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� The redox status of the cell influences
enzymes involved in plant epigenetic
modifications.

� The redox homeostasis in the cell is
difficult to sustain because of unequal
production of oxidant molecules.

� Intracellular epigenetic modifications
in plants mitigate damage response
during stress.

� High-throughput techniques have
greatly advanced redox-mediated
gene expression discovery.

� The integrated view of the redox
status and epigenetic changes in
plants are still scarce.

� We show opportunities for smart use
of the redox status of the cell in
development of the plant.
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Background: The oxidation-reduction (redox) status of the cell influences or regulates transcription fac-
tors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifica-
tions, and chromatin structure and remodeling. These changes are crucial regulators of chromatin
architecture, leading to differential gene expression in eukaryotes. But the cell’s redox homeostasis is dif-
ficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS)
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is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding
optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell.
Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or
mediate the plant growth and stress response.
Aim of review: Recent studies suggest that the altered redox status of the cell reform the cellular functions
and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated
gene expression discovery, but the integrated view of the redox status, and its associations with epige-
netic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly
focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress
conditions and during developmental processes. This is a first comprehensive review on the redox status
of the cell covering the redox components and signaling, redox status alters the post-translational mod-
ification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation,
redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox
regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnolog-
ical opportunities for the future development of the plants.
Key Scientific Concepts of Review: The interaction of redox mediators such as ROS, RNS and antioxidants
regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators
modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell
in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic
modification without activating other redox mediators remains yet unknown.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Gene expression is the part of the central dogma of cells sup-
porting plant growth and development throughout the plant life
cycle, but spatiotemporal gene expression depends on several fac-
tors: gene structure and organization and epigenetic processes.
Epigenetic changes, such as DNA and histone proteins modifica-
tions, are crucial regulators of chromatin architecture, leading to
differential gene expression. These changes are transient, thus
playing a vital role during plant development and for abiotic stress
adaptation [1]. Epigenetic-mediated gene expression undergoes
dynamic changes such as switching stress and cell-specific genes
on or off [2]. Epigenetically-induced phenotypic variations are gen-
erally inheritable without affecting the primary DNA sequence [3].

However, the internal cellular environment, particularly the
oxidation-reduction (redox) status of the cell, influences enzymes
involved in epigenetic changes, thereby controlling the activities
of several transcription factors and other enzymes. For instance,
enzymes involved in histone acetylation homeostasis require pri-
mary metabolites as substrates or cofactors whose levels are seri-
ously influenced by the redox status of the cell [4]. The redox status
also influences enzymes involved in methyl group donor and
methyl group acceptor, which determine methylation efficiency.
In recent times, redox-mediated gene expression discovery and
its associations with epigenetic modifications is established in
plants. Accruing evidence indicates that altered the redox status
of the cell reform the cellular functions and epigenetic changes
and regulates a wide range of functions in plants than previously
understood. This occurs in all stages of plant growth and develop-
ment, including adaptations to stresses [5]. However, despite the
importance of the redox status of the cell, except for a few reviews
[4–7], there is a lack of organized literature on redox-related epige-
netic changes in plants. Therefore, in this review, we attempt to
highlight the role of cellular redox status in epigenetic changes
in plant systems, especially in addressing abiotic stress tolerance,
vernalization and stem cell development.
Redox components and signaling

The redox status is balanced by interactions of oxidant and
antioxidant systems in the cell. The maintenance of the redox sta-
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tus of a living cell is dynamic because of the continuous production
of oxidant molecules, reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (Supplementary Table 1). In plants, ROS
production occurs in various cellular components (Fig. 1), such as
in chloroplast during photosynthesis, in mitochondria during elec-
tron transport, in peroxisomes during photorespiration, and in the
plasma membrane [8]. As with ROS, RNS generation is also ineluct-
able. RNS is generally derived from nitric oxide (NO). RNS is also
generated within different cellular compartments by the action
of enzymes such as NO reductase, nitrate reductase and nitric
oxide synthase-like enzymes [9]. Both oxidant molecules regulate
important cell signaling processes in cell differentiation, multipli-
cation and migration and programmed cell death [10]. Though
ROS and RNS are both maintained at optimum levels by scavenging
systems (antioxidants), excessive oxidant production occurs when
cells are stressed and derails the redox status, triggering an oxida-
tive stress response; however, these species get reduced, counter-
balancing oxidative processes to maintain the cell’s redox status
[11]. During cellular processes, cellular redox status is an impor-
tant indicator of a healthy plant system. Changes in the cell’s redox
status influence or alter nuclear gene expression in several ways
such as direct modification, transcription factor activation, epige-
netic modification, etc. [4].

Although oxidative stress due to the accumulation of excessive
ROS and RNS is highly harmful to plant biological systems, opti-
mum levels of ROS and RNS are necessary for regulating gene
expression for stress tolerance. For instance, in Arabidopsis,
mutants deficient in ROS production (knockout-NADPH oxidase D
protein) were reported to be more sensitive to light stress [12].
Phytohormones like salicylic acid (SA) accomplish their activity
by changing the redox status of the cell when the appropriate bal-
ance of reactive species is lost. For example, during salt stress, SA
promotes the generation of endogenous ROS and NO and modu-
lates their function [13].
Soluble redox carriers

During redox homeostasis, intracellular communication
between various cellular compartments is performed by soluble
molecules known as redox/electron carriers such as nicotinamide
adenine dinucleotide (NADH), glutathione (GSH) and ascorbate
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Fig. 1. Redox process of cellular state. Different reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in plants under abiotic stress to regulate gene
expression for stress tolerance. ROS and RNS generation are activated during abiotic stress in the apoplastic space, chloroplasts, mitochondria, and peroxisomes. For instance,
first, superoxide (O2

��) is generated by plasma membrane NADPH (nicotinamide adenine dinucleotide phosphate reduced) oxidases, and O2
�� is immediately dismutated to

hydrogen peroxide (H2O2) by superoxide dismutases (SOD) in the corresponding organelles. Peroxidases (POX) and polyamine oxidases (POAX) are other sources of apoplastic
H2O2 generation [14]. These organelles also have mechanisms to detoxify the H2O; however, oxidative stress and programmed cell death (PCD) occur if ROS and RNS
generation is beyond the homeostatic range.
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(Asc) [15]. These molecules can quickly switch between reduced
and oxidized states through the exchange of electrons (gain or loss
of electrons). Thus, redox couples or redox guardians are essential
for maintaining redox homeostasis and cellular metabolism. Redox
pairs of these carrier molecules, such as NADH/NAD+, GSH/glu-
101
tathione disulfide (GSSG) and Asc/dehydroascorbic acid (DHA),
play a significant role at various plant growth stages and when
plants are exposed to stress.

The imbalance of redox couples or preventing reactions of the
redox pairs of these carrier molecules renders the cell more vulner-
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able to ROS. For example, Arabidopsis failed to develop past the
embryonic stage without GSH whose function depends on the
redox status of the cell [16]. The GSH:GSSG ratio is high in most
cell organelles in plants growing under normal conditions but is
altered by oxidative stress that increases the accumulation of GSSG
to enhance stress tolerance. Thus, the GSH:GSSG ratio is related to
the intracellular availability of H2O2. The glutathione reductase
(gr1) mutant, encoding the peroxisome/cytosol enzymes,
decreased the accumulation of GSSG in Arabidopsis leaf tissue, pre-
venting survival [17]. Plants with NADPH deficiency also produced
low GSH:GSSG ratios in the vacuole or endoplasmic reticulum,
reviewed by Noctor et al. [18]. In tobacco lines, DHAR overexpres-
sion and knockdown respectively increased and decreased extrac-
table foliar activity. The knockdown lines altered the Asc/DHA ratio
in leaves under oxidative stress. Further, the GSH/GSSG ratio was
higher in the DHAR overexpressed lines. A higher foliar level of
Asc protected plants against oxidative stress [19]. Thus, redox car-
riers can act as markers of redox status and change the redox sta-
tus of the cell.

