this sequence to a less frequent, but still relevant, Asn-Xxx-Cysteine (Cys), Asn-Xxx-Valine
(Val), and Asn-Glycine (Gly) [96].

N-glycosylation begins in the endoplasmic reticulum (ER), where a biosynthetic precursor, a dolichol-P-
P-linked oligosaccharide (comprised of 3 glucose (Glu), 9 mannose (Man) and 2 N-acetylglucosamine
(GlcNAc) residues) is transferred to Asn residues in nascent polypeptide chains (Figure 1). The glycan
is then subjected to further enzymatic maturation as part of a quality control by chaperones (calnexin
and calreticulin). The newly formed glycoprotein is then transferred to the Golgi apparatus and
further modified by many different glycosyltransferases, until reaching final maturation. N-glycans
across different eukaryotic organisms present a common structure called the “pentasaccharide core”
(2 N-acetylglucosamine (GlcNAc) and 3 mannose (Man) residues) [10,97] (Figure 1). The rest of the
residues will attach onto the final two Man of the pentasaccharide core, thus creating two polysaccharide
antennae. However, unlike the well-conserved pentasaccharide core, the rest of the N-glycan structure
vastly varies amongst eukaryotes. In fact, the final maturation of the glycan in the Golgi apparatus by
different glycosyltransferases is a species-specific mechanism and is the source of different glycosylation
patterns among eukaryotic organisms [98,99] (Figure 1).

In humans, depending on how the two terminal Man residues are elongated, three different
specific N-glycans structures are possible: (i) “oligo-mannose” glycans containing only mannose residues,
(ii) “hybrid” glycans with mannose residues on one antenna and mixed monosaccharides on the
second antenna, and (iii) “complex” glycans with mixed monosaccharides on both antennae [100].
As a glycoprotein enters the Golgi, it is N-linked to 8/9 Man and 2 GlcNAc. This chain is reduced
to 5 Man and 2 GlcNAc by an enzyme called α-mannosidase I (α-Man I) (Figure 1). Then, the
N-acetylglucosaminyltransferase I (GnT I) plays a key role by transferring one N-acetylglucosamine
residue on the α(1,3)-mannose arm of the 5 Man and 2 GlcNAc N-linked protein. This structure (1 GlcNAc,
5 Man and 2 GlcNAc) is the starting point for both “hybrid” and “complex” structures (Figure 1). From that
point on, many different glycosyltransferases will build the complete pattern of the N-glycoprotein [101].
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Figure 1. A schematic of N-glycosylation patterns found in (A) humans, (B) established biofactories
including yeasts, plants, CHO cells, and (C) specific N-glycosylation patterns in microalgae. Glycans
shown for (A) humans and (B) established biofactories are only illustrative and do not represent the
totality of possible glycoforms obtained from these organisms. Differences in specificity of yeast,
CHO, plant, and microalgal Golgi glycosyltransferases and glycosidases lead to variations in the final
glycosylation profiles compared to humans. Consequently, glycans N-linked to recombinant proteins
produced in these biofactories differ from native human proteins, necessitating glycan engineering to
produce efficient and safe biopharmaceuticals in these alternative host systems. Green circle = Mannose.
Blue circle = Glucose. Yellow circle = Galactose. Blue square = GlcNAc. White diamond = Neu5Gc.
Me = Methylated residue. Fuchsia diamond = Sialic acid. Purple star = Xylose. Red triangle = Fucose.
α-Man I = α-mannosidase I. GnT I = N-acetylglucosaminyltransferase I. α-Man II = α-mannosidase II.
GnT II = N-acetylglucosaminyltransferase II.

Bacteria, yeast, CHO, and plant glycoproteins possess species-specific N-glycans that differ
from human N-glycans (Figure 1B). Glycosylation and PTMs in general are challenging issues for
E. coli, as most prokaryotes lack the eukaryotic PTM machinery to perform glycosylation [6]. It is
possible to transfer the basic prokaryotic glycosylation machinery of another bacteria (Campylobacter
jejuni) into E. coli to obtain glycosylated recombinant biopharmaceuticals [102]. However, prokaryotic
glycans do not show similarities with human glycosylation patterns, resulting in immunogenic
biopharmaceuticals [102,103]. Yeast glycans present an excess of mannose residues assembled
together in “hyper-mannosidic” structures [104], which greatly differ from the human patterns [4,105].
Although CHO cells possess human-like glycosylation machinery, some discrepancies still persist [4].
For example, the absence of fundamental human residues like α(2,6)-sialic acid and α(1,4)-fucose, and
the production of undesired non-human residues such as N-glycolylneuraminic acid (Neu5Gc) and
galactose-α(1,3)-galactose (α-Gal), can result in the production of potentially immunogenic recombinant
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biopharmaceuticals [4,33]. Similarly, plant cells produce glycans containing immunogenic residues
such as β(1,2)-xylose and core α(1,3)-fucose [106].