Changes in the redox status of the cell induce several epigenetic
modifications, including post-translational modifications (PTMs) in
histone molecules [4], and either mitigate or mediate a response to
damage during stress. The redox potential conditioned by the car-
rier molecules plays an important role in plants. For instance, an
increase in NAD accumulation in a cytoplasmic male sterile II
(CMSII) mitochondrial mutant of Nicotiana sylvestris was found to
impart increased defense response and improved ozone tolerance
[20]. By measuring the redox status using a redox-sensitive biosen-
sor, namely reduction-oxidation sensitive green fluorescent pro-
tein (roGFP), Vivancos et al. [21] found that GSH plays a vital role
in cell cycle progression in Arabidopsis. Similarly, an ascorbate defi-
cient, vitamin C defective (vtc), mutant of Arabidopsis was reported
to exhibit mild oxidative stress in the nucleus together with the
arrest of cell cycle progression [22]. In the following sections, we
summarize and discuss how the redox status of the cell affects epi-
genetic changes, regulation of miRNA biogenesis, chromatin
remodeling and their collective role in abiotic stress tolerance.
Redox status alters the post-translational modification of
proteins

The PTMs of the gene product determine the ultimate pheno-
type of any gene expression. PTMs introduced by oxidative stress
mediate the epigenetic pathway, thereby leading to altered pheno-
types [23]. For instance, in Arabidopsis, a comparative expression
study between the wildtype and a redox compromised mutant
stn7 (state transition 7) showed that many nuclear genes were
not expressed in stn7mutants in response to high-light treatments.
Further, in wild-type plants, redox signals that arose from the
chloroplast could activate two enzymes, nuclear histone acetyl-
transferase (HAT) and histone deacetylase (HDAC), to promote his-
tone methylation/demethylation. Since methylation and
demethylation are two interchangeable processes integral to epi-
genetic gene expression, the observations on the stn7 mutant are
further evidence that redox signals alter gene expression through
epigenetic and other regulatory pathways [23].

In Lablab purpureus, the induced elevation of O2
�� and H2O2 after

high-temperature treatment could be reversed by the application
of SA and sodium nitroprusside (SNP), an NO donor. This reversal
also showed a concomitant increase in the expression of antioxi-
dant enzymes such as catalase (CAT), ascorbate peroxidase (APX),
superoxide dismutase (SOD) and glutathione peroxidase (GPOX).
Further, with the application of SA and SNP in high-temperature
treated plants, the level of DNA methylation and demethylation
102
was found to be higher than when SA and SNP were not applied
[24].

Since PTMs are controlled by the redox status of the cell, protein
conformations are adversely affected under oxidative stress.
Oxidative stress-mediated PTMs can regulate cell cycle progres-
sion, and the maintenance of DNA methylation through cell divi-
sion is a ubiquitin-dependent process. For instance, in wheat,
exposure of seedlings to cadmium (Cd), methyl viologen and
H2O2 induced oxidative stress and led to ubiquitylation of the cell
cycle control protein, E2F/Rb related (RBR) transcription factors
(TFs), leading, in turn, to the loss of protein function [25]. RBR/
E2F association with chromatin factors (HDAC) plays a crucial role
at every G1/S transition and participates in transcriptional regula-
tory complexes related to epigenetic changes [26], thus activating
the cellular defence system. Further, the microenvironment and
redox potential available to key amino acids determine cross-talk
between protein and redox molecules. Generally, cysteine (Cys)
and methionine (Met) residues are highly susceptible to reactive
molecules. These findings indicate that redox changes affect epige-
netic processes in plants and influence gene expression. The intrin-
sic mechanisms of redox changes during stress conditions in
altering gene expression, particularly through epigenetic ways,
are still not completely understood.

Intracellular epigenetic modifications

Intracellular modulations leading to epigenetic changes com-
monly occur in the nuclear matrix. PTMs introduced at the chro-
matin region constitute some of the major epigenetic focal points
of the cell. Chromatins are organized nucleoprotein structures in
the nucleus where the nucleosomes are arranged. Each nucleo-
some comprises histone proteins and DNA [27]. Each histone mole-
cule ends with an N-terminal tail composed of various amino acids.
These tails are where various PTMs occur. Various modifications
were reported in histones, such as 13 types in H2A, 12 in H2B,
and 21 each in H3 and H4 [28–30]. The most common histone-
level PTMs are lysine acetylation, methylation, arginine methyla-
tion, citrullination, SUMOylation, carbonylation, phosphorylation,
ubiquitylation, ADP ribosylation, proline isomerization and cyto-
sine glutathionylation [28,31–34]. These PTMs are known to alter
gene expression by modulating transcriptional regulatory protein
binding and/or by influencing histone-DNA interactions. Among
these PTMs, acetylation and methylation are well-characterized
epigenetic events. Following heat treatment, Wang et al. [35]
reported increased acetylation and decreased methylation in maize
with increased ROS accumulation. The decreased methylation was
concomitant with nucleolar enlargement, implying chromatin
decondensation [36]. Wang et al. [35] found that demethylation
among H3K9 histones increased superoxide scavenging by loosen-
ing DNA-histone contact points favoring gene expression.

Redox interplay during DNA methylation

Under stress conditions, changes in hormonal levels affect the
redox status of the cellular system and are accompanied by
changes in DNA and histone methylation. Maintenance of DNA
methylation depends on (i) methyl source supplier, (ii) DNA
methyltransferase (DNMT) activity, and (iii) DNA demethylase
(DME) activity (Supplementary Fig. 1) [37]. In general, DNAmethy-
lation occurs at the promoter region and halts transcription. How-
ever, there are exceptions wherein methylation enhances gene
transcription. This happens in the gene, repressor of silencing 1
(ROS1), wherein the methylation of the promoter improves tran-
scription. ROS1 is an endonuclease III domain nuclear protein with
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bifunctional DNA glycosylase/lyase activity [38]. ROS1 acts only
against methylated but not on unmethylated DNA, which estab-
lishes its DNA repair role. ROS1 requires a direct connection with
the Fe-S assembly, which is highly influenced by the redox status
of the cell [5].

Generally, increased accumulation of reactive species such as
O2
�- is reported to reduce DNA methylation. In tobacco cells,

increased oxidative stress due to exposure to various inducers,
such as aluminium, paraquat, salt and low temperature, activates
the expression of glycerophosphodiesterase-like (NtGPDL) pro-
teins. NtGPDL proteins are already demonstrated to be responsive
to aluminium stress. Analyzing the methylation pattern through
bisulfite methylation mapping at the genomic loci of the NtGPDL
gene showed selective demethylation of the CG site in the coding
region. Further, irrespective of the stress inducer, the promoter
region was found to be unmethylated. Choi and Sano [39] proposed
that plant responses to environmental stresses are partly regulated
through epigenetic modifications such as DNA hypomethylation.
Subsequent studies also confirm that increase in oxidative stress
conditions could lead to DNA hypomethylation [40]. Treatment
of tobacco suspension culture with a naphthoquinone allelopathic
toxin, Juglone (5-hydroxy-1,4-naphthalenedione), was reported to
induce overaccumulation of ROS with simultaneous DNA
hypomethylation [41]. Similar accompaniment of DNA
hypomethylation under oxidative stress induced by the treatment
of Pisum sativum suspension culture with nicotinamide (precursor
to NAD+) was reported by Berglund et al. [42]. Nicotinamide treat-
ment was found to increase the level of GSH. Although epigenetic
changes induced by increased GSH levels are well documented in
animal and human cells [43], information regarding GSH-induced
epigenetic alterations remains scarce in plants. Treatment of rice
plants with a higher concentration of SNPs, NO donors, caused
DNA hypomethylation [44]. Besides chemical stress inducers,
physical factors, such as irradiation, were also found to induce
demethylation. In Arabidopsis, irradiation of roots induced different
methylation patterns on aerial plant parts, ranging from hemi-
methylated to non-methylated, accompanied by ROS accumulation
[45].

Epigenetic gene silencing in plants is established through the
RNA-directed DNA methylation (RdDM) pathway involved with
the production of small interfering RNAs (siRNA) [37]. Production
of siRNA is mediated through the dicing activity of Dicer-like
(DCL) proteins and the cleavage activity of RNase III-like (RTL) pro-
teins. Both these proteins have conserved cysteine residue at the
230th position and are highly susceptible to oxidative stress condi-
tions. In Arabidopsis, RTL2 regulates the expression of genes
through the production of siRNA. In situ mutagenesis studies have
shown that the cysteine 230 position is essential for cleavage lead-
ing to siRNA production. Incubation of RTL1 with GSH or GSSG was
found to abolish RTL1 activity and prevented siRNA production by
the glutathionylation of cysteine 230 under oxidative stress [46].
Similarly, regulation of DCL activity by SA and the redox status of
the cell was established by Seta et al. [47], who found that DCL4
activity was enhanced by SA application through the accumulation
of GSH. They concluded that the dicing activities of DCL3 and DCL4
were regulated by inorganic phosphate and the redox status of the
cell, suggesting that homeostasis of gene silencing occurs accord-
ing to the growing environment.

Regulation of SAM synthesis

The most common methyl source supplier in biological systems
is S-adenyl methionine (SAM). SAM synthesis is established
through (a) folate and (b) methionine cycles, as depicted in
Fig. 2. The source of the methyl group for SAM production is the
folate molecule. Folate enters through folate cycle pathways that
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involve bifunctional enzyme-like dihydrofolate reductase-
thymidylate synthases (DHFR-TS) [4]. DHFR-TS helps in the con-
version of dihydrofolate (DHF) to tetrahydrofolate (THF) by con-
suming the reducing equivalent from NADPH. Gorelova et al. [48]
have shown that Arabidopsis DHFR mutants are incapable of assim-
ilating folates. From folates, different derivatives are produced by
different enzymes (Fig. 2). Homology-dependent gene silencing 1
(HOG1) is an enzyme that catalyzes the conversion of S-adenosyl
homocysteine (SAH) to homocysteine (Hcy). During this process,
SAM acts as a methyl donor for DNA methylation. In this manner,
the Hcy/SAM cycle provides a constant supply of methyl groups for
DNA methylation. The role of folate in driving this cycle is crucial,
as observed in Arabidopsis, wherein impairment of folate produc-
tion by sulfamethazine treatment was found to reduce DNA and
histone methylation [49].

The folate cycle is the supplier of the methyl group to methion-
ine and to the SAM cycle. It is found that enzymes involved in SAM
synthesis through the folate cycle are regulated through the redox
status of the cell or by using reducing equivalents (Table 1). Some
of these enzymes, such as HOG1 [50] and MS [51] were found to
undergo nitrosylation, the covalent modification of redox-
sensitive cysteine residues by NO, suggesting that these enzymes
are redox-regulated. Furthermore, during developmental processes
and/or under stress, methionine undergoes oxidization to become
methionine sulfoxide (MetSo), which, in turn, reverts to methion-
ine by methionine sulfoxide reductase (MSR) activity, consuming
NADPH in the process [52]. Evidence indicates that MSR enzyme
activity is also redox-regulated in the cell. In Arabidopsis, GSH
treatment was found to down-regulate MSR accumulation [53].
In vitro studies have shown that glutathionylation of MSR at the
cysteine position plays a vital role in methionine regeneration. Lin-
dermayr et al. [54] described nitrosylation of SAMS at the cysteine
113 position, following its incubation with nitrosoglutathione
(GSNO), which abolished SAMS activity in Arabidopsis. They con-
cluded that SAMS activity is influenced by the redox status of the
cell. The redox status of the cell modulates DNA methylation by
influencing one or more factors related to DNA hyper or
hypomethylation. The fact that methylation efficiency depends
on the reaction conditions between methyl group donors and
acceptors, such as DNA or histones, suggests that the redox status
of the cell can influence both donor and acceptor systems to induce
epigenetic changes.

Regulation of DNA methylation/demethylation

The redox status of the cell influences DNMT activity, inducing
changes in methylation patterns. A methylation indicator, the pres-
ence of oxidative stress, has been shown to increase DNMT expres-
sion in plants. In in vitro grown birch plants, increased ROS activity
in older calli elevated DNA methylation and was accompanied by
an increased expression of DNMT genes such as domain rearranged
methyltransferase (DRM), methyltransferase (MET) and chro-
momethylase (CMT) [56].

In demethylation, DNA demethylase activity is performed by
DNA glycosylase by excising the entire methylated base instead
of the methyl group alone. The removal of the methylated base
from the methylated DNA region is accomplished through the base
excision repair (BER) pathway. DNA glycosylase has an iron-sulfur
(Fe-S) cluster assembly as a cofactor, which aids in gaining or los-
ing electrons under oxidation. The assemblage of the Fe-S cluster
with the apoprotein is mediated through the cytosolic Fe-S cluster
assembly (CIA) pathway. The CIA pathway engages several scaffold
and carrier proteins [57]. Demeter and ROS1 are 5-methylcytosine
DNA glycosylases that play a role in fertilization [58]. This Fe-S
cluster assembled DNA demethylase is activated during fertiliza-
tion, following an oxidative burst in the central cell, leaving evi-



Fig. 2. Redox components regulate S-adenyl methionine (SAM) synthesis through the folate cycle in plants. The folate cycle starts with the conversion of dihydrofolate (DHF)
to tetrahydrofolate (THF) through dihydrofolate reductase-thymidylate synthase (DHFR-TS) by using reducing equivalents from NADPH (nicotinamide adenine dinucleotide
phosphate). Methyl groups gained from THFs (5,10-CH2-THF, 5,10-CH = THF) are synthesized by serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate
dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-CH = THF to 5-CH3-THF, from which the
methyl group is transferred to homocysteine (Hcy) to synthesize methionine (Met) through the methionine synthase (MS) enzyme. Methionine synthesizes SAM through
SAM synthase (SAMS), and SAM donates methyl groups to proteins or DNA through DNA methyltransferase (DNMT)/ histone lysine methyltransferase (HKMT)/ protein
arginine N-methyltransferase (PRMT) and is converted to S-adenosyl homocysteine (SAH) which is further processed to Hcy through S-adenosyl homocysteine hydrolase/
homology-dependent gene silencing 1 (SAHH/HOG1). Redox components influence the following key enzymes: SAMS/methionine adenosyl transferases (MAT), DNMT/
HKMT/PRMT, SAHH/HOG1, MS and methionine sulfoxide reductase (MSR). K: lysine; R: arginine; Me: methyl. ROS/NO is uncharacterized regulation. GRX, glutaredoxin; TRX,
thioredoxin [4]. The schematic representation was adapted from Saravana Kumar et al. [4].

Table 1
The list of enzymes involved in DNA methylation affected by the redox status of the cell.

Epigenetic process and modifying
enzyme

Redox status influence on enzymes Described roles for the epigenetic process References

Methionine sulfoxide reductase
(MSR)

NADP increases the MSR transcript, and GSH helps
regenerate MSR

MSR regenerates methionine from the oxidized
methionine pool

[52,55]

Homologous gene silencing 1
(HOG1)

Nitrosylation of HOG1 Converts S-Adenosyl homocysteine to homocysteine [50]

Detrahydrofolate reductase NADPH is converted to NADP Catalyzes the conversion of dihydrofolate to
tetrahydrofolate

[48]

Methionine synthase (MS) Nitrosylation Converts homocysteine to methionine [51]

Note: NADP, nicotinamide adenine dinucleotide phosphate; GSH, glutathione.
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dence that conditions similar to oxidative stress are required for
demethylase activity.
Redox regulation of histone acetylation

Histone acetylation, another type of PTM, occurs in the nucleus.
In contrast to methylation, acetylation of histones generally facili-
tates gene expression [59], although some histone methylation is
also known to promote gene expression. In the cell, histone acety-
lation depends on the availability of the substrate, acetyl CoA, and
is maintained through the antagonistic activity of two enzymes,
HAT and HDAC. As with other PTMs, the activities of HAT/HADC
enzymes, as well as acetyl CoA metabolism, are redox-regulated.
Currently, several reports establish redox-mediated histone acety-
104
lation in plants and animals. Mengel et al. [60] report that, in Ara-
bidopsis, treatment with NO or GSNO resulted in the inactivation of
the HDAC complex, increasing histone acetylation. During heat-
induced programmed cell death, increased accumulation of ROS
was found to ensure hyperacetylation by overexpression of HAT
in maize seedlings [35]. In sugar beet lines, Causevic et al. [61] have
shown that different levels of ROS expression could direct different
levels of histone acetylation.