Compared to other systems, very little is known about N-glycosylation in microalgae. The combination
of genomic annotation and experimental evidence has revealed some details about N-glycans in some
species; however, more information is needed. Analysis of five different microalgal species [94,107–111]
showed two different glycosylation pathways based on presence or absence of the GnT I enzyme.
The green microalgae C. reinhardtii and C. vulgaris, and the red microalga Porphyridium purpureum lack
GnT I, which has been validated experimentally [94,107,108,111]. Thus, the N-glycosylation pathway
in these species is defined as GnT I-independent. In this pathway, the 5 Man and 2 GlcNAc N-linked
protein is subjected to the action of xylosyltransferases (XyT) and methyltransferases (MeT), leading to
unique N-linked structures containing methylated mannoses linked to one or two xyloses (Figure 1).
The structures vary slightly among these microalgae, with different possible locations of the xylose
residues [94,107,108,111]. On the other hand, Baïet and colleagues [109] demonstrated that GnT I is
present and active in the diatom P. tricornutum. In this case, GnT I transfers an N-acetylglucosamine
residue to the 5 Man and 2 GlcNAc N-linked protein in the Golgi apparatus. The structure is then
subjected to α-mannosidase II (α-Man II) and fucosyltransferase (FuT), resulting in paucimannosidic
(Man3–4GlcNAc2) fucosylated N-glycans [109] (Figure 1C). The GnT I-dependent pathway is also
present in the green microalga Botryococcus braunii [110]. N-linked glycans in B. braunii present
methylation of mannose residues (absent in P. tricornutum) and the terminal GlcNAc (linked to the
α(1,3)-mannose arm) can be attached to an additional hexose [110] (Figure 1C).

Due to the presence of a eukaryotic PTM machinery and several different glycosidases, both GnT
I-independent and GnT I-dependent microalgal species show N-glycosylation patterns more similar to
humans than E. coli (glycosylation absent) and yeasts (“hyper-mannosidic” N-glycans). Nevertheless,
discrepancies between human and microalgal N-glycans are still relevant. The absence of GnT I enzyme
in GnT I-independent species is a significant issue. GnT I activity serves as starting point to produce
“complex” and “hybrid” glycans, and its absence prohibits the construction of two out of three possible
human N-glycan structures. Moreover, both GnT I-independent species listed here present abundant
methylation of residues (absent in humans) and C. reinhardtii also presents attachment of Xyl residues,
which is another immunogenic trait. Unsurprisingly, GnT I-dependent microalgae resemble human
glycosylation more than GnT I-independent species. B. braunii shows native N-glycans similar to
human “hybrid” structures, and P. tricornutum presents paucimannosidic glycans, an important pattern
found in a specific class of biopharmaceuticals (as explained in Section 5.1.2) [79,112]. Nonetheless,
α(1,3)-fucose residues in P. tricornutum [113] and methylation of mannoses in B. braunii [110] are both
N-glycan characteristics absent in humans.

4.2. O-Glycosylation

O-glycosylation involves an oxygen-carbon bond between the hydroxyl group of a Ser or Thr
residue of the protein and the polysaccharide chain (Figure 2). There are 7 subclasses of O-glycans,
based on which monosaccharide is directly attached to the protein [114]. In humans, the most
frequently observed O-glycoproteins are mucins and proteoglycans [106,114] (Figure 2). The first
monosaccharide attached to a mucin protein is an N-acetylgalactosamine (GalNAc), usually followed
by galactose (Gal) or a GlcNAc [106]. On the other hand, xylose is the first monosaccharide attached to
a proteoglycan, followed by Gal [115]. Other important O-linked monosaccharides that can initiate the
polysaccharide chain are Fuc and Man; O-fucosylation plays a fundamental role in transmembrane
signalling [116,117] and O-mannosylation is involved in muscle and brain development [118]. While
the O-GalNAcylation starts directly in the Golgi apparatus, all the other structures begin in the ER and
the whole polysaccharide is later synthesized in the Golgi, like for N-glycans synthesis [114].