Regulation of acetyl CoA

Acetyl CoA is a thioester between acetic acid and coenzyme A.
The prime role of acetyl CoA is to act as an acetyl radical donor,
a cofactor for several metabolic pathways in the cell, such as the
Krebs cycle and the PTMs such as histone acetylation. Acetyl CoA



Fig. 3. Acetyl CoA synthesis in the mitochondrial matrix and the regulation of histone acetylations by redox components. In the cytoplasm, the breakdown of glucose
produces pyruvate, which enters the tricarboxylic acid (TCA) cycle that occurs in the mitochondria. Then, pyruvate is converted to acetyl-CoA through mitochondrial pyruvate
dehydrogenase (mPDH) by reducing NAD +. Combining with acetyl-CoA, oxaloacetate (OAA) formed in the TCA cycle produces citrate. After entering the cytoplasm, citrate is
converted back to OAA and acetyl-CoA through ATP-citrate lyase (ACL). Synthesized acetyl-CoA enters the nucleus and provides the acetyl group to the histone
acetyltransferase (HAT) for histone acetylation. After receiving the acetyl group, HAT introduces acetylation marks (Ac) over the lysine residues of the histone tail, thereby
loosening the nucleosome structure (DNA and histones) and facilitating gene expression. Histone deacetylase (HDAC) removes histone acetyl groups from the histone tail,
thus leading to chromatin compaction. ROS, NO, and NAD+ influence different HAT and HDAC enzymes [4]. The schematic representation was adapted from Saravana Kumar
et al. [4]
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is synthesized in plants in different cellular organelles such as
mitochondria (Fig. 3), chloroplast, and peroxisomes. The oxidative
stress in cells alters acetyl CoA metabolism, thereby significantly
influencing histone acetylation [62]. In mitochondria, oxidative
decarboxylation of pyruvate by the activity of the mitochondrial
pyruvate dehydrogenase (mPDH) complex results in the genera-
tion of acetyl CoA. Oxidative decarboxylation of pyruvate is an
integral step of the glycolysis pathway that occurs before the entry
of acetyl CoA into the Krebs cycle. During this process, the PDH
complex uses NAD+ as a cofactor for its catalytic activity, converts
pyruvate to acetyl CoA and releases CO2 [63]. In Arabidopsis, it has
been shown that altering the redox status (increased NADH/
NAD + ) under in vitro conditions inhibits mPDH complex activity
[64]. In a 2019 review, Dumont and Rivoal [65] point out that, in
Arabidopsis, the PTMs of enzymes are involved in the tricarboxylic
acid (TCA) cycle in a redox-dependent manner. The inhibition of
the redox-dependent TCA cycle increases acetyl CoA and decreases
ROS production by increasing citrate concentrations to increase
histone acetylation. In roots and seedlings, pyruvate was shown
to increase by oxidative stress. This increase impacts TCA cycle
inhibition, suggesting that the redox status influences acetyl CoA
synthesis.

The other two mechanisms that generate acetyl CoA include
fatty acid b-oxidation and amino acid catabolism. Amino acid cat-
abolism involves amino acids such as leucine, lysine, phenylala-
nine, tryptophan and tyrosine. The catalytic conversion of acetyl
CoA into fatty acids is regulated by the enzyme acetyl-CoA car-
boxylase 1 (ACC1) in animals and plants. The acc1 mutants of Ara-
bidopsis that are defective in fatty acid synthesis are reported to
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accumulate a high level of acetyl CoA [66]. A high accumulation
of acetyl CoA could induce increased histone acetylation [67].

Regulation of histone acetyltransferase

HAT enzymes mediate acetylation by combining with other fac-
tors to form a HAT complex, whose activity is affected by oxidative
stress. The elongator protein, a component of the HAT complex, is
known to mediate ABA response, anthocyanin biosynthesis and
oxidative stress tolerance in Arabidopsis [68]. In maize, ROS gener-
ation occurs in seedlings exposed to elevated salinity conditions in
the form of increased electrolyte leakage and H2O2 production,
thus inducing several antioxidant pathway genes [69]. A collateral
increase in HAT enzyme expressions, such as ZmHATB and ZmGCN5,
was observed and was accompanied by the upregulation of cell
wall synthesis genes, ZmEXPB2 (expansin-B2) and ZmXET (xyloglu-
can endotransglycosylase). Upregulation of cell wall synthesis
genes was mediated by increased acetylation in promoter regions,
evidence that HAT enzymes mediate the expression of various
stress-responsive genes by modifying their acetylation status dur-
ing stress [70].

Regulation of histone deacetylases

Available evidence shows that HDAC expression is primarily
regulated by the redox status of the cell leading to histone deacety-
lation (Supplementary Table 2). Different PTMs mediated by the
redox status of the cell also affect HDAC activity. HDACs are
enzymes with deacetylation activity that are classified based on
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both mechanistic similarity and phylogenetic comparison [71].
There are generally two types, the predominant non-sirtuin types
and the sirtuin types. Non-sirtuin HDACs have Zn or Fe ions
embedded in their structure while sirtuins use NAD+ as a cofactor.
A comprehensive phylogenetic analysis of HDAC-like sequences,
across sequenced genomes, established that non-sirtuin HDAC
enzymes are best classified into three distinct groups, Class I, II,
and IV, while the sirtuin-like enzymes remained classified in Class
III. Class I HDACs are HDA1, HDA2, HDA3 and HDAC8; Class II
includes HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and HDAC10; Class
III includes sirtuin-2 like (SIRT) HDACs such as SIRT1, SIRT2, SIRT3,
SIRT4, SIRT5, SIRT6 and SIRT7; and Class IV contains HDAC11. Ara-
bidopsis HDACs, for example, constitute 18 genes, grouped as
RPD3 (reduced potassium dependency 3)/HDA1 (histone deacety-
lase 1) (RPD3/HDA1), SIR2 (silent information regulator 2), and
HD2, the plant-specific histone deacetylase 2 [71].
Non-sirtuin HDACs

Non-sirtuins, the major group of HDACs, are predominantly
involved in regulating histone acetylation in cells. Under oxidative
stress, HDACs are found to be unrecruited from gene repression,
driving increased acetylation and consequent gene expression.
Ding et al. [72] report that, in rice, during the compatible host-
pathogen interaction, the transcript level of HDT701 (histone 4
deacetylase 701), an HD2 subfamily gene, is increased, in contrast
to its lowered expression during incompatible interaction. They
found that transgenic overexpression of HDT701 led to a reduction
in H4 acetylation leading to susceptibility to rice pathogens, salt,
drought and osmotic stresses. Decreased H4 acetylation is associ-
ated with delayed seed germination [72,73]. The pattern was found
to be reversed with the silencing of HDT701, whereupon elevated
H4 acetylation was observed along with an increased transcription
of PRRs and defense genes. Additionally, treating with pathogen-
associated molecular pattern (PAMP) elicitors, flg22 and chitin,
increased ROS levels in transgenic plants. Increased transcription
of defense genes was found to be linked to enhanced acetylation
marks in their promoters.

Non-sirtuin HDAC members are redox-sensitive and are pro-
duced during different oxidative stress conditions. In plants,
HDACs get inactivated under oxidative stress to increase histone
acetylation which helps the expression of many abiotic stress resis-
tance genes [74]. There are several reports of redox switch regula-
tion of HDACs such as HDA1, HDA2, HDA3, HDAC4, HDAC5, HDAC6
and HDAC8 during oxidative stress conditions [74].

PTMs involving HDACs either make proteins inactive or loosen
contact with the surrounding DNA. Among the deacetylases,
HDA2 is among the most characterized. Ito et al. [75] demonstrated
that S-nitrosylation of HDA2 leads to hyperacetylation. When H2O2

was administered, S-nitrosylation was induced on HDA2, driving
histone acetylation. Similarly, S-nitrosylation of HDAC6, HDAC8
was also found to occur under oxidative stress [74]. Plants are also
observed to possess HDA6, a homolog of human HDAC1 [76] and
yeast Reduced potassium dependency 3 (RPD3) [77]. Plant HDACs
work as a complex, and S-nitrosylation of either HDACs or their
complexes could result in the inactivation of HDACs [78]. In gen-
eral, HDACs lack DNA binding properties and, hence, form com-
plexes with large multiprotein sub-units.