In most organisms including humans, O-glycosylation does not present a common structure or a
consensus sequence, and many different structures are possible. Nevertheless, unique species-specific
O-glycans are still recognisable in some organisms. E. coli lacks the eukaryotic organelles and PTM
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machinery to perform O-glycosylation [6]. O-glycans in yeasts present a core structure composed
of a Man residue attached to a Ser or a Thr [119]. This structure presents a core Man with multiple
mannoses attached, resulting in yeast-specific high-mannose O-glycans [119] (Figure 2). The majority
of O-glycans in CHO cells present a core structure with a GalNAc residue attached to a Ser or a Thr,
the same core structure as human mucins [120]. The GalNAc residue can be further linked to a Gal
or a GlcNAc residue [120,121] (Figure 2). O-glycosylation core structures in plants can present a Gal
residue attached to a Ser or a unique arabinose (Ara) residue attached to a hydroxyproline (Hyp)
amino acid [122]. Recombinant Interferon (IFN) alpha 2b expressed in tobacco cells showed a unique
O-glycan pattern with a Hyp-O-Gal core and several Ara and Gal residues [123].Cells 2020, 9, x 10 of 27 
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To date, there is only one study reporting O-glycosylation analysis of proteins produced in
microalgae. Bollig and colleagues [124] analysed linear hydroxyproline-bound O-glycans native
proteins of the green alga C. reinhardtii, showing similarities and differences with higher plant O-glycans.
They found the same O-glycoprotein core as in plants (Hyp-O-Ara-Ara), suggesting conservation
within the green lineage. However, they also found a higher heterogeneity of glycans in C. reinhardtii,
with the presence of galactofuran residues and methylated residues (absent in plants) [124]. Based on
the structures experimentally characterized, they speculated about the O-glycosylation pathways in
C. reinhardtii. They proposed that two arabinosyltransferases add the first two Ara residues to Hyp,
and that a galactofuranosyltransferase and two methyltransferases specific to C. reinhardtii perform the
final modifications [124].

While there is minimal experimental information available on O-glycosylation in microalgae,
existing data suggests key differences with human glycosylation patterns. C. reinhardtii native
O-glycoproteins present methylated residues on O-glycans, a trait also found in microalgal N-glycans
but completely absent in humans. Moreover, the Hyp-O-Ara core has not been found in humans,
suggesting the possibility of immunogenic activity for these types of O-glycans. However, further
investigation of microalgal O-glycosylation is unquestionably needed; for example, it is not known to
what extent the C. reinhardtii O-glycan core structure is immunogenic, if other species present similar
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O-glycan core structures, and whether these glycosylation patterns will also be found on recombinant
proteins. In conclusion, more research must be conducted to unravel the O-glycosylation patterns
in microalgae.

4.3. Computationally Predicted Distribution of Microalgal N- and O- Glycosylation Enzymes

Experimental evidence from a limited number of microalgal species hints at a wide diversity
of N-glycosylation patterns among different microalgal taxa. For example, the major glycosylation
differences in two species (C. reinhardtii and B. braunii) belonging to the same phylum (Chlorophyta)
suggest an extensive level of variation. On the other hand, it is difficult to assess the diversity of
O-glycoproteins in microalgae, as O-glycosylation has not been adequately investigated across multiple
groups. Although information from experimental characterization remains limited, computational
analysis of available algal genomes permits the hypothetical reconstruction of protein N- and O-
glycosylation pathways (Figure 3).Cells 2020, 9, x 11 of 27 
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Figure 3. Hypothetical presence of protein N-glycosylation and O-glycosylation enzymes in the
representative microalgal species, P. purpureum (PP), P. tricornutum (PT), Nannochloropsis gaditana (NG),
C. reinhardtii (CR), B. braunii (BB), and C. vulgaris (CV), compared with glycosylation enzymes from
H. sapiens and A. thaliana. Enzymes are classified as present (dark blue), potentially present (light blue) or
missing (grey).