Like any other stress response genes, HDACs also undergo PTMs
under stress, when the cysteine residue changes to alter protein
development, functions and subsequent protein–protein interac-
tions. Mengel et al. [60] have shown that the application of GSH
to Arabidopsis seedlings grown in a liquid medium increased his-
tone acetylation due to the reduction of HDAC activity. In vitro
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studies have revealed that GSSG mediates protein glutathionyla-
tion at the cysteine position. In Arabidopsis, the expression of genes
related to SA biosynthesis and SA-mediated defense-associated
pathogenesis-related (PR) proteins were repressed by an RPD3/
HDA1 class deacetylase. In the case of HDA19, which deacetylates
the promoter regions, oxidative stress conditions induced by
pathogen attack abolish HDA19 activity to drive promoter acetyla-
tion leading to SA accumulation and PR protein expression inciting
defense response [79]. Later, Liu et al. [80] demonstrated that
increased ROS production, after the addition of SA and flg22 into
Arabidopsis cell suspension cultures, led to the oxidation of two
deacetylases, HDA9 and HDA19, improving the acetylation of
stress-responsive genes.

Likewise, in Arabidopsis under cold conditions, the CULLIN4-
based ubiquitin E3 ligase complex promotes HD2C degradation
(increased acetylation levels of histone H3), which allows the acti-
vation of cold-responsive (COR) genes [81]. Further, HD2C interacts
with other HDACs to either increase or decrease acetylation levels
to regulate stress tolerance. For instance, in Arabidopsis, in double
mutant plants (hda6, hd2c, and hda6/hd2c-1), HD2C directly inter-
acted with HDA6, was bound to histone H3 and was associated
with increased histone H3K9K14 acetylation and decreased his-
tone H3K9 dimethylation, thus activating ABA-responsive genes
[82]. In addition, HD2C interaction with the BRM-containing
SWI/SNF chromatin remodeling complex regulates Arabidopsis heat
stress response [83]. According to ROS status in the cell, plants
require either low or high levels of acetylation to regulate stress
tolerance. In Arabidopsis, the HDA19-MSI1 complex maintains
low levels of acetylation of histone H3 at lysine 9 and fine-tunes
ABA signaling [84]. HDA19 formation with other proteins is also
important for brassinosteroid signaling to facilitate histone
deacetylation of ABI3 chromatin [85], suggesting that the redox
status of the cell regulates plant stress tolerance through histone
modifications.
Sirtuin HDACs

Sirtuin HDACs use NADH, a redox carrier cofactor molecule
known for its deacetylation activity. NADH is a small metabolite
transporting reducing equivalents to different cell compartments
[71]. NADH shuttles between oxidized (NAD+) and reduced states
through electron exchange, mediating different metabolic reac-
tions inside the cell. The transition of NADH between the two oxi-
dation states depends on the redox status of the cell, qualifying it
as an indicator of energy and the redox status of the cell. Although
the redox status of the cell and its impact on NADH is not well doc-
umented in plants, it is widely accepted that, under oxidative
stress conditions, the redox status of NAD+ shifts towards a more
reduced state. Since the activity of sirtuin HDACs is NAD+ depen-
dent, the cellular NAD+ level and the NAD+/NADH ratio are the
major determinants of their deacetylation activity [86]. Generally,
sirtuins are assemblers of heterochromatin (silent information)
during gene expression. However, sirtuin type class III HDACs are
involved in the deacetylation of histones as well as non-histone
proteins.

Among seven sirtuin isoforms (SIRT1-7), the activity of the SIRT2
gene involves several PTMs that are redox-mediated. Under oxida-
tive stress, various protein kinases, which introduce PTMs in the
SIRT1, are activated. Common oxidative stress-induced protein
kinases are casein kinase II (CKII) [87], cell division control 2
(Cdc2) [88] and 50 adenosine monophosphate-activated protein
kinase (AMPK) [89]. Phosphorylation of SIRT2 by protein kinases
makes it dysfunctional, leading to increased acetylation. Although
SRT1 expression is promoted under mild oxidative stress condi-
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tions, during severe oxidative stress, SRT1 gets inactivated through
PTMs such as glutathionylation [90] and nitrosylation [91]. Addi-
tionally, NAD+ depletion under oxidative stress can also suppress
SRT1 activity [92]. In plants, cellular redox status recruits SIRT
genes to alter the expression of ROS responsive genes through
NAD+ mediated activity. Unlike in animal systems, the number of
sirtuins reported in plant systems is low [93]. Two SIRT genes each
are reported from Arabidopsis (AtSRT1 and AtSRT2) and rice (OsSRT1
and OsSRT2) [94], and one from durum wheat (WhSRT2) [95].
Redox regulation of histone methylation

Unlike histone acetylation, methylation does not affect the net
charge of histone residues but modifies the bulkiness instead.
The bulkiness or hydrophobicity between the residues opens up
new platforms for the binding of other regulatory proteins. Classi-
fied as mono-, di- and tri-methylation, based on the number of
methyl groups attached over the histone molecules, different
methylations have different effects on the expression of genes.
For instance, trimethylation of the 27th lysine residue of H3
(H3K27me3), usually carried out by the polycomb group (PcG) pro-
tein, leads to the repression of genes, while trimethylation at the
fourth lysine of H3 (H3K4me3), catalyzed by Arabidopsis Trithorax
(ATX) group proteins, leads to active transcription [96]. Like other
PTMs, histone methylation is also affected by various redox com-
ponents in the cell.

As with DNA methylation, SAM is the source supplier of the
methyl group (added to the lysine and arginine residues of his-
tones) for histone methylation. In Andropogon virginicus, AvSAMS
gene expression is induced by different metal toxicities and other
oxidative stress conditions [97]. When Arabidopsis is transformed
with the AvSAMS gene, the transgenic plants confirm increased tol-
erance to aluminum and other metal ions; during aluminum stress,
the histone methylation level of the differentially expressed genes
was significantly altered compared to the level in wild-type plants.
Ezaki et al. [97] also concluded that SAMS expression under oxida-
tive stress-regulated histone methylation influences the expres-
sion of stress-responsive genes. Since folate is necessary for SAM
production and to carry out the methionine cycle, folate inhibitors
can play a significant role in controlling methylation. Sulfamet-
hazine is a potential antagonist to folate synthesis in the cell,
affecting epigenetic modifications. When applied, sulfamethazine
reduces the folate level in plants, thereby reducing DNA and his-
tone methylation [49]. Although stress-mediated histone methyla-
tion is known, the details of interconnectivity between oxidative
stress and histone methyltransferase/demethylase reactions are
seldom detailed.

Regulation of histone methyltransferase

Histone methyltransferases (HMTs) catalyze the addition of one
or more methyl groups to histone residues, particularly those of H3
and H4 histones. Using SAM as the methyl donor, histone-lysine N-
methyltransferases (HKMT) and histone-arginine N-
methyltransferases (HRMT) mediate methylation. Methyltrans-
ferase activity is influenced by stress-induced redox modification
whereupon the methylome of stress-specific genes is controlled
[98]. Depending upon the target residue, HMTs are of two types,
lysine-specific HKMT and arginine-specific HRMT.

HKMT proteins possess conserved SET (Suppressor of variega-

tion 3–9, Enhancer of Zeste, and Trithorax) domains for their cat-
alytic activity. The HMTs of the SET domain-containing group
(SDG) (SDG-HMTs) is found to be distributed across yeast, plants
and animals [99]. SDG-HMTs are known to alter gene expression
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either at the transcriptional or post-transcriptional level. In mam-
malian cells, it was shown that ROS regulate the expression of
mitochondrial and antioxidant genes by the action of the SET
domain (SETD7) group of proteins [100]. Unlike in animal cells,
direct evidence interlinking the redox status of the cell with
SDG-mediated gene expression is lacking in plant cells. For
instance, in Arabidopsis, it is well known that exposure to light
and carbon alters the redox status of the cell. Li et al. [101] report
that methylation patterns in light and carbon responsive genes are
altered by SDG8 activity. Belonging to the SDG-HMT group, Ara-
bidopsis Trithorax1 (ATX1) mediates H2O2 signaling. Kaurilind
et al. [102] demonstrated that, when atx mutants were integrated
with Arabidopsis catalase 2 (cat2) mutants, lesion development in
the mutants got suppressed. The lesions in cat2 mutants are due
to the excessive accumulation of H2O2, which leads to programmed
cell death. Lesion suppression by the introduction of atx mutants
implied that ATX1 mediates H2O2 signaling in the programmed cell
death pathway.