The genome assemblies of genomes C. reinhardtii (GCA_000002595), P. purpureum (GCA_000397085),
P. tricornutum (GCF_000150955), B. braunii (GCA_002005505), C. vulgaris (GCA_001021125), and
N. gaditana (GCA_000569095; GCF_000240725; GCA_001614215), were downloaded from the National
Center for Biotechnology Information (NCBI). Potential Open Reading Frames (ORF) sequences were
predicted on all assemblies using EMBOSS’ getorf command [125]. Gene candidates were identified
using the Basic Local Alignment Tool (BLAST) [126] searching all predicted ORFs for a list of candidate
genes. Additionally, template genes were searched for functional domains using PFAM [127] and
HMMER v3 [128]. Hit-domain motifs were downloaded and search for in the predicted ORFs.
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All candidate ORFs determined with BLAST and Pfam domain searches were finally searched and
aligned on the NCBI BLASTp webpage. Sequences were classified as present if the candidate ORFs
returned good hits (e-value <1−05) to proteins of the same or closely related organism annotated with
the exact function searched for. Sequences were classified as potentially present if: (1) only closely
related proteins were identified using BLAST, but specific PFAM domains were present in the genome;
(2) BLASTp returned good hits (e-value <1−05) to closely related functional proteins in any other
organism. All other genes were classified as missing. The glycoprofiles were hierarchically clustered
using seaborn cluster map with Euclidean method in Python.

The computational analysis shown in Figure 3 supports the observation that glycosylation
pathways differ significantly among diverse algal taxa, as all species investigated were predicted
to have a unique combination of glycosylation enzymes. However, computational analysis only
shows anticipated presence or absence of homologous enzymes and should always be supported by
experimental analysis. For example, experimental analysis of glycosylation patterns of P. purpureum
did not show activity of GnT I enzyme (Figure 1). However, GnT I is classified as present in the
computational analysis. Similarly, all O-arabinosyltransferases from A. thaliana (HPAT1 and HPAT3)
are classified as absent in C. reinhardtii (Figure 3), but core arabinose O-glycans have been detected in
this microalga [124] (Figure 2). Nevertheless, computational analysis can give fundamental insight on
microalgal species to be subsequently selected for further experimental analysis.

C. reinhardtii shows a very different enzyme population relative to humans and to A. thaliana, except
for possible presence of an O-fucosyltransferase (POFUT1) that could result in core fucose O-glycans for this
species. Another interesting result is the possible presence of a plant-like N-linkedβ(1,2)-xylosyltransferase
(XYLT). C. reinhardtii is known to have xylose residues linked to the core GlcNAc and the antennas, and a
previous study has demonstrated the presence of two xylosyltransferases, named XTA and XTB [129].
The absence of HPAT1 and HPAT3 in this microalga was unexpected, given that this microalga was shown
to produce O-arabinose structures [124]. This suggests the potential presence of alternative enzymes in
C. reinhardtii capable of linking core O-arabinoses.

Unlike C. reinhardtii, the green algae B. braunii and C. vulgaris show the potential presence of
GnT I, which is supported by experimental analysis in B. braunii. Both species contain candidate
genes for core α(1,3)-fucosyltransferase (FUT11), which is immunogenic in humans, and its presence
strongly influences the efficacy of biopharmaceuticals [93]. B. braunii is the only species to show
possible presence of α(2,6)-sialyltransferase (ST6GAL1), which is an important modification found in
human proteins. The O-glycosylation pathway in B. braunii and C. vulgaris presents some similarities:
the enzymes O-fucosyltransferase (POFUT1), and O-arabinosyltransferases from A. thaliana HPAT1
and HPAT3 are classified as possibly present in both species. However, the two species also show
some differences. In fact, only B. braunii possibly presents homologues to the O-GalNAc transferase
(GALNT1), whilst homologous enzymes of plant arabinosyltransferase (RRA1) are possibly present
only in C. vulgaris.

P. purpureum shows the presence of GnT I, in contradiction with experimental data [108]. It also
contains putative homologues to human α(1,6)-fucosyltransferase (FUT8) and FUT11, which can affect
biopharmaceutical efficacy [4] and immunogenicity [93], respectively. P. purpureum is predicted to have
a homologue to human β-1,4-galactosyltransferase 1 (B4GALT1), which is involved in the attachment
of the fundamental human residue sialic acid. However, other enzymes involved in this pathway
including α(2,3)-sialyltransferase, α(2,6)-sialyltransferase, GnT I, GnT IV, and GnT V were not detected.
For O-glycans, P. purpureum shows the potential presence of human-like O-mannose and O-GalNAc
cores, and homologous enzymes of plant arabinosyltransferase (RRA1). This enzyme, however, is not
involved in core O-arabinose linkage; core O-arabinose enzymes are reported as missing.

Although both species belong to the stramenopile lineage, P. tricornutum and N. gaditana vary
with respect to the presence of GnT I, which has been predicted in P. tricornutum but is not detected in
N. gaditana. However, both species have putative homologues for human α(1,6)-fucosyltransferase
and plant α(1,3)-fucosyltransferase, two enzymes linked to decreased efficacy of biopharmaceuticals.
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Additionally, P. tricornutum is also predicted to harbour a homologue to plant β(1,2)-xylosyltransferase
(XYLT) that may add immunogenic residues, although the presence of this enzyme was not detected
experimentally [109]. Regarding O-glycosylation, both species show possible presence of enzymes
involved in the attachment of O-xylose and O-fucose cores. In addition, P. tricornutum may also
produce O-GalNAc cores; however, experimental analysis of O-glycans produced in these species is
still needed.

Although the computational analysis suggests that several model algal species possess promising
characteristics for biopharmaceutical production, including the presence of GnT I, several potentially
problematic enzymes are also present. Albeit antigenicity of recombinant biopharmaceuticals produced
in microalgae has been tested (mostly to assess proper folding and showing mixed results) [57,59,64],
immunogenicity of microalgal-based therapeutics has never been tested. However, given the diversity
of microalgal glycans and the predicted differences with human glycosylation profiles, “humanization”
of microalgae glycans via glyco-engineering is likely needed to elicit proper folding and remove
possible immunogenic glycans, to lastly produce active and safe recombinant biopharmaceuticals from
microalgae [4].

5. Strategies for Manipulating Protein Glycosylation

In biofactories such as E. coli, yeasts, CHO cells, and plants, different glyco-engineering techniques
have been successfully used to manipulate and “humanize” glycans to produce active and safe
biopharmaceuticals for patients (E. coli: [130,131]. Yeasts: [132]. CHO cells: [133,134]. Plants: [79,135]).
However, none of these techniques have yet been applied to microalgae. Glyco-engineering strategies
can be divided in two main categories: protein engineering and cell engineering [97] (Figure 4). Protein
glyco-engineering strategies target the recombinant glycoprotein before its translation (by modifying
its DNA sequence), during its translation (by modifying its subcellular location), or after its translation
(by modifying its glycosylation pattern) [97,136]. Cell glyco-engineering approaches introduce or
modify the expression and the activity of target enzymes involved in the glycosylation pathways [97].
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5.1. Protein Engineering

5.1.1. Glycoprotein Sequence Engineering

This strategy is based on changing the amino acid sequence of a recombinant protein without
changing its structure or function in the cell, to either (i) increase the number of glycans present
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or (ii) remove glycan attachment sites. The first strategy is used in the case of non-immunogenic
recombinant glycoproteins in order to enhance their activity, while the second strategy prevents a
protein from being glycosylated and therefore reduces its immunogenicity [137]. This approach was
successful in CHO cells [146,147], and could be applied to microalgae, considering the advanced status
of microalgal genetic manipulation in many different species [12]. However, this strategy presents
many limitations, as altering a protein natural glycosylation is likely to cause diminished activity and
stability, as demonstrated for IFN-ß [148] and for IgG-like antibody-based therapeutics [149].

5.1.2. Subcellular Location Engineering

Although major protein modification occurs during ER and Golgi processing, glycans can be
additionally modified during transport or within other organelles [112]. Targeting and transporting
a recombinant protein to a specific organelle can result in a specific glycan pattern. For example,
in plants, glycoproteins targeted and transported to vacuoles present characteristic paucimannosidic
N-glycans [112]. Recombinant glucocerebrosidase (GCD), a biopharmaceutical used for Gaucher’s
disease treatment, was found not to be effective unless it presented paucimannosidic N-glycans [79].
In vivo protein glyco-engineering has been achieved by expressing a recombinant GCD with a C-terminal
vacuole-targeting signal in transgenic carrot cells, leading to the successful production of a paucimannosidic
biopharmaceutical (ELELYSO®) [79], approved for Gaucher’s disease treatment by FDA in 2012 [2].
Microalgae, like plants, possess a vacuole, therefore it might be possible to target proteins to this organelle
and obtain paucimannosidic N-glycans. Moreover, the microalga P. tricornutum naturally expresses
paucimannosidic fucosylated N-glycans [109]. Although the function of microalgal vacuole is still
under-characterized compared to higher plants [150], subcellular localization engineering might result in
successful production of paucimannosidic biopharmaceuticals in microalgae. Interestingly, microalgal
vacuole signal peptides for P. tricornutum have been identified [151]. However, subcellular location
engineering presents a major downside: it is not possible to add/remove a targeted residue from the
glycan. Therefore, this approach is strictly related to the organelle targeted for protein transportation and
the resulting specific glycosylation pattern. Vacuole-targeting glyco-engineering, for example, is specific
to proteins like GCD which require a paucimannosidic glycosylation pattern to be active. To remove
a selected immunogenic residue, or to add a necessary residue, it is necessary to apply a different
glyco-engineering approach.