Similarly, HRMT, also known as protein arginine N-
methyltransferase (PRMT), regulates different developmental and
stress responses in plants. A well-characterized PRMT in Arabidop-
sis, PRMT5, acts as a redox signaling mediator [103]. PRMT5
induces a di-methylation of the third arginine residue of the H4
histone (H4R3me2) and suppresses the expression of the flowering
locus C (FLC) as well as of salt responsive genes [104,105]. Under
salinity stress, PRMT5 acts as a signal transducer of NO by methy-
lating histone residues. The NO produced induces S-nitrosylation
of PRMT5, thereby inducing its activity. The induced PRMT5
methylates the spliceosome of stress-response pre-mRNA. The
change in the methylation status of the spliceosome affects protein
splicing activities and leads to the development of alternative
splice variants [105]. The production of these alternate variants
increases the number of stress-specific gene products. Such post-
transcriptional level variations are induced by NO through S-
nitrosylation to regulate the production of stress-specific mRNA
transcripts [103].

Regulation of histone demethylase reactions

Histone demethylases (HDMs) mediate the removal of the
methyl group from histone molecules. HDMs are of two classes,
the Jumonji C (JmjC) domain-containing histone demethylase
(JHDM) and the lysine-specific demethylase (LSD) [106]. LSD
belongs to a flavin adenosine dinucleotide (FAD)-dependent amine
oxidase, while JHDM belongs to the ferrous and a-ketoglutarate-
dependent dioxygenase family. Both enzymes follow different
pathways to demethylate histones and use different cofactors for
their activities [107]. The oxidative stress influence on these
demethylase enzymes is directed through their cofactors, which,
in turn, regulate enzyme activity and are influenced by the cellular
environment.

Among the LSDs, LSD1 is the first characterized histone
demethylase. It uses FAD as its cofactor [107]. Forneris et al.
[108,109] have shown that the demethylation reaction catalyzed
by LSD1 is a flavin-dependent oxidative process in which the
methylated lysine is oxidized. LSD1 essentially requires protonated
nitrogen for its activity and is relatively active over mono- and di-
methylated residues. In vitro studies have shown that the FAD
cofactor in the enzyme donates electrons to the protonated nitro-
gen atom and becomes reduced with concomitant oxidation of C-
N-methylamine. The resulting imine group reacts with a water
molecule to form formaldehyde together with the removal of the
methyl group. During this process, flavin undergoes redox switch-
ing and this property makes it a key player in transcription, cellular
signaling and abiotic stress responses [110,111]. Expression analy-
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sis has shown that LSD1 expression is directly proportional to the
level of demethylation of mono-/di-methylated lysine residues in
histone 3 (H3K4me1/2), leading to higher gene expression.

The second class of HDMs, the JHDMs, catalyzes the demethyla-
tion of mono-, di-, and tri-methylated histones in animals and
plants [106]. JHDMs remove histone methylation marks while
associating with wide functions in plant development [112,113].
The JmjC domain protein of these HDMs harbors ferrous ions and
a-ketoglutarate as cofactors for their activities. Oxidation of fer-
rous to ferric form leads to the inactivation of JmjC containing pro-
tein, promoting hypermethylation. Arabidopsis jmj16 mutants
with aberrant JmjC domain-containing protein, Jmj16, accumulate
a higher level of ROS accompanied by H3K4me3 hypermethylation
[114]. Hypermethylation induces early leaf senescence by increas-
ing the expression of senescence-associated genes such as WRKY53
(tryptophan (W) - arginine (R) - lysine (K) - tyrosine (Y) 53) and
SAG201 (senescence-associated gene 201), indicating that Jmj16
is essential for maintaining the homeostatic level of ROS during
oxidative stress and for subsequent methylation events.
Redox regulation of miRNA biogenesis

MicroRNAs (miRNAs) are yet another intermediary of gene reg-
ulation in plant systems. Most of their activities are epigenetic,
such as heterochromatin formation, methylation, histone modifi-
cation and gene silencing. In plants, evidence from several species
indicates a strong interconnection between the redox status of the
cell and miRNAs production. The type of oxidative stress was found
to influence the expression of specific miRNAs, depending upon the
plant species involved (Supplementary Table 3) [115]. In wheat,
exposure to ozone was found to induce the expression of 21
ozone-specific miRNAs that are uninfluenced by H2O2 exposure
[116]. Similarly, Jia et al. [117] have shown that the expression of
miR156 was induced by ROS and GSH but not by H2O2. Apart from
these, H2O2-responsive miRNAs were identified in rice [118],
wheat [116] and Brachypodium [119]. When exposed to similar
levels of H2O2, there were significant miRNA expression differences
between species (Supplementary Table 3). Only two miRNAs
(miR169 and miR528) were found to have similar expression levels
between rice and Brachypodium under similar treatment condi-
tions [118,119]. In apple, the vegetative phase change is under
the regulatory control of miR156, which is under the control of
plastid-nucleus redox signals. When in vitro apple shoots were
exposed to chemical inhibitors, the expression of miR156 was
found to be concomitantly affected by GSH content and not by
H2O2 level [117]. This shows that redox signaling works upstream
of miRNA production.

Despite mounting evidence on the influence of redox elements
on miRNA expression (Fig. 4), direct evidence remains scanty on
how they influence the expression of different accessory proteins.
Mutant plants with defective accessory proteins are compromised
in miRNA biogenesis as seen among Arabidopsismutants, dcl1, hen1
and hyl1 [120]. However, indirect evidence has shown that miRNA
synthesis is inhibited by feedback mechanisms on which oxidative
stress conditions have a significant influence. When oxidative
stress affects miR162 and miR168, their feedback mechanisms also
influence the proteins, DCL1 and AGO1, respectively [121,122].
Although the DCL1 protein is involved in the production of
miR162, it also binds to the stem-loop structure of miR162. In turn,
in the feedback reaction, the redox-sensitive miR162 targets and
cleaves DCL1 mRNA and pre-mRNAs [122]. In the case of dcl1
mutants, wherein the functional, active DCL1 protein is absent,
miR162 biosynthesis is impaired. However, in wild-type plants,
DCL1 production was restricted by the miR162 feedback, resulting
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in miR162 homeostasis. Similarly, AGO1 homeostasis is also under
the feedback regulation of miR168 [121].

Mediation of miRNA expression

Many oxidative stress conditions mediate the expression of
miRNAs (Fig. 5) through the GSH-dependent redox signaling path-
way. Cao et al. [116] showed induction of miRNA expression fol-
lowing H2O2 treatment in wheat. In Arabidopsis, Jagadeeswaran
et al. [123] have revealed a redox signaling-dependent production
of miR395, induced under sulfur deficiency. This miRNA is known
to target a low-affinity transporter gene, Arabidopsis sulfate trans-
porter 68 (AST68), and three ATP sulfurylases, APS1, APS3 and
APS4. Similarly, miR395 production is found to be promoted under
oxidative stress abetted by sulfur deprivation, the mechanism of
which remains unknown. Analysis of miR395 expression within
various genetic backgrounds suggests that miR395 biogenesis
involves more pathways than oxidative stress. GSH dependency
for miRNA production and expression was evident from the partial
impairment of miR395 production in the GSH deficient cadmium
sensitive mutant, cad2-1 [123]. In the case of an Arabidopsis triple
mutant, carrying mutations in nitroreductase genes, ntra and ntrb,
along with cad2, miR395 reduction is found to occur by up to 45%.
Likewise, redox homeostatic or redox signaling components have
been shown to play a vital role in miR395 biogenesis under differ-
ent mutant backgrounds. Conversely, some mutants with impaired
GSH synthesis were found to have miR395 production, indicating
that miR395 expression could also be under the regulatory influ-
ence of pathways other than the oxidative stress pathway. Apart
from this, the expression of miR398, which targets Cu/Zn superox-
ide dismutases, CSD1 and CSD2, was found to be regulated under
oxidative stress conditions [123]. Sulfur deprivation-induced
oxidative stress was found to leverage a high level of CSD1 accu-
mulation, with concomitant down-regulation of miR398 expres-
sion. Further supporting this, no CSD1 accumulation was
observed in the redox signaling mutants. With observations of
specific patterns of miRNA expression, possibilities of occurrence
of specific mediatory pathways under specific stress conditions
cannot be ruled out and require additional experimental evidence.
Redox regulation of chromatin structure and remodeling