5.1.3. Glycosylation Pattern Engineering

Glycosylation pattern engineering targets the glycan after its synthesis by trimming it to its
first residue and then reconstructing a new pattern in vitro. This post-translational remodelling
of the glycan can be achieved either enzymatically or chemically. These two strategies are briefly
described below, but for detailed insight we refer the reader to reviews by Wang and Lomino [138] and
Chalker et al. [139].

Chemoenzymatic glycan remodelling uses enzymes to both trim the pre-existing glycan and to
construct the in vitro desired pattern [97]. Studies focusing on the enzymatic single step transfer of
a pre-assembled glycan have shown successful results in E. coli [130,131], P. pastoris [152] and CHO
cells [153].

During chemoselective and site-specific glycosylation, a tag is inserted on glycosylation sites
on the amino acid backbone by site-directed mutagenesis. A glycan is then added to these tags by
bio-orthogonal chemoselective ligation with a modified glycan carrying a compatible functional group.
The tag on the protein and the functional group on the glycan are complementary and will selectively
recognize each other, enabling a targeted insertion of glycans onto the amino acid backbone [138,139]
(Figure 4A). Glycosylation pattern engineering is independent of the expression host and therefore
could be used in microalgae.
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5.2. Cell Glyco-Engineering

To produce desired human-like glycans or add crucial human residues to existing glycans, it
is possible to target the species-specific glycosylation enzymes responsible for the attachment of
immunogenic glycans [20–24] using cell glyco-engineering approaches. Cell glyco-engineering can be
achieved by using inhibitors or genetic engineering to introduce or modify the expression of enzymes
involved in glycosylation pathways [97,138] (Figure 4B).

5.2.1. Glyco-Engineering by Inhibitor Interference

An inhibitor interference approach uses small molecules that specifically inhibit or interfere with
the activity of specific enzymes in the glycosylation pathway [138] (Figure 4B). Small molecules such as
N-butyl deoxynojirimycin, kifunensine, and swainsonine inhibit the activity of glycosylation enzymes
such as the ER α-glucosidases I and II, the ER α-mannosidase-I and the Golgi α-mannosidase II.
This technique could be applied to microalgae if non-toxic inhibitors specific to microalgal glycosylation
enzymes (such as fucosyltransferase and xylosyltransferase) can be identified. However, successful
inhibitors might be difficult to find for these organisms, considering the evolutionary and metabolic
biodiversity of microalgae. One example is the insensitivity of the diatom P. tricornutum to the
activity of terbinafine (well-known inhibitor of the ubiquitous enzyme squalene epoxidase) [154,155].
Moreover, inhibitor interference strategies can only prevent the attachment of specific residues, they
cannot enhance or introduce expression of human glycosylation enzymes absent in microalgae (such
as the enzyme GnT I in C. reinhardtii and P. purpureum). To obtain “hybrid” or “complex” glycans it is
necessary to genetically engineer the glycosylation machinery of the host organism.

5.2.2. Genetic Glyco-Engineering

Genetic glyco-engineering can be achieved by either introduction of heterologous glycosylation
machinery or inactivation of endogenous enzymes. The integration of one or more genes coding
glyco-enzymes can be achieved by random insertion or targeted knock-in (KI) of recombinant DNA
into the host genome. The inserted DNA encodes specific enzymes absent in the wild type organism
that will add the desired residues to the recombinant glycoprotein to obtain properly folded, active,
and safe recombinant biopharmaceuticals. Although expression of exogenous enzymes has been
proven as an effective strategy in CHO cells [140,156,157], expression must be carefully regulated.
Overexpression of glycosylation enzymes can lead to the attachment of extra residues on the glycan,
possibly affecting the stability and activity of the recombinant protein.

A major technology advancement across all host systems including microalgae has been the
development of targeted genome engineering aided by DNA nucleases, including zinc finger nucleases
(ZFNs) [141], transcription activator–like effector nucleases (TALENs) [142], and clustered regularly
interspaced short palindromic repeat/targeted Cas9 endonuclease (CRISPR-Cas9) [143–145] (Figure 4B).
DNA nucleases are able to generate double stranded DNA breaks at precise genomic locations of
interest, increasing the likelihood of exogenous DNA integration at a desired location, instead of at a
random location. Random integration, while much easier to achieve following conventional DNA
transformation strategies, is prone to position effect regarding transgene expression and uncharacterised
genomic disruptions. Targeted gene integration can improve transgene expression levels when
appropriate integration locations are selected; namely, regions that permit insertion of exogenous
genes without disrupting the host natural gene expression whilst simultaneously lowering the risk of
silencing of the exogenous DNA. Such regions, known as “safe harbours” have been frequently used in
human and mouse cell lines [158–160]. Identified safe harbour loci knowledge, coupled with efficient
endonuclease-mediated targeted integration transformation protocols, can revolutionise genetic
engineering strategies to produce recombinant biopharmaceuticals by circumventing reproducibility
and stability issues associated with random chromosomal integration [161].



Cells 2020, 9, 633 16 of 26

Similar to exogenous enzyme insertion, endogenous enzyme removal strategies can be random or
targeted. Gene(s) knock-down (KD) strategies result in reduced activity of the glycosylation enzymes
and can be achieved by gene(s) silencing techniques, such as RNA interference [162] or CRISPR
interference (CRISPRi) [163]. However, gene(s) KD does not completely inactivate enzyme expression,
often resulting in still high levels of the targeted undesired enzyme activity and consequently in the
attachment of the unwanted immunogenic residues. Gene(s) knock-out (KO), on the other hand,
disrupts a gene that encodes a specific enzyme in the glycosylation pathway in order to permanently
suppress its function [138]. Gene KO can be obtained by targeted genome editing strategies and/or
random insertional mutagenesis [164,165]. This strategy results in loss-of-function mutant cell lines that
do not produce the target enzyme, and consequently, lack the undesired residues [97]. Targeted gene(s)
KO strategies (ZFNs and CRISPR-Cas9) were successfully used in CHO cells to inactivate the gene
responsible for core-linked fucose residues (FUT8) and generate non-fucosylated glycans [133,134].
Non-fucosylated biopharmaceuticals expressed in FUT8-KO cell lines showed increased efficacy [4].
Mogamulizumab (POTELIGEO®) and Benralizumab (MEDI-563, FasenraTM) are two examples of FDA
approved non-fucosylated biopharmaceuticals expressed in FUT8-KO CHO cell lines [166]. However,
inactivating gene(s) might have secondary detrimental effects on native proteins and consequently on
the host organism.

In non-mammalian hosts, integrating human glycosylation enzymes is not sufficient to avoid the
presence of immunogenic residues. Exogenous gene integration needs to be coupled with KD or KO of
endogenous gene(s) coding for species-specific enzymes [97,138]. A combined approach of exogenous
gene insertion and inactivation of endogenous genes was successfully used in yeasts [132,167] and
plants species such as Lemna minor [168], A. thaliana [135,169] and N. benthamiana [170–172].

6. Future Perspective for Glyco-Engineering in Microalgae

The effectiveness of glyco-engineering approaches has been demonstrated in many different
organisms, both mammalian and non-mammalian, setting the stage for glyco-engineering in microalgae.
However, to progress glyco-engineering strategies in microalgae, it is still necessary to improve our
knowledge of microalgal glycosylation status (by genomic and experimental evidence) and thus generate
a comprehensive and detailed overview of the glycosylation pathways. Unlike in common expression
systems, the N- and O-glycosylation pathways in microalgae have yet to be fully characterized. In this
review, we provide an in silico analysis of glycosylation enzymes in five microalgal species, based on
homology with higher organisms (Figure 3). These reconstructed pathways, combined with previous
glycosylation analysis in other microalgal species (both empirical and putative), support the presence of
a vast diversity of glycosylation patterns and can be used to identify future targets for glyco-engineering
in microalgae.