As the carrier of genetic information, chromatin biology is all
about the regulation of gene expression for cellular functions
related to development and metabolism. Chromatin shuttles
between compact and relaxed forms depending on the internal cel-
lular conditions. Structural compaction of the chromatin generally
halts transcription, while relaxation drives transcription and gene
expression. For example, under low temperature, chromatin
dynamics can regulate histone modifications, DNA methylation
and ROS status, thereby activating cold-responsive genes [125]
(Fig. 6) and flower induction during vernalization. Organizational
modification of chromatin may be either covalent such as epige-
netic (DNA methylation and histone post-translational modifica-
tion), or non-covalent via chromatin modifications and
remodeling [126]. As a result, the structural organization of chro-
matin is decided by histone status, histone variants and structure
protein remodelers. ATP-dependent chromatin remodeler and poly
(ADP-ribosyl) polymerase are two common remodeler proteins
(PARP). Histone modifications include multiple changes in the
amino acids of histone codes in the histone tail and interactions
of regulatory proteins with modified histones are among the
functions of histone modifications [127]. Modified histones tend
to interact with chromo- and bromodomain proteins, which alter



Fig. 4. Cellular redox balance-DNA damage response (DDR)-miRNA triangle. Under various stress conditions, increased ROS production is usually present in different cell
compartments, such as the nucleus, cytoplasm, etc., through which ROS and redox signals move to regulate gene expression. ROS accumulation in the nucleus can arrest the
cell cycle by inducing DNA damage; however, the DDR reduces the negative effects of DNA damage by modulating the activity of microRNAs. To promote the cell cycle
according to the redox environment, altered antioxidant and oxidant balance is required in the nucleus. In this circumstance, ROS and redox signals regulate gene expression
at transcriptional and post-transcriptional levels. The picture illustrates redox-dependent transcriptional mechanisms involved in the regulation of redox-sensitive TF (SRG1,
PAN, and HSFA8) expression to regulate gene expression affected by ROS/RNS. In fact, at the post-transcriptional level, miRNAs can also target mRNAs (redox- and DDR-
related target mRNAs) to inhibit the translation of negative regulation of stress tolerance. miRNA, microRNA; ROS, reactive oxygen species; RNS, reactive nitrogen species;
AOx, antioxidants; Ox, oxidants; DCL1, DICER-like1; PAN, perianthia; SRG1, SNO-regulated gene1; HSFA8, heat shock factor A8 [115]. The schematic representation was
adapted from Cimini et al. [115]
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chromatin organization. Furthermore, interacting regulatory pro-
teins have broader roles in DNA repair, recombination, and other
plant developmental activities [128]. According to the level of
arrangement and active involvement in transcription, Roudier
et al. [129] and Wang et al. [130] have classified chromatin into
four types: chromatin states 1 to 4 (CS1-CS4). CS1 represents the
active state, CS2 the repressive state, CS3 the silent transposon
and CS4 the intergenic regions.
Regulation of ATP-dependent chromatin remodelers

ATP-dependent chromatin remodelling complexes (CRC) are
nuclear enzymes that mediate the interaction between histones
and DNA, to appreciate chromatin plasticity. They are multi-
subunit protein complexes that are chromatin modifiers and
remodelers and work in harmony to alter chromatin structure.
Polycomb group (PcG) and trithorax group (TrxG) proteins consti-
tute chromatin modifiers and interact with remodelers to alter
chromatin organization [132]. Both groups of proteins work con-
trariwise in gene expression, wherein PcG maintains a repressed
state, while TrxG maintains an active state. In Arabidopsis, PcG
interacts with polycomb repressive complex 2 (PRC2) to promote
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the trimethylation of H3K27 to aid suppression of gene expression,
while TrxG derepresses target genes and facilitates gene transcrip-
tion [133–135]. These ATP-dependent chromatin remodelers uti-
lize energy from ATP and mediate the alteration of histone-DNA
modification. In a well-studied remodeler system, switch 2/sucrose
non-fermenter 2 (SWI2/SNF2), the protein complex, comprising of
protein subunits such as SNF5, SWP73 and SWI3, binds with the
promoter region of the gene where different post-translational
marks occur [136,137]. Oxidative stress conditions influence the
binding of the complex with the promoter and bring in regulatory
changes [138–141]. Similarly, gene expression demands are met at
various developmental stages when histone modifiers and remod-
elers alter chromatin structural organization [128,142]. In this
review, we restrict the discussions to vernalization and stem cell
development which are complex traits that depend on environ-
mental variability.
Vernalization

Plants growing in temperate regions require vernalization, a
procedure of flower initiation by exposure of seeds or plants to
low temperatures (1–7 �C). Throughout vernalization, flower



Fig. 5. miRNA regulation under oxidative stress. ROS influence miRNA processes in the nucleus and cytoplasm and induce miRNA transcription by triggering transcription
factors (TFs), such as c-Myc, p53, NF-jB, and HIF-1a. When TFs bind to the promoter, HDAC4 can suppress the TFs. ROS can regulate the expression of DGCR8, drosha,
exportin 5 and dicer enzymes, thereby affecting miRNA biogenesis, translocation and maturation. Arrow and T arrow indicate activation and inhibition, respectively. miRNAs,
microRNAs; ROS, reactive oxygen species; HDAC4, histone deacetylase 4; DGCR8, DiGeorge syndrome critical region 8; AGO, Argonaute; RISC, RNA-induced silencing complex
[124]. The schematic representation was adapted from Carbonell and Gomes [124]
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induction is facilitated through a series of gene expression events
that involve chromatin rearrangement from the condensed state
to the transcriptionally accessible state. In Arabidopsis and several
other angiosperms, flowering is under the control of a floral repres-
sor gene, which blocks a series of flowering-related genes to make
the plants go into a non-flowering phase. One such gene is FLC,
which encodes a MADS (minichromosome maintenance factor 1/
agamous (AG)/ deficiens/ serum response factor (SRF)-box TF) to
suppress the floral integrator gene, thus upholding the vegetative
phase [143]. FLC expression is regulated by different epigenetic
pathways which are influenced by the redox status of the cell. Dur-
ing vernalization, FLC is attenuated by low-temperature exposure,
thereby inducing flowering. Other proteins, such as vernalization 1
(VRN1), vernalization insensitive 3 (VIN3), and vernalization 5
(VRN5) /VIN3-like 1 (VIL1), are involved in vernalization
[144,145]. FLC attenuation occurs through chromatin rearrange-
ment, wherein histone acetylation marks are erased [146–148].
FLC repression is mediated through VIN3 proteins, which bind
upstream to the FLC region [146]. FLC repression requires trimethy-
lation of H3K27 residue and deacetylation of H3 proteins; thus,
VIN3 encodes for a plant homeodomain (PHD) protein interacting
with the PRC2 to induce trimethylation and deacetylation of his-
tone proteins, thereby leading to FLC attenuation [149–151]. In
Arabidopsis, the redox regulation of VIN3 and PRC2 expression has
been demonstrated and it was found that the expression of VIN3
is induced by nicotinamide treatment and, also, during hypoxic
conditions. Likewise, chromatin-mediated gene expressions at
the time of hypoxia are initiated [152] in which ROS and other
oxidative stress conditions regulate the activity of PRC2. The
PRC2 complex consists of four subunits, among which the VRN2-
110
PRC2 subunit is responsible for substrate methylation. However,
the expression of VRN2-PRC2 is oxygen level-dependent. So, any
change in the O2 level will affect VRN2 activity [153]. NO-
regulated protein arginine methyltransferase 5 (PRMT5) induces
H4R3 demethylation in FLC gene promoter regions to reduce FLC
expression to suppress flowering [154].