An important consideration for recombinant biopharmaceutical production in microalgae is the
choice of host species, as glycosylation status among microalgae has been shown to be very diverse
(Sections 4.1 and 4.2). For N-glycans, a first selection criteria might be the presence or absence of
the GnT I enzyme. GnT I-independent species show complete absence of “hybrid” and “complex”
human-like glycans, whereas they still present undesired enzymes and their products (namely Xyl, Fuc,
and methylation of residues). However, performing a KI of the GnT I enzyme in a GnT I-independent
species lacking FuT, XyT, and MeT (based on computational analysis) might result in non-immunogenic
“hybrid” and “complex” glycans. A recent study pursued this strategy in C. vulgaris and characterised
“hybrid” N-glycans lacking fucose or xylose residues after overexpression of recombinant GnT I [111].
Alternatively, GnT I-dependent species already present “hybrid” and “complex” glycans. However,
FuT, XyT, and MeT enzymes may still be present and active. Selection of a species that does not
possess FuT, XyT, and MeT, or targeted KD or KO of these enzymes would prevent the attachment
of the immunogenic residues. Species such as B. braunii and P. tricornutum are GnT I-dependent
species lacking FuT, XyT, and MeT that also have a putative α-mannosidase II (computational analysis).
These are particularly interesting candidates to produce paucimannosidic non-immunogenic glycans.
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However, this strategy is limited by native methylation of residues in B. braunii, a possibly immunogenic
trait [110]. P. tricornutum, on the other hand, does not present methylated residues, but has a core
α(1,3)-fucosyltransferase. It might be effective to KD or KO the fucosyltransferase in P. tricornutum and
obtain paucimannosidic non-immunogenic glycans in an already well-known and well-characterised
microalgal species.

Both GnT I-independent and GnT I-dependent species are missing a very important residue present
in humans: sialic acid. Enzymes such as α(2,3)-sialyltransferase (ST3GAL3), α(2,6)-sialyltransferase
(ST6GAL1), β(1,4)-galactosyltransferase (B4GALT1), GnT I, GnT IV, and GnT V are all involved in the
sialic acid pathway, and completely (or almost completely) absent in microalgae. It has been shown how
overexpression of this pathway in CHO cells resulted in improved recombinant biopharmaceuticals
production [173–175]. Figure 3 shows putative presence of some of these enzymes in some microalgal
species. However, the complete pathway is absent in all the species that were computationally
analysed. Furthermore, sialic acid has never been reported in any of the species experimentally
analysed. Therefore, an extensive amount of glyco-engineering might be required to obtain this residue
in any of these species.

The absence of a consensus sequence, a common core, and recurring patterns has made a
comprehensive O-glycosylation immunogenicity analysis more challenging. The only glycosylation
analysis available in microalgae (for C. reinhardtii) showed similarity with higher plants, with the
addition of methylated residues. Immunogenicity of recombinant O-glycoproteins from plants has
not been tested, however the absence of a similar O-glycan core in humans inspires little confidence.
The computational analysis shown in Figure 3 offers interesting insight. Human O-xylose and O-fucose
cores might be present in more than one microalgal species. Interestingly, microalgae and plants show
limited homology (Figure 3). However, this should be considered only as a starting point for further
experimental analysis of microalgal O-glycosylation.

Given the vast diversity of glycosylation status among microalgal species and considering the
existing variety of glycans and their impact on different classes of biopharmaceuticals, it is difficult to
predict a precise number of gene(s) or glyco-engineering approaches to obtain a fully “humanised”
recombinant biopharmaceutical. However, based on the experimental and computational information
collected, and the different successful glyco-engineering approaches utilised in other species, we
postulate that producing a vacuole-targeted glucocerebrosidase in a P. tricornutum fucosyltransferase-KO
cell line could be the fastest way to obtain the first commercialised recombinant biopharmaceutical
from microalgae.

In conclusion, there are still major hurdles limiting glyco-engineering in microalgae. Obtaining
experimental information for a single species is challenging and may very well expose immunogenic
traits in the selected microalgal glycans. Some immunogenic traits may be compatible with protein or
cell engineering, while others may be too complex or widespread to warrant further investigation. There
is also no clear evidence to guide which microalgal species might be more appropriate in this regard
over others. Moreover, considering the diversity of glycosylation among microalgae, the information
obtained cannot be extended to other species, and each microalga must be experimentally investigated.
However, glycosylation status of microalgae is still closer to human patterns when compared to
glycosylation in bacteria and yeasts. Given the recent advancements in various model microalgal
genetic toolkits, glyco-engineering approaches hold great potential to produce non-immunogenic
biopharmaceuticals in microalgae.
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