Stem cell development

During plant developmental processes, the redox regulation of
chromatin plasticity is well accounted for in plants. The decision
for a defined growth is met through stem cells present in the shoot
apical meristem (SAM) and root apical meristem (RAM) regions
[155,156]. Meristematic activity and cell differentiation in the
SAM are maintained by the wuschel (WUS) genes and in the RAM
by wuschel-related homeobox 5 (WOX5) genes. The maintenance
of stem cell activity and the differentiation process involve differ-
ent forms of ROS [157,158]. The accumulation of O2

�� in the stem
cell niche increases stem cell activity by activating WUS expres-
sion, while H2O2 accumulation in the periphery suppresses stem
cell activity and allows for differentiation by inhibiting WUS activ-
ity. Both SAM and RAM developments in plants are under regula-
tion by the redox status of the cell. In root cells, an increase in O2

��

was found in the stem cell niche, while, in the periphery, H2O2

accumulation was found to be high. Thus, throughout stem cell
development, redox modulation plays a significant role. Apart
from WOX5 and WUS, there are other TFs involved in the stem cell
process, such as plethora (PLT). Encodes for Apetala 2 (AP2) type
TFs, PLT1 and PLT2, are involved in the maintenance of the root
stem cell niche in Arabidopsis [159]. High-level PLT expression



Fig. 6. Schematic representation of epigenetic changes at low temperature. Increased levels of ROS and antioxidants under low temperature are associated with chromatin
structure which triggers DNA and histone modifications, thereby activating COR genes. For example, in normal conditions, the HOS15 and HD2C complex represses COR gene
expression due to hypoacetylation of H3 on COR chromatin. Under cold conditions, histone deacetylase 2C (HD2C) degradation triggers the hyperacetylation of H3 on COR
chromatin and, thus, activates COR genes through CBF TFs. Using the high expression of the osmotically responsive gene 15 (HOS15) as a substrate receptor, the CULLIN4-
based ubiquitin E3 ligase complex (CUL4) promotes HD2C degradation. The association of HOS15 with COR gene chromatin and HD2C degradation requires Powerdress
(PWR), a HOS15-interacting protein. The HOS15/PWR complex and CBF TFs bind to the promoters of COR genes [81,131]. Likewise, chromatin changes also activate miRNAs
that influence COR gene expression through post-transcriptional modification. Cold stress also stimulates calcium influx which triggers protein kinases to activate ICE1.
Activated ICE1 suppresses MYB15 and activates the expression of CBFs, thus regulating COR genes. A small star circle represents post-transcriptional modification, such as
phosphorylation. ROS, reactive oxygen species; COR, cold-responsive genes; miRNAs, microRNAs; ICE1, an inducer of CBF expression 1; CBF, C-repeat binding factor; CRT, C-
repeat elements; DRE, dehydration-responsive elements; ABRE, ABA-responsive element; KIN, cold-induced genes [125].
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maintains stem cell activity, while low levels promote cell differ-
entiation [160]. ABA-induced production of ROS is also known to
affect the expression of PLT [161,162]. In Arabidopsis, a pentatri-
copeptide repeat (PPR) protein, ABA Overly sensitive 8, (ABO8),
maintains redox homeostasis. In the case of abo8 mutants, overac-
cumulation of ROS represses PLT1/2 expression [161]. The general
control non-repressed 5 (GCN5) protein, belonging to the HAT
family, is the first HAT that was found to associate histone acety-
lation to transcriptional regulation [163,164]. GCN5, along with
the adenosine deaminase 2 (ADA2b) transcriptional adapter (for
alteration/deficiency in activation 2b), regulates the expression
of PLT1/2 [165]. Among the several TrxG proteins reported in Ara-
bidopsis, SDG2 regulates stem cell activity by maintaining
H3K4me3 levels. It is observed that the chromatin assembly factor
1 (CAF1) works in a synergetic way along with SDG2 to regulate
PLT1/2 expression [166]. The antagonistic activity of chromatin
remodeling factor, Pickle (PKL), and the PcG protein, Curly leaf
(CLF), decides root stem cell activity through the regulation of
H3K27me3 [167].
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Regulation of PARP1

Poly ADP- ribosylation (PAR) is a post-translational modifica-
tion of histone and non-histone proteins carried out by the
enzyme, poly (ADP-ribose) polymerase (PARP) [168]. In this pro-
cess, NAD+ supplies ADP-ribose and releases nicotinamide as a
by-product. Members of this protein possess a catalytic domain,
the PARP signature, which catalyzes the addition of ADP-ribose
to proteins [169]. Under stress conditions, the activity of PARP is
essential to repair DNA [170]. Histone PAR makes the protein more
anionic and causes the expulsion of histones from the chromatin
structure and, thus, the chromatin will become relaxed [171].
Blocking PARP1 activity through chemical applications leads to a
high level of NAD+ accumulation. Under stress, DNA breakage
caused by the increased level of ROS accumulation is sensed by
PARP which adds ADP-ribose units to the damaged DNA regions,
recruiting other damage repair mechanisms [172,173].

In Arabidopsis cell culture, a high level of PARP accumulation
was found to be more likely to occur during the exponential



M. Ramakrishnan, P.K. Papolu, L. Satish et al. Journal of Advanced Research 42 (2022) 99–116
growth stage than in the early and older stages of growth. A con-
comitant increase in NAD+ oxidation and glutathione production
were reported when there was a high level of PARP accumulation
[174]. Also, elevated PARP1 expression at the time of DNA damage
is caused by oxidative stress conditions [175–177]. Thus, PARP is a
major energy consumer during stress response [178,179]. High
PARP activity, however, depletes NAD+ content, which compels
plants to replenish NAD+ content. For this, plants use other salvage
pathways to synthesise NAD+. Thus, the total energy content of the
plant system drops, leading to cell death. PARP mutant plants, as
well as plants in which PARP1 activity is externally blocked, are
shown to be resistant to oxidative stress where energy consump-
tion in the form of NAD+ is protected [178,180]. PARP inhibition
enhances the growth of plants as PARP-mediated NAD+ consump-
tion is prevented.
Conclusion, future perspectives and biotechnological
opportunities

Plants adapt to stress conditions with their innate epigenetic
rhythms such as DNA methylation, histone modification and chro-
matin remodeling. Since stress conditions involve redox homeosta-
sis in plants, epigenetic components undergo associated changes,
driving crucial regulations of gene expression.

Plant systems have an extensive battery of redox mediators
such as ROS, RNS, antioxidants, etc. the interplay of which regu-
lates redox homeostasis. Redox-regulated epigenetic marks are
indirect indicators of the redox status of the cell. Thus, redox medi-
ators are emerging key regulators of epigenetic rhythms that reg-
ulate the activities of various enzymes controlling various
molecular processes involved in plant growth and development
under different environments.

The understanding of the functional mechanisms of epigenetic
modifications regulated by the redox status of the cell has signifi-
cantly advanced in recent years; however more remains yet
unknown, particularly the precise molecular mechanisms. For
instance, how does one oxidant trigger epigenetic modification
without activating other antioxidants as well as other redox-
regulated epigenetic marks?

Also, epigenetic activities such as sumoylation of histones,
phosphorylation, ADP-ribosylation, glycosylation, ubiquitinylation,
and chromatin remodeling are relatively under-studied. Chromatin
modifications, triggered by redox mediators under various stress
conditions, require more investigation. Furthermore, the epige-
netic role of enzymes, such as NADPH oxidase and antioxidant
enzymes that help in ROS generation and scavenging, and GSH syn-
thesis in the mitochondria, NO synthase-like enzymes and nitrate
reductase are yet to be completely understood. Enzymes and tran-
scription factors that are influenced the redox status of the cell
require in-depth studies.

Since Epigenetic regulation is complicated since it involves sev-
eral pathways. Thus, the crosstalk between various components of
the epigenetic complex, including co-expression genes, transpos-
able elements, non-coding RNAs, spliceosomes and proteomes,
requires investigation, especially with respect to redox-mediated
changes. Plant stress memory associated with the redox status of
the cell also requires in-depth studies. N6-methyladenosine
(6 mA), novel epigenetic modifications of DNA, are adequately
understood in plants, but 6 mA associations with the redox status
of the cell remain unidentified [181].

Current biotechnological resources and escalating develop-
ments offer compelling promise for solutions to the unsolved mys-
teries of epigenetic development in plants. Recent technological
developments such as nanopore sequencing, ATAC-seq (Assay for
112
Transposase-Accessible Chromatin using sequencing) [182], epi-
transcriptomics [183], gene editing [184], proteomics, metabolo-
mics, imaging of redox status components [185], etc. are driving
discoveries of molecular mechanisms involved in redox-mediated
epigenetic changes.

The broader understanding of the epigenetic development of
plants will soon recast crop improvement strategies in economi-
cally and ecologically important crops and tree species. Therefore,
it is necessary to comprehend the epigenetic rhythm of every tar-
get species, particularly when related to stress responses where
redox-mediated regulations underpin the survival of the organism.
This would lead us to grow crop cultivars with improved traits for
food and energy security and climate resilience.
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